Test 1 - Key

Instructions: Show all work in the space provided. No notes, calculators, cell phones, etc. are allowed.

1. Define the term or state the theorem.
(a) (5 pts.) Cauchy sequence. $-\left\{x_{n}\right\}$ is a Cauchy sequence if and only if for every $\varepsilon>0$ there is an $N \in \mathbb{N}$ such that $n \geq N$ and $m \geq N, n, m \in \mathbb{N}$, imply $\left|x_{n}-x_{m}\right|<\varepsilon$.
(b) (5 pts.) Nested sequence of intervals. - A sequence of intervals $\left\{I_{n}\right\}$ is nested if and only if it satisfies $I_{1} \supseteq I_{2} \supseteq \cdots I_{n} \supseteq \cdots$.
(c) (5 pts.) $\lim _{x \rightarrow \infty} f(x)$. - Let $f: I \rightarrow \mathbb{R}$, where $I=[a, \infty)$. We say $\lim _{x \rightarrow \infty} f(x)=L$ if and only if for every $\varepsilon>0$ there an $M \in \mathbb{R}$ such that $x>M$, with $x \in I$, implies $|f(x)-L|<\varepsilon$.
(d) (5 pts.) Intermediate Value Theorem. - Let $a, b \in \mathbb{R}$ with $a<b$ and let $I \supseteq$ be an interval. Suppose that $f: I \rightarrow \mathbb{R}$ is continuous on I. If $f(a) \neq f(b)$ and y_{0} is between $f(a)$ and $f(b)$, then there is a number $c \in(a, b)$ such that $y_{0}=f(c)$.
2. ($\mathbf{1 0}$ pts.) Show that $(1+1 / n)^{n} \geq 2$. (Hint: use the binomial theorem.)

Solution. By the binomial theorem, we have

$$
\begin{aligned}
(1+1 / n)^{n} & =\sum_{k=0}^{n}\binom{n}{k} 1^{n-k}(1 / n)^{k} \\
& =1+n \cdot(1 / n)+\text { nonnegative terms } \\
& \geq 2
\end{aligned}
$$

3. ($\mathbf{1 0} \mathbf{~ p t s .) ~ F i n d ~} \lim _{x \rightarrow 1-} \frac{\left|x^{2}+2 x-3\right|}{x^{2}-1}$.

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 1-} \frac{\left|x^{2}+2 x-3\right|}{x^{2}-1} & =\lim _{x \rightarrow 1-} \frac{|x-1|}{x-1} \frac{|x+3|}{x+1} \\
& \left.=\lim _{x \rightarrow 1-}(-1) \frac{|x+3|}{x+1} \quad \text { (since } x-1<0\right) \\
& =-\frac{1+3}{1+1}=-2 \text { (algebraic limit theorems) }
\end{aligned}
$$

4. ($\mathbf{1 5} \mathbf{p t s}$.) Let $x_{n+1}=\sqrt{2+x_{n}}, x_{1}=3$. Show that $\left\{x_{n}\right\}$ is decreasing and converges to a limit $x>0$. Find x.
Solution. First of all, we will show that $x_{n} \geq 0$ for all n. This is true for $n=1$, since $x_{1}=3>0$. If $x_{n} \geq 0$, then $x_{n+1} \geq \sqrt{2+x_{n}} \geq \sqrt{2} \geq 0$. Induction then gives us the result. Also, we will use induction to show that $x_{n+1}-x_{n} \leq 0$. For $n=1$, this is true, since $\sqrt{5}-3<0$. Suppose that it's true for n. Then, since $x_{n+1}-x_{n} \leq 0$, we have

$$
\begin{aligned}
x_{n+2}-x_{n+1} & =\sqrt{2+x_{n+1}}-\sqrt{2+x_{n}} \\
& =\frac{x_{n+1}-x_{n}}{\sqrt{2+x_{n+1}}+\sqrt{2+x_{n}}} \leq 0
\end{aligned}
$$

and so it's true for $n+1$. By induction, $x_{n+1}-x_{n} \leq 0$ holds for all $n \in \mathbb{N}$, and x_{n} is thus decreasing. The monotone convergence and comparison theorems for sequences imply that x_{n} converges to $x \geq 0$. Taking limits in the original equation yields $x=\sqrt{x+2}$. By squaring, we get $x^{2}-x-2=0$, so $x=-1$ or $x=2$. But $x \geq 0$, so $x=2$.
5. ($\mathbf{1 5} \mathbf{~ p t s .) ~ L e t ~} I$ be an open interval, with $0 \in I$, and let $f: I \rightarrow \mathbb{R}$ be continuous at $x=0$. Suppose that $f(0)>2$. Show that there is $\delta>0$ such that $f(x)>2$ when $|x|<\delta$.

