Notes on Daubechies' Wavelets

by

F. J. Narcowich

The Daubechies Wavelets We want to find the c_{k} 's (scaling coefficients) in the Daubechies' $N=2$ case. In general, the two-scale relation has the form

$$
\phi(x)=\sum_{k} c_{k} \phi(2 x-k) .
$$

The Fourier transform of this equation is

$$
\hat{\phi}(\xi)=P\left(e^{-i \xi / 2}\right) \hat{\phi}(\xi / 2)
$$

where $P(\cdot)$ is given by

$$
P(z)=\frac{1}{2} \sum_{k} c_{k} z^{k}
$$

One can also obtain the Fourier transform of the wavelet. Recall that the wavelet is given by the expansion

$$
\begin{equation*}
\psi(x)=\sum_{k}(-1)^{k} c_{1-k} \phi(2 x-k) . \tag{1}
\end{equation*}
$$

Taking the Fourier transform of both sides yields

$$
\hat{\psi}(\xi)=Q\left(e^{-i \xi / 2}\right) \hat{\phi}(\xi / 2), \text { where } Q(z)=\frac{1}{2} \sum_{k}(-1)^{k} c_{1-k} z^{k}=-z P\left(-z^{-1}\right)
$$

Mallat's original thinking in defining an MRA was that the spaces and scaling functions were primary objects, and the scaling coefficients, the c_{k} 's were derived from them. However, he did give a way to start with coefficients and obtain an MRA from them. To do that, there are three conditions that $P(z)$ must satisfy:

1. $|P(z)|^{2}+|P(-z)|^{2} \equiv 1,|z|=1$.
2. $P(1)=1$.
3. $\left|P\left(e^{-i t}\right)\right|>0$ for $|t| \leq \pi / 2$.

Note that $\# 1$, with $z=1$, gives $|P(1)|^{2}+|P(-1)|^{2}=1$. By $\# 2, P(1)=1$, and so $1^{2}+|P(-1)|^{2}=1$, from which it follows that

$$
P(-1)=0 .
$$

When there are only a finite number of non-zero c_{k} 's, P is a polynomial. Since $z=-1$ is a root of P, we see that $P(z)$ has $(z+1)^{N}$, for some N, as a factor; that is,

$$
P(z)=(z+1)^{N} \widetilde{P}(z), \quad \widetilde{P}(-1) \neq 0
$$

where $\widetilde{P}(z)$ is the product of the remaining factors of P after dividing out $z+1$ an appropriate number of times.

Let us return to the simplest case of a Daubechies wavelet, where there are four scaling coefficients and $P(z)$ is a cubic polynomial

$$
\begin{equation*}
P(z)=\frac{1}{2}\left(c_{0}+c_{1} z+c_{2} z^{2}+c_{3} z^{3}\right) . \tag{2}
\end{equation*}
$$

that satisfies the three conditions listed above. The values N can have are 1,2 , or 3 . It turns out that $N=1$ gives the Haar case $\left(c_{0}=c_{1}=1\right.$, $c_{2}=c_{3}=0$), and $N=3$ doesn't work. If we take $N=2$, then

$$
P(z)=(z+1)^{2}(\alpha+\beta z)
$$

where α and β are also assumed to be real. From $\# 2,1=(1+1)^{2}(\alpha+\beta)$, so $\alpha+\beta=1 / 4$. Hence, we see that P has the form

$$
P(z)=(z+1)^{2}(1 / 4-\beta+\beta z)
$$

The question remaining is, does P satisfy $\# 1$ and $\# 3$? To begin, we will try to find a β for which $\# 1$ is satisfied. We do this simply by finding a value that works for $z=i(|i|=1)$, and check to see if it works for all z with $|z|=1$. We have

$$
P(i)=(1+i)^{2}(1 / 4-\beta+\beta i)=2 i(1 / 4-\beta+\beta i)=-2 \beta+(1 / 2-2 \beta) i
$$

Similarly, $P(-i)=-2 \beta-(1 / 2-2 \beta) i$. Consequently,

$$
|P(i)|^{2}+|P(-i)|^{2}=2(-2 \beta)^{2}+2(1 / 2-2 \beta)^{2}=16 \beta^{2}-4 \beta+1 / 2
$$

Since the left side is 1 by $\# 1$, we end up with $16 \beta^{2}-4 \beta+1 / 2=1$ or $16 \beta^{2}-4 \beta-1 / 2=0$. The roots of this equation are $\beta_{ \pm}=\frac{1 \pm \sqrt{3}}{8}$. It turns out that both values of β provide appropriate c_{k} 's. In fact, the scaling functions they lead to are related to one another by a simple reflection of the x axis about the line $x=3 / 2$. If we choose the "-", then

$$
\begin{aligned}
P(z) & =\frac{1}{8}(1+z)^{2}((1+\sqrt{3})+(1-\sqrt{3}) z) \\
& =\frac{1}{2}(\underbrace{\frac{1+\sqrt{3}}{4}}_{c_{0}}+\underbrace{\frac{3+\sqrt{3}}{4}}_{c_{1}} z+\underbrace{\frac{3-\sqrt{3}}{4}}_{c_{2}} z^{2}+\underbrace{\frac{1-\sqrt{3}}{4}}_{c_{3}} z^{3}) .
\end{aligned}
$$

