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1 Background

We have been working with distributions. Part of our purpose here is to
show that if a distribution u has a (distributional) derivative u′ ∈ L2[a, b],
then u can be represented by a function in C[a, b]. To prove this requires that
we prove a result important in its own right, which is version of a theorem
of Sobolev. In the one-dimensional case, this is the following “regularity”
result.

Theorem 1.1 (Sobolev) If u is a distribution having a distributional deriva-
tive u′ in L2[a, b], then u ∈ C[a, b] and there is a constant C > 0 that depends
only on b− a for which

‖u‖C[a,b] ≤ C‖u‖H1[a,b], ‖u‖2
H1[a,b] :=

∫ b

a
(|u|2 + |u′|2)dx (1)

2 Inequalities

A typical method for proving regularity theorems is to first prove inequalities
relating norms on different spaces, assuming that the function is smooth.
One can also do this more directly, via properties of the Lebesgue integral.
The regularity theorem is then obtained by a density argument. In this
section we will carry out this first step in several lemmas.

Lemma 2.1 Let v ∈ C[a, b] and let u be any antiderivative for v. If δ > 0
and ω(u, δ) is the modulus of continuity for u, then ω satisfies this inequality,

ω(u, δ) ≤
√

δ‖v‖L2 . (2)
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In addition, there is a constant C > 0 that depends only on b− a for which

‖u‖C[a,b] ≤ C‖u‖H1[a,b] . (3)

Proof: For every pair x, y ∈ [a, b] we have u(x)− u(y) =
∫ x
y v(t)dt. Conse-

quently, by Schwarz’s inequality we see that

|u(x)− u(y)| ≤
∫ b

a
|v(t)|dt ≤

√
|x− y|

∫ x

y
|v(t)|2dt ≤

√
|x− y|‖v‖L2 .

Taking the supremum over |x− y| ≤ δ yields (2).
The integral version of the mean value theorem implies that there is

point c ∈ (a, b) such that u(c) = 1
b−a

∫ b
a u(t)dt. By (2) with δ = b − a

we have |u(x) − u(c)| ≤ ω(u,
√

b− a ) ≤
√

b− a‖v‖L2 . This implies that
|u(x)| ≤ |u(c)| +

√
b− a‖v‖L2 . Since u(c) = 1

b−a

∫ b
a u(t)dt, we can apply

Schwarz’s inequality to obtain |u(c)| ≤ 1√
b−a

‖u‖L2 . Putting this together
with the previous inequality yields

|u(x)| ≤ 1√
b− a

‖u‖L2 +
√

b− a‖v‖L2

≤
√

2
b− a

‖u‖2
L2 + 2(b− a)‖v‖2

L2

≤
√

2 max{(b− a)−1, b− a}︸ ︷︷ ︸
C

‖u‖H1

Again, taking the supremum over x ∈ [a, b] above yields (3)

The next lemma is a simple corollary of the previous one.

Lemma 2.2 If v ∈ C[a, b] and if U(x) :=
∫ x
a v(t)dt, with a ≤ x ≤ b, then

‖U‖L2[a,b] ≤
b− a√

2
‖v‖L2 . (4)

Proof: Schwarz’s inequality implies that |U(x)|2 ≤ (x−a)‖v‖2
L2 . We obtain

(4) by integrating both sides from x = a to x = b and then taking square
roots of the result.
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3 Proof of the 1D-Sobolev Theorem

We suppose that u′ ∈ L2[a, b] is the derivative of a distribution u. Because
C[a, b] is dense in L2[a, b], there is a sequence of functions {vn ∈ C[a, b]}∞n=1

such that vn → u′ in L2. Let Un(x) :=
∫ x
a vn(t)dt, where a ≤ x ≤ b.

Applying Lemma 2.2 to Un − Um, we have that

‖Un − Um‖L2[a,b] ≤
b− a√

2
‖vn − vm‖L2 .

Since vn is convergent in L2, it is a Cauchy sequence. The inequality above
implies that Un is also a Cauchy sequence in L2 and is therefore convergent
to U ∈ L2.

Now we apply (2) of Lemma 2.1, with u = Un − Um, v = vn − vm, and
δ = b− a, to obtain

|(Un −Um)(x)− (Un − Um)(0)︸ ︷︷ ︸
0

| ≤ ω(Un −Um, b− a) ≤
√

b− a‖vn − vm‖L2 ,

from which it follows that

‖Un − Um‖C[a,b] ≤
√

b− a‖vn − vm‖L2 ,

and so {Un} is a Cauchy sequence in C[a, b]; therefore it converges in C[a, b]
to U . Hence, U ∈ C[a, b].

Let φ be in D and suppose supp{φ} ⊆ [a, b]. Because U ′
n = vn, we have

that 〈vn, φ〉 = 〈U ′
n, φ〉 = −〈Un, φ′〉. The L2 convergence of the sequences vn

and Un is enough to imply that 〈vn, φ〉 → 〈u′, φ〉 and 〈Un, φ′〉 → 〈U, φ′〉. We
then have 〈U, φ′〉 = −〈u′, φ〉.

As is the case in ordinary calculus, if two distributions have the same
distributional derivatives, then they differ by a constant. In particular,
if u and U have u′ as a derivative, then there is a constant k such that
u = k + U . Let un = k + Un and note that un → u in C[a, b] and L2.
Moreover, u′n = U ′

n = vn. Use these in (3) and let n →∞ to prove (1).
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