Notes on Daubechies' Wavelets by F. J. Narcowich

The Daubechies Wavelets We want to find the c_k 's (scaling coefficients) in the Daubechies' N = 2 case. In general, the two-scale relation has the form

$$\phi(x) = \sum_{k} c_k \phi(2x - k).$$

The Fourier transform of this equation is

$$\hat{\phi}(\xi) = P(e^{-i\xi/2})\hat{\phi}(\xi/2),$$

where $P(\cdot)$ is given by

$$P(z) = \frac{1}{2} \sum_{k} c_k z^k$$

One can also obtain the Fourier transform of the wavelet. Recall that the wavelet is given by the expansion

$$\psi(x) = \sum_{k} (-1)^{k} c_{1-k} \phi(2x - k).$$
(1)

Taking the Fourier transform of both sides yields

$$\hat{\psi}(\xi) = Q(e^{-i\xi/2})\hat{\phi}(\xi/2), \text{ where } Q(z) = \frac{1}{2}\sum_{k}(-1)^{k}c_{1-k}z^{k} = -zP(-z^{-1}).$$

Mallat's original thinking in defining an MRA was that the spaces and scaling functions were primary objects, and the scaling coefficients, the c_k 's were derived from them. However, he did give a way to start with coefficients and obtain an MRA from them. To do that, there are three conditions that P(z) must satisfy:

- 1. $|P(z)|^2 + |P(-z)|^2 \equiv 1, |z| = 1.$
- 2. P(1) = 1.
- 3. $|P(e^{-it})| > 0$ for $|t| \le \pi/2$.

Note that #1, with z = 1, gives $|P(1)|^2 + |P(-1)|^2 = 1$. By #2, P(1) = 1, and so $1^2 + |P(-1)|^2 = 1$, from which it follows that

$$P(-1) = 0.$$

When there are only a finite number of non-zero c_k 's, P is a polynomial. Since z = -1 is a root of P, we see that P(z) has $(z + 1)^N$, for some N, as a factor; that is,

$$P(z) = (z+1)^N \widetilde{P}(z), \quad \widetilde{P}(-1) \neq 0,$$

where $\tilde{P}(z)$ is the product of the remaining factors of P after dividing out z + 1 an appropriate number of times.

Let us return to the simplest case of a Daubechies wavelet, where there are four scaling coefficients and P(z) is a cubic polynomial

$$P(z) = \frac{1}{2} \left(c_0 + c_1 z + c_2 z^2 + c_3 z^3 \right).$$
(2)

that satisfies the three conditions listed above. The values N can have are 1, 2, or 3. It turns out that N = 1 gives the Haar case ($c_0 = c_1 = 1$, $c_2 = c_3 = 0$), and N = 3 doesn't work. If we take N = 2, then

$$P(z) = (z+1)^2(\alpha + \beta z),$$

where α and β are also assumed to be real. From #2, $1 = (1+1)^2(\alpha + \beta)$, so $\alpha + \beta = 1/4$. Hence, we see that P has the form

$$P(z) = (z+1)^2 (1/4 - \beta + \beta z)$$

The question remaining is, does P satisfy #1 and #3? To begin, we will try to find a β for which #1 is satisfied. We do this simply by finding a value that works for z = i (|i| = 1), and check to see if it works for all z with |z| = 1. We have

$$P(i) = (1+i)^2 (1/4 - \beta + \beta i) = 2i(1/4 - \beta + \beta i) = -2\beta + (1/2 - 2\beta)i$$

Similarly, $P(-i) = -2\beta - (1/2 - 2\beta)i$. Consequently,

$$|P(i)|^{2} + |P(-i)|^{2} = 2(-2\beta)^{2} + 2(1/2 - 2\beta)^{2} = 16\beta^{2} - 4\beta + 1/2$$

Since the left side is 1 by #1, we end up with $16\beta^2 - 4\beta + 1/2 = 1$ or $16\beta^2 - 4\beta - 1/2 = 0$. The roots of this equation are $\beta_{\pm} = \frac{1\pm\sqrt{3}}{8}$. It turns out that both values of β provide appropriate c_k 's. In fact, the scaling functions they lead to are related to one another by a simple reflection of the x axis about the line x = 3/2. If we choose the "-", then

$$P(z) = \frac{1}{8}(1+z)^2 \left((1+\sqrt{3}) + (1-\sqrt{3})z \right)$$

= $\frac{1}{2} \left(\underbrace{\frac{1+\sqrt{3}}{4}}_{c_0} + \underbrace{\frac{3+\sqrt{3}}{4}}_{c_1}z + \underbrace{\frac{3-\sqrt{3}}{4}}_{c_2}z^2 + \underbrace{\frac{1-\sqrt{3}}{4}}_{c_3}z^3 \right).$

These are the c_k 's given in the text.

