Quiz 4

Instructions: Show all work in the space provided. Add separate sheets of paper if necessary. Due date: Wednesday, June 29.

1. Define the terms below.
(a) (5 pts.) uniform continuity on a nonempty subset $E \subseteq \mathbb{R}$ - p. 80 .
(b) (5 pts.) extension of a function - p. 82 .
2. (15 pts.) Prove this: If $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and if the $\lim _{x \rightarrow \infty} f(x)=L$ exists and is finite, then f is uniformly continuous on $[0, \infty)$. (Hint: look at your notes from 6/27/05.)
Proof. Let $\varepsilon>0$. Since $f(x) \rightarrow L$ as $x \rightarrow \infty$, we can find $M>0$ such that when $x>M$ we have $|f(x)-L|<\varepsilon / 2$. With this M, we also note that f is continuous on the closed, bounded interval $[0,2 M]$, and is therefore uniformly continuous on $[0,2 M]$. Thus for ε there is a $\delta_{1}>0$ such that whenever two points $x, t \in[0,2 M]$ satisfy $|x-t|<\delta_{1}$, we have $|f(x)-f(t)|<\varepsilon$. Next, choose $\delta=\min \left\{M / 2, \delta_{1}\right\}$. Any two points $x, t \in[0, \infty)$ are either both in $[0,2 M]$, in which case we have $|f(x)-f(t)|<\varepsilon$, or both are in $[M, \infty)$. In this latter case, we have $x>M$ and $t>M$, so

$$
\begin{aligned}
|f(x)-f(t)| & =|(f(x)-L)-(f(t)-L)| \\
& \leq|f(x)-L|+|f(t)-L| \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Thus, f is uniformly continuous.
3. (10 pts.) Show that $x \sin (1 / x)$ is uniformly continuous on $(0,1)$.

Solution. Let $f(x)=x \sin (1 / x)$ when $x \in(0,1)$. Note that the function $x \sin (1 / x)$ is continuous as long as $x \neq=0$. Also, we have that $|x \sin (1 / x)| \leq|x|$, so the squeeze theorem implies that $\lim _{x \rightarrow 0}=0$. Define $g(0):=0, g(1):=1 \cdot \sin (1 / 1)=\sin (1)$, and $g(x)=f(x)$ for $x \in(0,1)$. By what we've just said, g is an extension of f that is continuous on $[0,1]$. Hence, f is uniformly continuous on $(0,1)$.
4. (15 pts.) Prove this: Suppose that $f:[a, b) \rightarrow \mathbb{R}$ is continuous and bounded on $[a, b)$. If in addition f is increasing - i.e., $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right)$-, then f is uniformly continuous on $[a, b)$. (Hint: first prove that $f(b-)=\lim _{x \rightarrow b-} f(x)$ exists and is finite.)
Proof. Since f is bounded on $[a, b)$, we can let $L=\sup _{x \in[a, b)} f(x)$. We now apply the approximation property for suprema. For every $\varepsilon>0$ there is a point $y_{0}=f\left(x_{0}\right)$ in the range of f such that $L-\varepsilon<y_{0}=$ $f\left(x_{0}\right) \leq L$. Choose $\delta=b-x_{0}>0$. Whenever $0<b-x<\delta$, we have $x_{0}<x$, so $L-\epsilon<f\left(x_{0}\right) \leq f(x) \leq L$; equivalently, $|f(x)-L|<\varepsilon$. Thus, $f(x) \rightarrow L$ as $x \uparrow b$. That is, $f(b-)=L$. Define the function $g(x)$ to be $f(x)$ for $x \in[a, b)$, and let $g(b)=f(b-)=L$. This makes g a continuous extension of f to $[a, b]$. Thus, f is uniformly continuous on $[a, b)$. (There are other ways to get the extension, but this is the fastest I know of.)

