Final Examination

Instructions: Show all work in your bluebook. Cell phones, laptops, calculators that do linear algebra or calculus, and other such devices are not allowed..

1. (10 pts.) Find the Fourier series for $f(\theta)=\left\{\begin{array}{cc}0 & -\pi<\theta \leq 0, \\ 1 & 0<\theta \leq \pi .\end{array}\right.$
2. (10 pts.) Let $h(t)=\left\{\begin{array}{cc}2 e^{-2 t} & t \geq 0, \\ 0 & t<0\end{array}\right.$ be the impulse response (IR) for the Butterworth filter $L[f]=h * f$. Find $L[f]$, where

$$
f(t)= \begin{cases}1 & 0 \leq t \leq 3 \\ 0 & t<0 \text { or } t>3\end{cases}
$$

3. ($\mathbf{1 0} \mathbf{~ p t s .) ~ L e t ~} \mathcal{F}_{n}$ be the DFT for n-periodic sequences (signals). Find $\hat{a}=\mathcal{F}_{4}[a]$ if $a=(-2,1,0,1)$. Note: for $n=4, \bar{w}=-i$.
4. (10 pts.) Define the term multiresolution analysis (MRA). In the case of the Haar MRA, what are V_{0}, W_{0}, ϕ, and ψ ?
5. (15 pts.) For the Haar MRA, $p_{0}=p_{1}=1$, and $p_{k}=0$ for all other k. Reconstruct the function $f \in V_{3}$ that has this Haar wavelet decomposition:

$$
a^{1}=[3 / 2,-1] \quad b^{1}=[-1,-3 / 2] \quad b^{2}=[-3 / 2,-3 / 2,-1 / 2,-1 / 2],
$$

where the first entry in each list corresponds to $k=0$, the second to $k=1$, and so on.
6. The scaling relation for an MRA is $\phi(x)=\sum_{k=-\infty}^{\infty} p_{k} \phi(2 x-k)$.
(a) (10 pts.) Draw the corresponding decomposition and reconstruction diagrams. Define the impulse response functions for the high pass and low pass filters, as well as the operators $2 \uparrow$ and $2 \downarrow$.
(b) (10 pts.) Show that $\hat{\phi}(\xi)=P\left(e^{-i \xi / 2}\right) \hat{\phi}(\xi / 2)$, where $P(z)=$ $\frac{1}{2} \sum_{k=-\infty}^{\infty} p_{k} z^{k}$. State the conditions that $P(z)$ satisfies.
(c) (10 pts.) Explain how the Daubechies wavelets are classified in terms of $P(z)$. What is the connection with "vanishing moments"?
7. (15 pts.) Let ϕ be a scaling function with compact support and satisfying $\int \overline{\phi(x)} d x=1$. Show that for a continuous signal f the highest level coefficients satisfy $a_{k}^{j} \approx f\left(2^{-j} k\right)$.