Solution. The easiest way to do this is to apply the sign-preserving lemma to $g(x)=f(x)-2$. Since f is continuous at $x=0$, so is g. Also, $g(0)=f(0)-2>0$. The lemma then implies that there are $\delta>0$ and $\varepsilon>0$ such that $g(x)=f(x)-2>\varepsilon$ for $|x|<\delta$. Hence, for $|x|<\delta$, $f(x)>2+\varepsilon>2$.
6. (15 pts.) (Approximation Property for Suprema). Prove this: If $E \subset \mathbb{R}$ has a supremum s, then for every $\varepsilon>0$ there is an $a \in E$ such that $s-\varepsilon<a \leq s$.
Proof. Suppose not. Then for some $\epsilon_{0}>0$ the interval $\left(s-\epsilon_{0}, s\right]$ contains no points from E. Since s is the supremum for E, there are no points of E in (s, ∞), either. It follows that all $a \in E$ are in $\left(-\infty, s-\epsilon_{0}\right]$. Hence, $s-\epsilon_{0}$ is an upper bound for E. However, $s-\epsilon_{0}<s$. This is a contradiction, since every upper bound for E is greater than or equal to s, the supremum.
7. (15 pts.) (Uniform Continuity Theorem). Prove this: Let $a<b$ be finite real numbers, and let $I=[a, b]$. If $f: I \rightarrow \mathbb{R}$ is continuous on I, then f is uniformly continuous on I.

Proof. Suppose not. Then for some $\epsilon_{0}>0$ and every $\delta>0$ there are points $x, t \in I$ such that $|x-t|<\delta$ and $|f(x)-f(t)| \geq \varepsilon_{0}$. Set $\delta=1,1 / 2, \ldots, 1 / n, \ldots$. Then, there are corresponding points x_{n} and $t_{n},\left|x_{n}-t_{n}\right|<1 / n, x_{n}, t_{n} \in I$ such that $\left|f\left(x_{n}\right)-f\left(t_{n}\right)\right| \geq \varepsilon_{0}$. These points satisfy $\left|x_{n}-t_{n}\right|<1 / n$. Since both $x_{n}, t_{n} \in I$, they are bounded. By the Bolzano-Weierstrass Theorem, $\left\{x_{n}\right\}$ has a subsequence $x_{n_{k}}$ that converges to $x \in I$. For the corresponding subsequence $t_{n_{k}}$ we have this:

$$
\begin{aligned}
\left|t_{n_{k}}-x\right| & =\left|t_{n_{k}}-x_{x_{k}}+x_{x_{k}}-x\right| \\
& \leq\left|t_{n_{k}}-x_{x_{k}}\right|+\left|x_{x_{k}}-x\right| \\
& <\frac{1}{n_{k}}+\left|x_{x_{k}}-x\right| .
\end{aligned}
$$

Since $n_{k} \rightarrow \infty$ and $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$, the squeeze theorem for sequences implies $t_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$. The function f is continuous at x; thus, $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(t_{n_{k}}\right)=f(x)$, and

$$
\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)-f\left(t_{n_{k}}\right)\right|=0
$$

However, $\left|f\left(x_{n_{k}}\right)-f\left(t_{n_{k}}\right)\right| \geq \varepsilon_{0}>0$. The comparison theorem then implies $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)-f\left(t_{n_{k}}\right)\right| \geq \varepsilon_{0}>0$, or $0>0$. This is a contradiction.
(The proof used here differs from the one given in the text, which I presented in class. Instead, it follows up on a suggestion made during our discussion of the theorem.)

