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1 The Row-Reduction Algorithm

The row-reduced form of a matrix contains a great deal of information,
both about the matrix itself and about systems of equations that may be
associated with it. To talk about row reduction, we need to define several
terms and introduce some notation.

1. Notation for row operations. Row reduction is made easier by having
notation for various row operations. This is the notation that we will
use here.

(a) Elementary multiplication. R = cR means multiply the current
row R by c 6= 0 and make the result the new row R.

(b) Elementary modification. R = R + cR′ means multiply R′ by c,
then add cR′ to R, and make the result the new row R.

(c) Row rearrangement. R ↔ R′ means interchange rows R and R′.
(This can be derived from the other two.)

2. Row equivalence. A matrix A is row equivalent to a matrix B if A can
be transformed into B using a finite number of elementary row oper-
ations. Since such operations are reversible, B is also row-equivalent
to A, and we simply say that A and B are row equivalent; we write
A⇔ B.

3. Leading entry. The leading entry in a row is the first non-zero entry
in a row. The leading entries in each row of M are underlined.

M =

 0 1 3 2
2 4 0 −1
0 0 6 5
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4. Row-reduced form of a matrix. A matrix is in row-reduced form if
these hold:

(a) In any non-zero row, the leading entry is 1.

(b) Any column containing a leading entry for some row has zeros in
all its other entries.

The matrix M above is not in row-reduced form. Here are two examples of
matrices that are in row-reduced form. 0 1 0 0 3

0 0 0 0 0
0 0 1 0 −4

 and

 0 1 0 4
0 0 1 3
1 0 0 7

 .

Although we will not prove it here, every matrix is row equivalent to
a matrix that is in row-reduced form. We call the process of finding the
row-reduced matrix equivalent to a given matrix row reduction. Below is an
algorithm for row-reducing a matrix. There are others as well.

The Algorithm

1. Starting on the left, find the first column that contains a leading entry.
If there are several leading entries in this column, choose a convenient
one—for example, an entry that is 1.

2. Divide the row containing the leading entry by that leading entry.

3. Use this row and elementary modification to zero-out the other entries
in the column that you are working with.

4. Find the next column to the right that contains a leading entry. Repeat
the steps above. Stop when there are no more columns with leading
entries.

Reduced Echelon Form Often its desirable to put the matrix in reduced
echelon form. After the matrix is in row reduced form, use row rearrange-
ment to put the zero rows at the bottom of the matrix and to put the other
rows in a staircase arragement. Here are the reduced echelon forms of two
of the matrices from above. 0 1 0 0 3

0 0 1 0 −4
0 0 0 0 0

 and

 1 0 0 7
0 1 0 4
0 0 1 3

 .
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Rank of a matrix. Before we give an example, we want to mention a
very important quantity that one can obtain from the row-reduced form of
a matrix; namely, the rank of a matrix. The rank of a matrix A, which
we denote by rank[A], is defined to be the number of leading entries in the
row reduced form of A; this is equal to the number of non-zero rows in the
row-reduced form of A. One more thing: If, after row-reducing a matrix,
a column contains a leading entry, then that column (which is a column in
the original matrix) is called a leading column. The rank of A is obviously
also equal to the number of leading columns in A.

An Example. Here is an example of how the algorithm works. Consider
the matrix A shown below. Leading entries are underlined.

(Starting matrix) A =

 1 1 1
2 4 6
1 −1 −3

 .

We will choose the first row and use elemtary modification to zero out the
other entries in the first column.

R2 = R2 − 2R1 , R3 = R3 −R1 : A⇔

 1 1 1
0 2 4
0 −2 −4


We now move to the second column, where we have a choice of two leading
entries. We will choose the one in row 2.

R2 =
1
2
R2 : A⇔

 1 1 1
0 1 2
0 −2 −4


Next, we will zero out the other entries in column 2.

R1 = R1 −R2 , R3 = R3 + 2R2 : A⇔

 1 0 −1
0 1 2
0 0 0


There are no leading entries in column 3, so this completes the algorithm.
The last matrix on the right above is the reduced echelon form of A. From
this matrix we see that rank[A] = 2 and that the leading columns of A are 1

2
1

 and

 1
4
−1

 .
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2 Solving Systems of Equations

We now want to look at how to solve a linear system of equations using
row reduction to implement the method of elimination. We begin with the
system below.

x1 − 3x2 − x3 − 3x4 = 0
−x1 + 3x2 + 2x3 + 4x4 = 1

2x1 − 6x2 + 4x3 = 6

The coefficient matrix A and “right-hand side” b for this system are

A =

 1 −3 −1 −3
−1 3 2 4
2 −6 4 0

 and b =

 0
1
6

 ,

and the augmented matrix [A | b ] is given by

[A | b ] =

 1 −3 −1 −3 0
−1 3 2 4 1
2 −6 4 0 6

 .

To solve the original system, we row reduce the augmented matrix:

R2 = R2 + R1 , R3 = R3 − 2R1 : [A | b ]⇔

 1 −3 −1 −3 0
0 0 1 1 1
0 0 6 6 6



R1 = R1 + R2 , R3 = R2 − 6R2 : [A | b ]⇔

 1 −3 0 −2 1
0 0 1 1 1
0 0 0 0 0


The final matrix on the right above is actually the reduced echelon form of
[A | b ]. The underlined matrix elements are the leading entries. Identifying
them tells us that the leading variables are x1 and x3, the nonleading vari-
ables are x2 and x4, and the rank of the augmented matrix is 2. The equiv-
alent system reduces to two equations, x1 − 3x2 − 2x4 = 1 and x3 + x4 = 1.
Assigning parameters to the nonleading variables and solving for the leading
variables, we end up with the solution in parametric form:

x1 = 1 + 3t1 + 2t2
x2 = t1
x3 = 1− t2
x4 = t2

⇐⇒ x =


1
0
1
0

 + t1


3
1
0
0

 + t2


2
0
−1
1

 .
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