Quiz 4

Instructions: Show all work in the space provided. Add separate sheets of paper if necessary. Due date: Wednesday, June 29.

- 1. Define the terms below.
 - (a) (5 pts.) uniform continuity on a nonempty subset $E \subseteq \mathbb{R}$ p. 80.
 - (b) (5 pts.) extension of a function p. 82.
- 2. (15 pts.) Prove this: If $f:[0,\infty)\to\mathbb{R}$ is continuous and if the $\lim_{x\to\infty} f(x)=L$ exists and is finite, then f is uniformly continuous on $[0,\infty)$. (Hint: look at your notes from 6/27/05.)

Proof. Let $\varepsilon > 0$. Since $f(x) \to L$ as $x \to \infty$, we can find M > 0 such that when x > M we have $|f(x) - L| < \varepsilon/2$. With this M, we also note that f is continuous on the closed, bounded interval [0, 2M], and is therefore uniformly continuous on [0, 2M]. Thus for ε there is a $\delta_1 > 0$ such that whenever two points $x, t \in [0, 2M]$ satisfy $|x - t| < \delta_1$, we have $|f(x) - f(t)| < \varepsilon$. Next, choose $\delta = \min\{M/2, \delta_1\}$. Any two points $x, t \in [0, \infty)$ are either both in [0, 2M], in which case we have $|f(x) - f(t)| < \varepsilon$, or both are in $[M, \infty)$. In this latter case, we have x > M and t > M, so

$$|f(x) - f(t)| = |(f(x) - L) - (f(t) - L)|$$

$$\leq |f(x) - L| + |f(t) - L|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Thus, f is uniformly continuous.

3. (10 pts.) Show that $x \sin(1/x)$ is uniformly continuous on (0,1).

Solution. Let $f(x) = x \sin(1/x)$ when $x \in (0,1)$. Note that the function $x \sin(1/x)$ is continuous as long as $x \neq = 0$. Also, we have that $|x \sin(1/x)| \leq |x|$, so the squeeze theorem implies that $\lim_{x\to 0} = 0$. Define g(0) := 0, $g(1) := 1 \cdot \sin(1/1) = \sin(1)$, and g(x) = f(x) for $x \in (0,1)$. By what we've just said, g is an extension of f that is continuous on [0,1]. Hence, f is uniformly continuous on (0,1).

4. **(15 pts.)** Prove this: Suppose that $f : [a,b) \to \mathbb{R}$ is continuous and bounded on [a,b). If in addition f is increasing — i.e., $x_1 < x_2$ implies $f(x_1) \le f(x_2)$ —, then f is uniformly continuous on [a,b). (Hint: first prove that $f(b-) = \lim_{x\to b-} f(x)$ exists and is finite.)

Proof. Since f is bounded on [a,b), we can let $L = \sup_{x \in [a,b)} f(x)$. We now apply the approximation property for suprema. For every $\varepsilon > 0$ there is a point $y_0 = f(x_0)$ in the range of f such that $L - \varepsilon < y_0 = f(x_0) \le L$. Choose $\delta = b - x_0 > 0$. Whenever $0 < b - x < \delta$, we have $x_0 < x$, so $L - \epsilon < f(x_0) \le f(x) \le L$; equivalently, $|f(x) - L| < \varepsilon$. Thus, $f(x) \to L$ as $x \uparrow b$. That is, f(b-) = L. Define the function g(x) to be f(x) for $x \in [a,b)$, and let g(b) = f(b-) = L. This makes g a continuous extension of f to [a,b]. Thus, f is uniformly continuous on [a,b). (There are other ways to get the extension, but this is the fastest I know of.)