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1 The Row-Reduction Algorithm

The row-reduced form of a matrix contains a great deal of information,
both about the matrix itself and about systems of equations that may be
associated with it. To talk about row reduction, we need to define several
terms and introduce some notation.

1. Notation for row operations. Row reduction is made easier by having
notation for various row operations. This is the notation that we will
use here.

(a) Elementary transposition. R ↔ R′ means interchange rows R
and R′.

(b) Elementary multiplication. R = cR means multiply the current
row R by c 6= 0 and make the result the new row R.

(c) Elementary modification. R = R + cR′ means multiply R′ by c,
then add cR′ to R, and make the result the new row R.

2. Row equivalence. A matrix A is row equivalent to a matrix B if A can
be transformed into B using a finite number of elementary row oper-
ations. Since such operations are reversible, B is also row-equivalent
to A, and we simply say that A and B are row equivalent; we write
A ⇔ B.

3. Leading entry. The leading entry in a row is the first non-zero entry
in a row. The leading entries in each row of M are in boldface type.

M =


 0 1 3 2

2 4 0 −1
0 0 6 5
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4. Row-reduced form of a matrix. A matrix is in row-reduced form if
these hold:

(a) All rows with only zeros for entries are at the bottom.

(b) In any non-zero row, the leading entry is 1.

(c) Any column containing a leading entry for some row has zeros in
all its other entries.

The matrix M above is not in row-reduced form. Here are two examples of
matrices that are in row-reduced form.

 0 1 0 0 3
0 0 1 0 −4
0 0 0 0 0


 and


 1 0 0 7

0 1 0 4
0 0 1 3


 .

Although we will not prove it here, every matrix is row equivalent to
a matrix that is in row-reduced form. We call the process of finding the
row-reduced matrix equivalent to a given matrix row reduction. Below is an
algorithm for row-reducing a matrix; it uses two sets of steps, forward ones
(Gaussian elimination) and backward ones (Jordan reduction).

Forward Steps

1. Starting on the left, find the first column that contains a leading entry.
If there are several leading entries in this column, choose a convenient
one—for example, an entry that is 1.

2. Interchange rows until the row containing the leading entry that you
have chosen is the top one.

3. Use the top row and elementary modification to zero-out the other
entries in the column that you are working with.

4. Repeat the first three steps with the submatrix comprising all columns
to the right of the one you were working with, and all rows below
the top. Stop when either there are no more rows left or the next
submatrix consists of zeros. When this step is complete, all rows with
only zeros for entries are at the bottom of the matrix.
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Backward Steps

1. Find the leading entry in the last non-zero row. If this entry is not
already 1, use elementary multiplication to make it 1. Use elementary
modification to zero-out all of the entries above this leading entry.

2. Repeat step one for the leading entry in the second to the last non-
zero row. Once this is done, do the same thing for the third to the
last row, fourth to last, and so on. When there are no more rows left,
the matrix is in row-reduced form. (Actually, it is in a special kind of
row-reduced form, called reduced echelon form.)

Rank of a matrix. Before we give an example, we want to mention a
very important quantity that one can obtain from the row-reduced form of
a matrix; namely, the rank of a matrix. The rank of a matrix A, which we
denote by rank[A], is defined to be the number of leading entries in the row
reduced form of A. For future reference, we point out that this is equal to
the number of non-zero rows in the row-reduced form of A. One more thing:
If, after row-reducing a matrix, a column contains a leading entry, then that
column (which is a column in the original matrix) is called a leading column.
The rank of A is obviously also equal to the number of leading columns in
A.

We will now row-reduce a matrix using the algorithm given above. Con-
sider the matrix A shown below.

(Starting matrix) A =


 1 1 1

2 2 2
1 −1 2




This is the matrix we will row reduce. We will begin by carrying out the
forward steps in the algorithm. Leading entries are in boldface type.

R2 = R2 − 2R1 , R3 = R3 − R1 : A ⇔

 1 1 1

0 0 0
0 −2 1




R2 ↔ R3 : A ⇔

 1 1 1

0 −2 1
0 0 0




R2 = −1
2
R2 : A ⇔


 1 1 1

0 1 −1
2

0 0 0
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This ends the set of forward steps. We will move on to the backward steps.

R1 = R1 − R2 : A ⇔

 1 0 3

2
0 1 −1

2
0 0 0




This completes the algorithm. The last matrix on the right above is the
row- reduced form of A. Note that this implies that rank[A] = 2 and that
the leading columns of A are the first and second.

2 Applications to Solving Systems of Equations

One of the most important applications of the row-reduction algorithm is
solving a system of linear equations. The procedure begins by converting
the system

S :




a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2
...

...
...

am1x1 + · · · + amnxn = bm

into the matrix form Ax = b. Here A is the m × n coefficient matrix for S,
x is the n × 1 vector of unknowns, and b being the m × 1 vector of bj ’s.

There is an important matrix associated with the system S. We call the
m × (n + 1) matrix

[A|b] =




a11 . . . a1n b1
... . . .

