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Notes on Daubechies’ Wavelets
by

F. J. Narcowich

The Daubechies Wavelets We want to find the ck’s (scaling coefficients)
in the Daubechies’ N = 2 case. In general, the two-scale relation has the
form

φ(x) =
∑
k

ckφ(2x− k).

The Fourier transform of this equation is

φ̂(ξ) = P (e−iξ/2)φ̂(ξ/2),

where P (·) is given by

P (z) =
1

2

∑
k

ckz
k

One can also obtain the Fourier transform of the wavelet. Recall that the
wavelet is given by the expansion

ψ(x) =
∑
k

(−1)kc1−kφ(2x− k). (1)

Taking the Fourier transform of both sides yields

ψ̂(ξ) = Q(e−iξ/2)φ̂(ξ/2), where Q(z) =
1

2

∑
k

(−1)kc1−kz
k = −zP (−z−1).

Mallat’s original thinking in defining an MRA was that the spaces and
scaling functions were primary objects, and the scaling coefficients, the ck’s
were derived from them. However, he did give a way to start with coefficients
and obtain an MRA from them. To do that, there are three conditions that
P (z) must satisfy:

1. |P (z)|2 + |P (−z)|2 ≡ 1, |z| = 1.

2. P (1) = 1.

3. |P (e−it)| > 0 for |t| ≤ π/2.



Note that #1, with z = 1, gives |P (1)|2+|P (−1)|2 = 1. By #2, P (1) = 1,
and so 12 + |P (−1)|2 = 1, from which it follows that

P (−1) = 0.

When there are only a finite number of non-zero ck’s, P is a polynomial.
Since z = −1 is a root of P , we see that P (z) has (z + 1)N , for some N , as
a factor; that is,

P (z) = (z + 1)N P̃ (z), P̃ (−1) 6= 0,

where P̃ (z) is the product of the remaining factors of P after dividing out
z + 1 an appropriate number of times.

Let us return to the simplest case of a Daubechies wavelet, where there
are four scaling coefficients and P (z) is a cubic polynomial

P (z) =
1

2

(
c0 + c1z + c2z

2 + c3z
3
)
. (2)

that satisfies the three conditions listed above. The values N can have are
1, 2, or 3. It turns out that N = 1 gives the Haar case (c0 = c1 = 1,
c2 = c3 = 0), and N = 3 doesn’t work. If we take N = 2, then

P (z) = (z + 1)2(α + βz),

where α and β are also assumed to be real. From #2, 1 = (1 + 1)2(α + β),
so α + β = 1/4. Hence, we see that P has the form

P (z) = (z + 1)2(1/4− β + βz)

The question remaining is, does P satisfy #1 and #3? To begin, we will try
to find a β for which #1 is satisfied. We do this simply by finding a value
that works for z = i (|i| = 1), and check to see if it works for all z with
|z| = 1. We have

P (i) = (1 + i)2(1/4− β + βi) = 2i(1/4− β + βi) = −2β + (1/2− 2β)i

Similarly, P (−i) = −2β − (1/2− 2β)i. Consequently,

|P (i)|2 + |P (−i)|2 = 2(−2β)2 + 2(1/2− 2β)2 = 16β2 − 4β + 1/2
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Since the left side is 1 by #1, we end up with 16β2 − 4β + 1/2 = 1 or

16β2− 4β− 1/2 = 0. The roots of this equation are β± = 1±
√

3
8

. It turns out
that both values of β provide appropriate ck’s. In fact, the scaling functions
they lead to are related to one another by a simple reflection of the x axis
about the line x = 3/2. If we choose the “−”, then

P (z) =
1

8
(1 + z)2

(
(1 +

√
3) + (1−

√
3)z

)
=

1

2

(
1 +
√

3

4︸ ︷︷ ︸
c0

+
3 +
√

3

4︸ ︷︷ ︸
c1

z +
3−
√

3

4︸ ︷︷ ︸
c2

z2 +
1−
√

3

4︸ ︷︷ ︸
c3

z3

)
.

These are the ck’s given in the text.
Showing that P (z) satisfies #1 in our list requires some algebra, but is

not really very hard. Verifying #3 is even easier. The only points at which
|P (z)| = 0 are precisely the roots of P ; namely, z = −1 (a double root) and

z = 1+
√

3√
3−1
≈ 3.7. The root at z = −1 = eiπ has angle t = π > π/2, so #3

holds in that case. The root at z ≈ 3.7 has |z| > 1, so #3 holds there as
well. Thus, for all |t| ≤ π/2, we have that |P (e−it)| > 0.

Moments and Quadrature Let ρ : R → R. We define the kth moment
of ρ via the integral

mk(ρ) =

∫ ∞
−∞

xkρ(x)dx,

where we assume xkρ(x) ∈ L1(R). (The function ρ doesn’t have to be posi-
tive.) It is easy to show that if p is a degree n polynomial p(x) =

∑n
k=0 akx

k

and if ρ has n+ 1 moments, m0(ρ), . . . ,mn(ρ), then∫ ∞
−∞

p(x)ρ(x)dx =
n∑
k=0

akmk(ρ). (3)

Proposition 0.1 Let δ > 0. Suppose that supp(h) ⊆ [0, δ] and that the first
n+ 1 moments of ρ exist. If f(x) is in C(n)[0, δ], then∣∣∣∣ ∫ δ

0

f(x)ρ(x)dx−
n−1∑
k=0

f (k)(0)

k!
mk(ρ)

∣∣∣∣ ≤ ‖f (n)‖L∞[0,δ]

n!
‖xnρ(x)‖L1[0,δ].
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The point here is that the proposition above shows that the quadrature
formula ∫ δ

0

f(x)ρ(x)dx
.
=

n−1∑
k=0

f (k)(0)

k!
mk(ρ)

is accurate to within the error
‖f (n)‖L∞[0,δ]

n!
‖xnρ(x)‖L1[0,δ].

We want to apply this to estimate the Daubechies wavelet coefficients,
where we will use (1), but shifted to the right by 1. This gives us this formula
for the wavelet:

ψ(x) = c3φ(2x)− c2φ(2x− 1) + c1φ(2x− 2)− c0φ(2x− 3).

The support of ψ is [0, 3]. Here is the result we want.

Proposition 0.2 For the Daubechies wavelet above, m0(ψ) = m1(ψ) = 0.
Moreover, the wavelet coefficient bjk for a function f ∈ C(2) then satisfies the
bound

|bjk| ≤
√

35/20︸ ︷︷ ︸
<4

·2−2j‖f ′′‖L∞[2−jk, 3·2−jk].

Proposition 0.3 For the Daubechies scaling function above, m0(φ) = 1 and
m1(φ) = 3−

√
3. Moreover, the scaling coefficient ajk for a function f ∈ C(2)

then satisfies the bound

|ajk − f(2−jk)− (3−
√

3)f ′(2−jk)2−j| ≤
√

35/20︸ ︷︷ ︸
<4

·2−2j‖f ′′‖L∞[2−jk, 3·2−jk].

We close by remarking that the “wavelet crime” of approximating ajk with
f(2−jk) results in an error of order 2−j if f is C(1).
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