
Math 409-300 (7/1/05) Name 1

Test 1 – Key

Instructions: Show all work in the space provided. No notes, calculators,
cell phones, etc. are allowed.

1. Define the term or state the theorem.

(a) (5 pts.) Cauchy sequence. – {xn} is a Cauchy sequence if and
only if for every ε > 0 there is an N ∈ N such that n ≥ N and
m ≥ N , n, m ∈ N, imply |xn − xm| < ε.

(b) (5 pts.) Nested sequence of intervals. – A sequence of intervals
{In} is nested if and only if it satisfies I1 ⊇ I2 ⊇ · · · In ⊇ · · · .

(c) (5 pts.) limx→∞ f(x). – Let f : I → R, where I = [a,∞). We
say limx→∞ f(x) = L if and only if for every ε > 0 there an M ∈ R
such that x > M , with x ∈ I, implies |f(x)− L| < ε.

(d) (5 pts.) Intermediate Value Theorem. – Let a, b ∈ R with a < b
and let I ⊇ be an interval. Suppose that f : I → R is continuous
on I. If f(a) 6= f(b) and y0 is between f(a) and f(b), then there
is a number c ∈ (a, b) such that y0 = f(c).

2. (10 pts.) Show that (1+1/n)n ≥ 2. (Hint: use the binomial theorem.)

Solution. By the binomial theorem, we have

(1 + 1/n)n =
n∑

k=0

(
n

k

)
1n−k(1/n)k

= 1 + n · (1/n) + nonnegative terms

≥ 2

3. (10 pts.) Find lim
x→1−

|x2 + 2x− 3|
x2 − 1

.

Solution.

lim
x→1−

|x2 + 2x− 3|
x2 − 1

= lim
x→1−

|x− 1|
x− 1

|x + 3|
x + 1

= lim
x→1−

(−1)
|x + 3|
x + 1

(since x− 1 < 0)

= −1 + 3

1 + 1
= −2 (algebraic limit theorems)



4. (15 pts.) Let xn+1 =
√

2 + xn, x1 = 3. Show that {xn} is decreasing
and converges to a limit x > 0. Find x.

Solution. First of all, we will show that xn ≥ 0 for all n. This is true
for n = 1, since x1 = 3 > 0. If xn ≥ 0, then xn+1 ≥

√
2 + xn ≥

√
2 ≥ 0.

Induction then gives us the result. Also, we will use induction to show
that xn+1 − xn ≤ 0. For n = 1, this is true, since

√
5− 3 < 0. Suppose

that it’s true for n. Then, since xn+1 − xn ≤ 0, we have

xn+2 − xn+1 =
√

2 + xn+1 −
√

2 + xn

=
xn+1 − xn√

2 + xn+1 +
√

2 + xn

≤ 0,

and so it’s true for n + 1. By induction, xn+1 − xn ≤ 0 holds for all
n ∈ N, and xn is thus decreasing. The monotone convergence and
comparison theorems for sequences imply that xn converges to x ≥ 0.
Taking limits in the original equation yields x =

√
x + 2. By squaring,

we get x2 − x− 2 = 0, so x = −1 or x = 2. But x ≥ 0, so x = 2.

5. (15 pts.) Let I be an open interval, with 0 ∈ I, and let f : I → R be
continuous at x = 0. Suppose that f(0) > 2. Show that there is δ > 0
such that f(x) > 2 when |x| < δ.

Solution. The easiest way to do this is to apply the sign-preserving
lemma to g(x) = f(x)−2. Since f is continuous at x = 0, so is g. Also,
g(0) = f(0)− 2 > 0. The lemma then implies that there are δ > 0 and
ε > 0 such that g(x) = f(x) − 2 > ε for |x| < δ. Hence, for |x| < δ,
f(x) > 2 + ε > 2.

6. (15 pts.) (Approximation Property for Suprema). Prove this:
If E ⊂ R has a supremum s, then for every ε > 0 there is an a ∈ E
such that s− ε < a ≤ s.

Proof. Suppose not. Then for some ε0 > 0 the interval (s − ε0, s]
contains no points from E. Since s is the supremum for E, there
are no points of E in (s,∞), either. It follows that all a ∈ E are in
(−∞, s−ε0]. Hence, s−ε0 is an upper bound for E. However, s−ε0 < s.
This is a contradiction, since every upper bound for E is greater than
or equal to s, the supremum.
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7. (15 pts.) (Uniform Continuity Theorem). Prove this: Let a < b
be finite real numbers, and let I = [a, b]. If f : I → R is continuous on
I, then f is uniformly continuous on I.

Proof. Suppose not. Then for some ε0 > 0 and every δ > 0 there
are points x, t ∈ I such that |x − t| < δ and |f(x) − f(t)| ≥ ε0. Set
δ = 1, 1/2, . . . , 1/n, . . .. Then, there are corresponding points xn and
tn, |xn − tn| < 1/n, xn, tn ∈ I such that |f(xn) − f(tn)| ≥ ε0. These
points satisfy |xn− tn| < 1/n. Since both xn, tn ∈ I, they are bounded.
By the Bolzano-Weierstrass Theorem, {xn} has a subsequence xnk

that
converges to x ∈ I. For the corresponding subsequence tnk

we have this:

|tnk
− x| = |tnk

− xxk
+ xxk

− x|
≤ |tnk

− xxk
|+ |xxk

− x|

<
1

nk

+ |xxk
− x|.

Since nk → ∞ and xnk
→ x as k → ∞, the squeeze theorem for

sequences implies tnk
→ x as k →∞. The function f is continuous at

x; thus, limk→∞ f(xnk
) = limk→∞ f(tnk

) = f(x), and

lim
k→∞

|f(xnk
)− f(tnk

)| = 0.

However, |f(xnk
) − f(tnk

)| ≥ ε0 > 0. The comparison theorem then
implies limk→∞ |f(xnk

) − f(tnk
)| ≥ ε0 > 0, or 0 > 0. This is a contra-

diction.

(The proof used here differs from the one given in the text, which I
presented in class. Instead, it follows up on a suggestion made during
our discussion of the theorem.)
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