Showing that P(z) satisfies #1 in our list requires some algebra, but is not really very hard. Verifying #3 is even easier. The only points at which |P(z)| = 0 are precisely the roots of P; namely, z = -1 (a double root) and $z = \frac{1+\sqrt{3}}{\sqrt{3}-1} \approx 3.7$. The root at $z = -1 = e^{i\pi}$ has angle $t = \pi > \pi/2$, so #3 holds in that case. The root at $z \approx 3.7$ has |z| > 1, so #3 holds there as well. Thus, for all $|t| \le \pi/2$, we have that $|P(e^{-it})| > 0$.

Moments and Quadrature Let $\rho : \mathbb{R} \to \mathbb{R}$. We define the k^{th} moment of ρ via the integral

$$m_k(\rho) = \int_{-\infty}^{\infty} x^k \rho(x) dx,$$

where we assume $x^k \rho(x) \in L^1(\mathbb{R})$. (The function ρ doesn't have to be positive.) It is easy to show that if p is a degree n polynomial $p(x) = \sum_{k=0}^n a_k x^k$ and if ρ has n+1 moments, $m_0(\rho), \ldots, m_n(\rho)$, then

$$\int_{-\infty}^{\infty} p(x)\rho(x)dx = \sum_{k=0}^{n} a_k m_k(\rho).$$
(3)

Proposition 0.1 Let $\delta > 0$. Suppose that $\operatorname{supp}(h) \subseteq [0, \delta]$ and that the first n+1 moments of ρ exist. If f(x) is in $C^{(n)}[0, \delta]$, then

$$\left|\int_{0}^{\delta} f(x)\rho(x)dx - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} m_{k}(\rho)\right| \leq \frac{\|f^{(n)}\|_{L^{\infty}[0,\delta]}}{n!} \|x^{n}\rho(x)\|_{L^{1}[0,\delta]}$$

The point here is that the proposition above shows that the quadrature formula

$$\int_0^{\delta} f(x)\rho(x)dx \doteq \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} m_k(\rho)$$

is accurate to within the error $\frac{\|f^{(n)}\|_{L^{\infty}[0,\delta]}}{n!} \|x^{n}\rho(x)\|_{L^{1}[0,\delta]}.$

We want to apply this to estimate the Daubechies wavelet coefficients, where we will use (1), but shifted to the right by 1. This gives us this formula for the wavelet:

$$\psi(x) = c_3\phi(2x) - c_2\phi(2x-1) + c_1\phi(2x-2) - c_0\phi(2x-3).$$

The support of ψ is [0,3]. Here is the result we want.

Proposition 0.2 For the Daubechies wavelet above, $m_0(\psi) = m_1(\psi) = 0$. Moreover, the wavelet coefficient b_k^j for a function $f \in C^{(2)}$ then satisfies the bound

$$|b_k^j| \le \underbrace{\sqrt{3^5/20}}_{<4} \cdot 2^{-2j} ||f''||_{L^{\infty}[2^{-j}k, 3 \cdot 2^{-j}k]}.$$

Proposition 0.3 For the Daubechies scaling function above, $m_0(\phi) = 1$ and $m_1(\phi) = 3 - \sqrt{3}$. Moreover, the scaling coefficient a_k^j for a function $f \in C^{(2)}$ then satisfies the bound

$$|a_k^j - f(2^{-j}k) - (3 - \sqrt{3})f'(2^{-j}k)2^{-j}| \le \underbrace{\sqrt{3^5/20}}_{<4} \cdot 2^{-2j} ||f''||_{L^{\infty}[2^{-j}k, 3 \cdot 2^{-j}k]}.$$

We close by remarking that the "wavelet crime" of approximating a_k^j with $f(2^{-j}k)$ results in an error of order 2^{-j} if f is $C^{(1)}$.