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Spherical Harmonics on S2

1 The Laplace-Beltrami Operator

In what follows, we describe points on S2 using the parametrization

x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ,

where θ is the colatitude and ϕ is the azimuthal angle. There are coordinate
singularities at the north and south poles and along the median ϕ = 0, 2π.
Thus, for a continuous function f(θ, ϕ) to be well defined on S2, it must
satisfy the following boundary conditions:

• f(θ, ϕ) = f(θ, ϕ + 2π)

• f(0, ϕ) and f(π, ϕ) are independent of ϕ.

In these coordinates, the invariant area element on S2 is given by dµ =
sin θdθdϕ. If f is defined and continuous on S2, then its integral over S2 is

∫

S2

fdµ =

∫ 2π

0

∫ π

0

f(θ, ϕ) sin θdθdϕ.

The space of functions satisfying
∫

S2 |f |2dµ < ∞ is denoted by L2(S2). If we
define the usual inner product and norm on L2,

〈f, g〉 :=

∫

S2

fḡdµ and ‖f‖ :=

{
∫

S2

|f |2dµ

}
1

2

,

then it is a Hilbert space. The Laplace Beltrami operator on S2 is given by

∆S =
1

sin θ

∂

∂θ

{

sin θ
∂

∂θ

}

+
1

sin2 θ

∂2

∂ϕ2
.

This operator places the same rôle as the ordinary Laplacian in Euclidean
space, and it satisfies properties similar to its Euclidean counterpart. All of
those listed below are established via integration by parts for functions f, g

satisfying the necessary boundary conditions.

1. ∆S is selfadjoint: 〈∆Sf, g〉 = 〈f, ∆Sg〉.

2. Symmetric form: 〈∆Sf, g〉 = −
∫

S2

(

∂f

∂θ

∂ḡ

∂θ
+ 1

sin2 θ

∂f

∂ϕ

∂ḡ

∂ϕ

)

dµ

3. Non-negativity of −∆S: −〈∆Sf, f〉 =
∫

S2

(

∣

∣

∂f

∂θ

∣

∣

2
+ 1

sin2 θ

∣

∣

∂f

∂ϕ

∣

∣

2
)

dµ ≥ 0.



2 The Eigenvalue Problem

We now turn to the eigenvalue problem for ∆S. We seek to find all eigenvalues
λ for which there is a non-trivial eigenfunction Y such that

∆SY + λY = 0.

From the properties of ∆S we have the following theorem.

Theorem 2.1 The eigenvalues λ are all real, non negative, and the eigen-
functions corresponding to distinct eigenvalues are orthogonal in the inner
product of L2(S2). In addition, if Y is an eigenfunction corresponding to λ,
we have

λ =
1

‖Y ‖2

∫

S2

(

∣

∣

∂Y

∂θ

∣

∣

2
+

1

sin2 θ

∣

∣

∂Y

∂ϕ

∣

∣

2
)

dµ (1)

Proof. The expression for λ in (1) follows from properties 2 and 3 for
∆S, with both f and g being taken as Y . This of course implies that the
eigenvalues are real and nonnegative. To obtain orthogonality, use property 1
with f = Y1 and g = Y2, where Y1, Y2 are eigenfunctions corresponding to
λ1 6= λ2. Then, we have

〈∆SY1, Y2〉 = 〈Y1, ∆SY2〉
〈λ1Y1, Y2〉 = 〈Y1, λ2Y2〉
λ1〈Y1, Y2〉 = λ̄2〈Y1, Y2〉

Now, since the eigenvalues are real, λ̄2 = λ2. Hence, (λ1 − λ2)〈Y1, Y2〉 = 0,
and, because λ1 6= λ2, 〈Y1, Y2〉 = 0. ¤

From (1), it is easy to see that λ = 0 is in fact an eigenvalue, and that
the only eigenfunction corresponding to it is Y = constant. So assume that
λ > 0 for the rest of the discussion, and that that Y is an eigenfunction
corresponding to λ.

The function Y satisfies the boundary conditions described earlier; thus,
Y is 2π-periodic in ϕ. If we fix θ, then we can expand Y (θ, ϕ) in a Fourier
series in ϕ,

Y (θ, ϕ) =
∞

∑

m=−∞

Ym(θ)eimϕ. (2)
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Apply ∆S to both sides and assume that switching sum and ∆S is permissible.
The result is

−λY = ∆SY =
∞

∑

m=−∞

∆SYm(θ)eimϕ

∞
∑

m=−∞

(−λ)Ymeimϕ =
∞

∑

m=−∞

(

1

sin θ

d

dθ

{

sin θ
dYm

dθ

}

− m2

sin2 θ
Ym

)

eimϕ

Comparing Fourier coefficients in the Fourier series for Y and the Fourier
series for λY above, we see that

1

sin θ

d

dθ

{

sin θ
dYm

dθ

}

− m2

sin2 θ
Ym = −λYm (3)

In addition, we have shown that

∆S(Ymeimϕ) + λYmeimϕ = 0 (4)

In other words, each non-zero component of the Fourier series for Y is also
an eigenfunction for ∆S corresponding to λ. (Functions that are identically
0 are not called eigenfunctions.) Consequently, we may use Ymeimϕ as Y in
(1). This gives

