\qquad

Quiz 3 - Key

Instructions: Show all work in the space provided. No notes, calculators, cell phones, etc. are allowed.

1. Define the terms below.
(a) (5 pts.) $\lim _{x \rightarrow a} f(x)$ does not exist - Let $L \in \mathbb{R}$. We will first define $\lim _{x \rightarrow a} f(x) \neq L$: For some $\varepsilon_{0}>0$ and every $\delta>0$ there is an x satisfying $0<|x-a|<\delta$ for which $|f(x)-L| \geq \varepsilon_{0}$. For the limit not to exist, this must hold for all L.
(b) (5 pts.) $\lim _{x \rightarrow a-} f(x)=L-$ p. 66
2. ($\mathbf{1 5}$ pts.) Show that if $\left|x_{n+1}-x_{n}\right| \leq 2^{-n}$ then x_{n} is convergent. (Hint: show that it is a Cauchy sequence.)
Solution. First, note that this chain of inequalities holds:

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & =\left|x_{m}-x_{m-1}+x_{m-1}-x_{m-2}+\cdots+x_{n+1}-x_{n}\right| \\
& \leq\left|x_{m}-x_{m-1}\right|+\left|x_{m-1}-x_{m-2}\right|+\cdots+\left|x_{n+1}-x_{n}\right| \\
& \leq 2^{-m+1}+2^{-m+2}+\cdots+2^{-n} \text { (assumption) } \\
& \leq 2^{-n}\left(1+2^{-1}+2^{-2}+\cdots 2^{-(m-n-1)}\right) \\
& \leq 2^{-n} \frac{1-2^{-(m-n)}}{1 / 2}=2\left(2^{-n}-2^{-m}\right) \text { (geometric series) }
\end{aligned}
$$

For $\varepsilon / 4>0$, choose $N \in \mathbb{N}$ such that $2^{-n}<\varepsilon / 4$ when $n \geq N$. It follows form the last inequality if $n, m \geq N$ we have that $\left|x_{m}-x_{n}\right| \leq$ $2\left(2^{-n}-2^{-m}\right)<2\left(2^{-n}+2^{-m}\right)<\varepsilon$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence and is therefore convergent.
3. (10 pts.) Show: $f \vee g(x):=\max \{f(x), g(x)\}=\frac{(f+g)(x)+|(f-g)(x)|}{2}$.

Solution. Assume $f(x) \geq g(x)$, so $f \vee g(x)=f(x)$. Then, we also have $|(f-g)(x)|=f(x)-g(x)$, and so

$$
\begin{aligned}
\frac{(f+g)(x)+|(f-g)(x)|}{2} & =\frac{f(x)+g(x)+f(x)-g(x)}{2} \\
& =f(x)=f \vee g(x)
\end{aligned}
$$

4. (15 pts.) (Sequential Characterization of Limits) Prove this: Let $a \in I \subseteq \mathbb{R}$, where I is open, and let $f: I \backslash\{a\} \rightarrow \mathbb{R}$. If $f\left(x_{n}\right) \rightarrow L$ for every sequence $x_{n} \in I \backslash\{a\}$ such that $x_{n} \rightarrow a$, then $L=\lim _{x \rightarrow a} f(x)$ exists.
Proof. Suppose not. Then, for some $\varepsilon_{0}>0$ and every δ there is an x such that $0<|x-a|<\delta$ and $|f(x)-L| \geq \varepsilon_{0}$. Take $\delta=1,1 / 2, \ldots, 1 / n, \ldots$ for each choice of δ, we have x_{n} such that $0<\left|x_{n}-a\right|<1 / n$ and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0}$. By the squeeze theorem for sequences, $x_{n} \rightarrow a$. Thus, from our assumption, $f\left(x_{n}\right) \rightarrow L$. Equivalently, $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-L\right|=0$. However, by the comparison theorem, $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0}>0$. This is a contradiction, so $\lim _{x \rightarrow a} f(x)=L$.
