Test 1 - Key

Instructions: Show all work in the space provided. No notes, calculators, cell phones, etc. are allowed.

- 1. Define the term or state the theorem.
 - (a) (5 pts.) Cauchy sequence. $-\{x_n\}$ is a Cauchy sequence if and only if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \ge N$ and $m \ge N, n, m \in \mathbb{N}$, imply $|x_n x_m| < \varepsilon$.
 - (b) (5 pts.) Nested sequence of intervals. A sequence of intervals $\{I_n\}$ is nested if and only if it satisfies $I_1 \supseteq I_2 \supseteq \cdots I_n \supseteq \cdots$.
 - (c) (5 pts.) $\lim_{x\to\infty} f(x)$. Let $f: I \to \mathbb{R}$, where $I = [a, \infty)$. We say $\lim_{x\to\infty} f(x) = L$ if and only if for every $\varepsilon > 0$ there an $M \in \mathbb{R}$ such that x > M, with $x \in I$, implies $|f(x) L| < \varepsilon$.
 - (d) (5 pts.) Intermediate Value Theorem. Let $a, b \in \mathbb{R}$ with a < b and let $I \supseteq$ be an interval. Suppose that $f: I \to \mathbb{R}$ is continuous on I. If $f(a) \neq f(b)$ and y_0 is between f(a) and f(b), then there is a number $c \in (a, b)$ such that $y_0 = f(c)$.
- 2. (10 pts.) Show that $(1+1/n)^n \ge 2$. (Hint: use the binomial theorem.) Solution. By the binomial theorem, we have

$$(1+1/n)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} (1/n)^k$$
$$= 1+n \cdot (1/n) + \text{nonnegative terms}$$
$$\geq 2$$

3. (10 pts.) Find $\lim_{x \to 1^-} \frac{|x| + 2x - 5|}{|x|^2 - 1|}$.

Solution.

$$\lim_{x \to 1^{-}} \frac{|x^2 + 2x - 3|}{x^2 - 1} = \lim_{x \to 1^{-}} \frac{|x - 1|}{x - 1} \frac{|x + 3|}{x + 1}$$
$$= \lim_{x \to 1^{-}} (-1) \frac{|x + 3|}{x + 1} \quad \text{(since } x - 1 < 0\text{)}$$
$$= -\frac{1 + 3}{1 + 1} = -2 \text{ (algebraic limit theorems)}$$

4. (15 pts.) Let $x_{n+1} = \sqrt{2 + x_n}$, $x_1 = 3$. Show that $\{x_n\}$ is decreasing and converges to a limit x > 0. Find x.

Solution. First of all, we will show that $x_n \ge 0$ for all n. This is true for n = 1, since $x_1 = 3 > 0$. If $x_n \ge 0$, then $x_{n+1} \ge \sqrt{2 + x_n} \ge \sqrt{2} \ge 0$. Induction then gives us the result. Also, we will use induction to show that $x_{n+1} - x_n \le 0$. For n = 1, this is true, since $\sqrt{5} - 3 < 0$. Suppose that it's true for n. Then, since $x_{n+1} - x_n \le 0$, we have

$$\begin{aligned} x_{n+2} - x_{n+1} &= \sqrt{2 + x_{n+1}} - \sqrt{2 + x_n} \\ &= \frac{x_{n+1} - x_n}{\sqrt{2 + x_{n+1}} + \sqrt{2 + x_n}} \le 0 \end{aligned}$$

and so it's true for n + 1. By induction, $x_{n+1} - x_n \leq 0$ holds for all $n \in \mathbb{N}$, and x_n is thus decreasing. The monotone convergence and comparison theorems for sequences imply that x_n converges to $x \geq 0$. Taking limits in the original equation yields $x = \sqrt{x+2}$. By squaring, we get $x^2 - x - 2 = 0$, so x = -1 or x = 2. But $x \geq 0$, so x = 2.

5. (15 pts.) Let I be an open interval, with $0 \in I$, and let $f: I \to \mathbb{R}$ be continuous at x = 0. Suppose that f(0) > 2. Show that there is $\delta > 0$ such that f(x) > 2 when $|x| < \delta$.

Solution. The easiest way to do this is to apply the sign-preserving lemma to g(x) = f(x) - 2. Since f is continuous at x = 0, so is g. Also, g(0) = f(0) - 2 > 0. The lemma then implies that there are $\delta > 0$ and $\varepsilon > 0$ such that $g(x) = f(x) - 2 > \varepsilon$ for $|x| < \delta$. Hence, for $|x| < \delta$, $f(x) > 2 + \varepsilon > 2$.

6. (15 pts.) (Approximation Property for Suprema). Prove this: If $E \subset \mathbb{R}$ has a supremum s, then for every $\varepsilon > 0$ there is an $a \in E$ such that $s - \varepsilon < a \leq s$.

Proof. Suppose not. Then for some $\epsilon_0 > 0$ the interval $(s - \epsilon_0, s]$ contains no points from E. Since s is the supremum for E, there are no points of E in (s, ∞) , either. It follows that all $a \in E$ are in $(-\infty, s - \epsilon_0]$. Hence, $s - \epsilon_0$ is an upper bound for E. However, $s - \epsilon_0 < s$. This is a contradiction, since every upper bound for E is greater than or equal to s, the supremum.

7. (15 pts.) (Uniform Continuity Theorem). Prove this: Let a < b be finite real numbers, and let I = [a, b]. If $f : I \to \mathbb{R}$ is continuous on I, then f is uniformly continuous on I.

Proof. Suppose not. Then for some $\epsilon_0 > 0$ and every $\delta > 0$ there are points $x, t \in I$ such that $|x - t| < \delta$ and $|f(x) - f(t)| \ge \varepsilon_0$. Set $\delta = 1, 1/2, \ldots, 1/n, \ldots$ Then, there are corresponding points x_n and $t_n, |x_n - t_n| < 1/n, x_n, t_n \in I$ such that $|f(x_n) - f(t_n)| \ge \varepsilon_0$. These points satisfy $|x_n - t_n| < 1/n$. Since both $x_n, t_n \in I$, they are bounded. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ has a subsequence x_{n_k} that converges to $x \in I$. For the corresponding subsequence t_{n_k} we have this:

$$\begin{aligned} |t_{n_k} - x| &= |t_{n_k} - x_{x_k} + x_{x_k} - x| \\ &\leq |t_{n_k} - x_{x_k}| + |x_{x_k} - x| \\ &< \frac{1}{n_k} + |x_{x_k} - x|. \end{aligned}$$

Since $n_k \to \infty$ and $x_{n_k} \to x$ as $k \to \infty$, the squeeze theorem for sequences implies $t_{n_k} \to x$ as $k \to \infty$. The function f is continuous at x; thus, $\lim_{k\to\infty} f(x_{n_k}) = \lim_{k\to\infty} f(t_{n_k}) = f(x)$, and

$$\lim_{k \to \infty} |f(x_{n_k}) - f(t_{n_k})| = 0.$$

However, $|f(x_{n_k}) - f(t_{n_k})| \ge \varepsilon_0 > 0$. The comparison theorem then implies $\lim_{k\to\infty} |f(x_{n_k}) - f(t_{n_k})| \ge \varepsilon_0 > 0$, or 0 > 0. This is a contradiction.

(The proof used here differs from the one given in the text, which I presented in class. Instead, it follows up on a suggestion made during our discussion of the theorem.)