Name_____ 1

Test I

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed.

- 1. (10 pts.) Find both the parametric equation for the plane passing through the three points P(0, 1, -1), Q(1, 1, 2), R(1, 2, 0) and the area of the triangle $\triangle PQR$.
- 2. (10 pts.) Let $\mathbf{v} = (1, -2, 3, 1)$ and $\mathbf{u} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Find the projection of \mathbf{v} onto \mathbf{u} and find the distance from \mathbf{v} to the line $\mathbf{x} = t\mathbf{u}$.

3. Let
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 2 & -1 & 1 & 0 \\ 4 & -1 & 3 & 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}$.

- (a) (10 pts.) For the system $A\mathbf{x} = \mathbf{b}$, form the augmented matrix $[A|\mathbf{b}]$ and determine its reduced row echelon form.
- (b) (5 pts.) What are rank(A), rank([A|b])? Which are the leading columns of A?
- (c) (5 pts.) Is the system consistent or inconsistent? If the system is consistent, find the parametric form of the solution.
- 4. (10 pts.) Hourly temperature readings from five remote stations are recorded as 5×1 column vectors. Data analysis shows almost all of these vectors are linear combinations of the vectors in

$$S = \left\{ \begin{pmatrix} 1\\1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-3\\4\\3\\-1 \end{pmatrix}, \begin{pmatrix} 0\\-2\\2\\1\\-1 \end{pmatrix} \right\}.$$

Determine whether $\mathbf{T} = (1 \ 3 - 2 \ 0 \ 2)^T$ can be represented in this way. If so, find three numbers that represent this vector. Are these numbers unique? 5. (10 pts.) Use row reduction either to find C^{-1} or to show that it does not exist, given that the matrix C is

$$C = \left(\begin{array}{rrrr} 1 & 3 & -1 \\ -1 & -4 & 3 \\ 2 & 7 & -4 \end{array}\right) \,.$$

6. Let
$$B = \begin{pmatrix} -1 & 1 & -1 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 2 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

- (a) (10 pts.) Use any method to evaluate det(B).
- (b) (5 pts.) Let $\mathbf{b} = (-1 \ 0 \ 0 \ 1)^T$. Use Cramer's rule to find the value of x_4 in the solution to $B\mathbf{x} = \mathbf{b}$.
- (c) (5 pts.) What is the rank of *B*? Are the *columns* of *B* LI or LD? Explain.
- 7. (10 pts.) Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $L(\vec{x}) = (3\mathbf{i} 4\mathbf{j} + 6\mathbf{k}) \times \vec{x}$. Show that L is linear and find the matrix 3×3 matrix A that represents L.
- 8. (10 pts.) Let $\mathcal{M}_{2\times 2}$ be the set of 2×2 matrices, $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Determine whether or not $S = \{A \in \mathcal{M}_{2\times 2} | y = 2z\}$ is a subspace of $\mathcal{M}_{2\times 2}$.