...
...

am1 . . . amn bm




the augmented matrix for the system S. In view of the connection between
row operations and operations on the individual equations comprising the
system S, any matrix [A′|b′] that is row equivalent to the original system
[A|b] is the augmented matrix for a system S′ equivalent (i.e., having the
same solution set) to S. Let us state this formally.

Theorem 2.1 If [A|b] and [A′|b′] are augmented matrices for two linear
systems of equations S and S′, and if [A|b] and [A′|b′] are row equivalent,
then S and S′ are equivalent systems.

4



By examining the possible row-reduced matrices corresponding to the
augmented matrix for the system S, one can use Theorem 2.1 to obtain the
following result, which we state without proof.

Theorem 2.2 Consider the system S with coefficient matrix A and aug-
mented matrix [A|b]. As above, the sizes of b, A, and [A|b] are m×1, m×n,
and m× (n+1), respectively; in addition, n is the number of unknowns. We
have these possibilities:

1. S is inconsistent if and only if rank[A] < rank[A|b].
2. S has a unique solution if and only if rank[A] = rank[A|b] = n .

3. S has infinitely many solutions if and only if rank[A] = rank[A|b] < n .

We need to illustrate the use of this theorem. To do that, look at the
simple systems below.

x1 + 2x2 = 1
3x1 + x2 = −2

3x1 + 2x2 = 3
−6x1 − 4x2 = 0

3x1 + 2x2 = 3
−6x1 − 4x2 = −6

The augmented matrices for these systems are, respectively,(
1 2 1
3 1 −2

) (
3 2 3
−6 −4 0

) (
3 2 3
−6 −4 −6

)

Applying the row-reduction algorithm yields the row-reduced form of
each of these augmented matrices. The result is, again respectively,(

1 0 −1
0 1 1

) (
1 2

3 1
0 0 6

) (
1 2

3 1
0 0 0

)

From each of these row-reduced versions of the augmented matrices, one
can read off the rank of the coefficient matrix as well as the rank of the
augmented matrix. Applying Theorem 2.2 to each of these tells us the
number of solutions to expect for each of the corresponding systems. We
summarize our findings in the table below.

System rank[A] rank[A|b] n # of solutions
First 2 2 2 1

Second 1 2 2 0 (inconsistent)
Third 1 1 2 ∞

We now turn to the discussion of a very important class of systems,
homogeneous ones. A homogeneous system is one in which the vector b = 0.
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By simply plugging X = 0 into the equation AX = 0, we see that every
homogeneous system has at least one solution, the trivial solution X = 0.
Are there any others? To answer this, we need the following result:

Corollary 2.3 Let A be an m× n matrix. A homogeneous system of equa-
tions AX = 0 will have a unique solution, the trivial solution X = 0, if
and only if rank[A] = n. In all other cases, it will have infinitely many
solutions. As a consequence, if n > m—i.e., if the number of unknowns is
larger than the number of equations—, then the system will have infinitely
many solutions.

Proof: Since X = 0 is always a solution, case (i) of Theorem 2.2 is
eliminated as a possibility. Therefore, we must always have rank[A] =
rank[A|0] ≤ n. By Theorem 2.2, case (ii), equality will hold if and only
if X = 0 is the only solution. When it does not hold, we are always in case
(iii) of Theorem 2.2; there are thus infinitely many solutions for the system.
If n > m, then we need only note that rank[A] ≤ m < n to see that the
system has to have infinitely solutions. 2

Thus far we have only discussed how many solutions a system of linear
equations has. We have said nothing about how to obtain these solutions.
The key to the whole process is row-reducing the augmented matrix for the
original system, S.

Let us look at an example. Suppose that we have found that our system
has an augmented matrix [A|b] that is row equivalent to the matrix

[A′|b′] =




1 2 0 0 0 −1
0 0 1 0 −3 7
0 0 0 1 3 4
0 0 0 0 0 0


 .

We now convert this back to a system, one that is of course equivalent
to whatever one we started with. The result is the following system of
equations:

x1 + 2x2 = −1
x3 − 3x5 = 7
x4 + 3x5 = 4.

Notice that the variables corresponding to the leading columns, which are
called leading variables, appear in this set only once. That means that they
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can be solved for in terms of the other variables. Solving for these leading
variables results in the system

x1 = −2x2 − 1
x3 = 3x5 + 7
x4 = −3x5 + 4.

It turns out that by assigning arbitrary values to the non-leading variables
gives us all possible solutions to the system. It is customary to show that
this assignment has been made by assigning new letters to the non-leading
variables. In our example, we could set x2 = s, x5 = t, and then rewrite the
whole solution in the column form shown below.

X =




x1

x2

x3

x4

x5


 =




−2s − 1
s

3t + 7
−3t + 4

t


 =




−1
0
7
4
0


 + s




−2
1
0
0
0


 + t




0
0
3
−3
1




Written in this way, we see that if we set s = t = 0, we get a particular
solution to the original system. When this column is subtracted off, what is
left is a solution to the corresponding homogeneous system. This happens
in every case: A solution to AX = b may be written Xp + Xh, where Xp is
a fixed column vector satisfying AXp = b, and Xh runs over all solutions to
AXh = 0. This is exactly analogous to what happens in the case of linear
differential equations.
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