λ =
1

‖Ymeimϕ‖2

∫

S2

(

∣

∣

∣

∣

∂Ymeimϕ

∂θ

∣

∣

∣

∣

2

+
1

sin2 θ

∣

∣

∣

∣

∂Ymeimϕ

∂ϕ

∣

∣

∣

∣

2
)

dµ

≥ 1

‖Ym‖2

∫

S2

∫

S2

1

sin2 θ

∣

∣

∣

∣

∂Ymeimϕ

∂ϕ

∣

∣

∣

∣

2

dµ

≥ m2

‖Ym‖2

∫

S2

1

sin2 θ

∣

∣Ym

∣

∣

2
dµ

≥ m2

‖Ym‖2
‖Ym‖2 = m2

This puts an upper bound on the number of Fourier components in Y .
Namely, the largest value of |m| is the integer ℓ := ⌊

√
λ⌋, and also on the

dimension of the eigenspace of λ. This is because Ym satisfies the ODE (3),
which has at most two linearly independent solutions. In fact, the boundary
conditions for functions on S2 allow only one solution for given integer |m|.
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Since m itself runs from m = −ℓ to m = ℓ, there are only 2ℓ + 1 solutions.
Thus the dimension of the eigenspace corresponding to λ is 2ℓ+1 = 2⌊

√
λ⌋+1.

We summarize this below.

Proposition 2.2 For λ > 0, the eigenfunctions ∆SY + λY are linear com-
binations of solutions to (4), where Ym is, up to a constant, uniquely deter-
mined by (3). Moreover, if ℓ := ⌊

√
λ⌋, then |m| ≤ ℓ and the dimension of

the eigenspace of λ is 2ℓ + 1.

The next step in solving the eigenvalue problem is to introduce two new
operators,

L± = e±iϕ

(

∂

∂θ
± i cot θ

∂

∂ϕ

)

. (5)

For reasons that will be clear later, L+ is the called the raising operator and
L− is the lowering operator. A routine, if tedious, calculation gives that the
raising and lowering operators commute with ∆S – that is,

L±∆S = ∆SL± .

Consequently, if ∆SY = −λY , we have that L±∆SY = ∆SL±Y = −λL±Y .
Thus, L±Y are also eigenfunctions of ∆S, assuming they are not zero. In
particular, we can apply them to Ym(θ)eimϕ,

L±

(

Ym(θ)eimϕ
)

=

(

dYm

dθ
∓ m cot θYm(θ)

)

ei(m±1)ϕ.

The right side above is an eigenfunction that has its Fourier series in ϕ

consisting of a single term. By what we said above, it must be a multiple
of Ym±1(θ)e

i(m±1)ϕ. Now, let m = ℓ and use L+. The result would be an
eigenfunction Yℓ+1(θ)e

i(ℓ+1)ϕ. That is, an eigenfuntion with m = ℓ + 1 > ℓ.
The previous proposition implies that the only way this is possible is if

L+

(

Yℓ(θ)e
iℓϕ

)

=

(

dYℓ

dθ
− ℓ cot θYℓ(θ)

)

ei(ℓ+1)ϕ = 0,

which implies that Yℓ satisfies the first order ODE, dYℓ

dθ
− ℓ cot θYℓ(θ) = 0.

Solving this is easy; the result is Yℓ(θ) = C sinℓ θ, C 6= 0. Plugging this
solution back into (3) results in the identity −ℓ(ℓ+1)Yℓ = −λYℓ, from which
it follows that λ = ℓ(ℓ + 1). The other eigenfunctions for λ = ℓ(ℓ + 1) may
be found by recursively applying L− to Yℓ(θ)e

iℓϕ. Up to normalization, this
procedure gives us the eigenvalues and eigenfunctions of ∆S. We have thus
proved the following.
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Theorem 2.3 The eigenvalues for ∆SY + λY are of the form λ = ℓ(ℓ + 1),
where ℓ = 0, 1, 2, . . .. Corresponding to each ℓ, there are 2ℓ + 1 linearly
independent eigenfunctions, Yℓ,m(θ, ϕ) = Lℓ−m

−

(

sinℓ θeiℓϕ
)

.

3 The Spherical Harmonics

Spherical harmonics are eigenfunctions of the Laplace-Beltrami operator ∆S.
Theorem 2.1 tells us that spherical harmonics corresponding to differing val-
ues of ℓ and, hence differing values of λ = ℓ(ℓ + 1), are orthogonal. Theo-
rem 2.3 gives us a way of constructing a basis of spherical harmonics for each
fixed ℓ. Because of the factor eimϕ in each of these, they are also orthogonal.
By adjusting normalization constants, one can get the all of the spherical
harmonics to be an orthonormal set.

Theorem 3.1 For ℓ = 0, 1, 2, . . ., and m = −ℓ, . . . , ℓ, the functions

Yℓ,m(θ, φ) :=

√

2ℓ + 1

4π

(ℓ − |m|)!
(ℓ + |m|)! sin|m| θ P

(|m|)
ℓ (cos θ)eimϕ

form an orthonormal set. Moreover, these are a basis for L2(S2). The func-
tion Pℓ(x) whose derivative appears above is the ℓ-th order Legendre polyno-
mial.

We remark that the normalization for Yℓ,m is only one of many possible.
Also, there are real versions of the spherical harmonics that use sin(mϕ) and
cos(mϕ) rather than eimϕ.
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