These are the c_{k} 's given in the text.
Showing that $P(z)$ satisfies $\# 1$ in our list requires some algebra, but is not really very hard. Verifying \#3 is even easier. The only points at which $|P(z)|=0$ are precisely the roots of P; namely, $z=-1$ (a double root) and $z=\frac{1+\sqrt{3}}{\sqrt{3}-1} \approx 3.7$. The root at $z=-1=e^{i \pi}$ has angle $t=\pi>\pi / 2$, so $\# 3$ holds in that case. The root at $z \approx 3.7$ has $|z|>1$, so $\# 3$ holds there as well. Thus, for all $|t| \leq \pi / 2$, we have that $\left|P\left(e^{-i t}\right)\right|>0$.

Moments and Quadrature Let $\rho: \mathbb{R} \rightarrow \mathbb{R}$. We define the $k^{\text {th }}$ moment of ρ via the integral

$$
m_{k}(\rho)=\int_{-\infty}^{\infty} x^{k} \rho(x) d x
$$

where we assume $x^{k} \rho(x) \in L^{1}(\mathbb{R})$. (The function ρ doesn't have to be positive.) It is easy to show that if p is a degree n polynomial $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ and if ρ has $n+1$ moments, $m_{0}(\rho), \ldots, m_{n}(\rho)$, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(x) \rho(x) d x=\sum_{k=0}^{n} a_{k} m_{k}(\rho) . \tag{3}
\end{equation*}
$$

Proposition 0.1 Let $\delta>0$. Suppose that $\operatorname{supp}(h) \subseteq[0, \delta]$ and that the first $n+1$ moments of ρ exist. If $f(x)$ is in $C^{(n)}[0, \delta]$, then

$$
\left|\int_{0}^{\delta} f(x) \rho(x) d x-\sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} m_{k}(\rho)\right| \leq \frac{\left\|f^{(n)}\right\|_{L^{\infty}[0, \delta]}}{n!}\left\|x^{n} \rho(x)\right\|_{L^{1}[0, \delta]} .
$$

The point here is that the proposition above shows that the quadrature formula

$$
\int_{0}^{\delta} f(x) \rho(x) d x \doteq \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} m_{k}(\rho)
$$

is accurate to within the error $\frac{\left\|f^{(n)}\right\|_{L^{\infty}[0, \delta]}}{n!}\left\|x^{n} \rho(x)\right\|_{L^{1}[0, \delta]}$.
We want to apply this to estimate the Daubechies wavelet coefficients, where we will use (1), but shifted to the right by 1 . This gives us this formula for the wavelet:

$$
\psi(x)=c_{3} \phi(2 x)-c_{2} \phi(2 x-1)+c_{1} \phi(2 x-2)-c_{0} \phi(2 x-3) .
$$

The support of ψ is $[0,3]$. Here is the result we want.
Proposition 0.2 For the Daubechies wavelet above, $m_{0}(\psi)=m_{1}(\psi)=0$. Moreover, the wavelet coefficient b_{k}^{j} for a function $f \in C^{(2)}$ then satisfies the bound

$$
\left|b_{k}^{j}\right| \leq \underbrace{\sqrt{3^{5} / 20}}_{<4} \cdot 2^{-2 j}\left\|f^{\prime \prime}\right\|_{L^{\infty}\left[2^{-j} k, 3 \cdot 2^{-j} k\right]}
$$

Proposition 0.3 For the Daubechies scaling function above, $m_{0}(\phi)=1$ and $m_{1}(\phi)=3-\sqrt{3}$. Moreover, the scaling coefficient a_{k}^{j} for a function $f \in C^{(2)}$ then satisfies the bound

$$
\left|a_{k}^{j}-f\left(2^{-j} k\right)-(3-\sqrt{3}) f^{\prime}\left(2^{-j} k\right) 2^{-j}\right| \leq \underbrace{\sqrt{3^{5} / 20}}_{<4} \cdot 2^{-2 j}\left\|f^{\prime \prime}\right\|_{L^{\infty}\left[2^{-j} k, 3 \cdot 2^{-j} k\right]} .
$$

We close by remarking that the "wavelet crime" of approximating a_{k}^{j} with $f\left(2^{-j} k\right)$ results in an error of order 2^{-j} if f is $C^{(1)}$.

