Spherical Harmonics on \mathbf{S}^{2}

1 The Laplace-Beltrami Operator

In what follows, we describe points on \mathbf{S}^{2} using the parametrization

$$
x=\cos \varphi \sin \theta, y=\sin \varphi \sin \theta, z=\cos \theta,
$$

where θ is the colatitude and φ is the azimuthal angle. There are coordinate singularities at the north and south poles and along the median $\varphi=0,2 \pi$. Thus, for a continuous function $f(\theta, \varphi)$ to be well defined on \mathbf{S}^{2}, it must satisfy the following boundary conditions:

- $f(\theta, \varphi)=f(\theta, \varphi+2 \pi)$
- $f(0, \varphi)$ and $f(\pi, \varphi)$ are independent of φ.

In these coordinates, the invariant area element on \mathbf{S}^{2} is given by $d \mu=$ $\sin \theta d \theta d \varphi$. If f is defined and continuous on \mathbf{S}^{2}, then its integral over \mathbf{S}^{2} is

$$
\int_{\mathbf{S}^{2}} f d \mu=\int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \varphi) \sin \theta d \theta d \varphi .
$$

The space of functions satisfying $\int_{\mathbf{S}^{2}}|f|^{2} d \mu<\infty$ is denoted by $L^{2}\left(\mathbf{S}^{2}\right)$. If we define the usual inner product and norm on L^{2},

$$
\langle f, g\rangle:=\int_{\mathbf{S}^{2}} f \bar{g} d \mu \text { and }\|f\|:=\left\{\int_{\mathbf{S}^{2}}|f|^{2} d \mu\right\}^{\frac{1}{2}}
$$

then it is a Hilbert space. The Laplace Beltrami operator on \mathbf{S}^{2} is given by

$$
\Delta_{S}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left\{\sin \theta \frac{\partial}{\partial \theta}\right\}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

This operator places the same rôle as the ordinary Laplacian in Euclidean space, and it satisfies properties similar to its Euclidean counterpart. All of those listed below are established via integration by parts for functions f, g satisfying the necessary boundary conditions.

1. Δ_{S} is selfadjoint: $\left\langle\Delta_{S} f, g\right\rangle=\left\langle f, \Delta_{S} g\right\rangle$.
2. Symmetric form: $\left\langle\Delta_{S} f, g\right\rangle=-\int_{\mathbf{S}^{2}}\left(\frac{\partial f}{\partial \theta} \frac{\partial \bar{g}}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial f}{\partial \varphi} \frac{\partial \bar{g}}{\partial \varphi}\right) d \mu$
3. Non-negativity of $-\Delta_{S}:-\left\langle\Delta_{S} f, f\right\rangle=\int_{\mathbf{S}^{2}}\left(\left|\frac{\partial f}{\partial \theta}\right|^{2}+\frac{1}{\sin ^{2} \theta}\left|\frac{\partial f}{\partial \varphi}\right|^{2}\right) d \mu \geq 0$.

2 The Eigenvalue Problem

We now turn to the eigenvalue problem for Δ_{S}. We seek to find all eigenvalues λ for which there is a non-trivial eigenfunction Y such that

$$
\Delta_{S} Y+\lambda Y=0
$$

From the properties of Δ_{S} we have the following theorem.
Theorem 2.1 The eigenvalues λ are all real, non negative, and the eigenfunctions corresponding to distinct eigenvalues are orthogonal in the inner product of $L^{2}\left(\mathbf{S}^{2}\right)$. In addition, if Y is an eigenfunction corresponding to λ, we have

$$
\begin{equation*}
\lambda=\frac{1}{\|Y\|^{2}} \int_{\mathbf{S}^{2}}\left(\left|\frac{\partial Y}{\partial \theta}\right|^{2}+\frac{1}{\sin ^{2} \theta}\left|\frac{\partial Y}{\partial \varphi}\right|^{2}\right) d \mu \tag{1}
\end{equation*}
$$

Proof. The expression for λ in (1) follows from properties 2 and 3 for Δ_{S}, with both f and g being taken as Y. This of course implies that the eigenvalues are real and nonnegative. To obtain orthogonality, use property 1 with $f=Y_{1}$ and $g=Y_{2}$, where Y_{1}, Y_{2} are eigenfunctions corresponding to $\lambda_{1} \neq \lambda_{2}$. Then, we have

$$
\begin{aligned}
\left\langle\Delta_{S} Y_{1}, Y_{2}\right\rangle & =\left\langle Y_{1}, \Delta_{S} Y_{2}\right\rangle \\
\left\langle\lambda_{1} Y_{1}, Y_{2}\right\rangle & =\left\langle Y_{1}, \lambda_{2} Y_{2}\right\rangle \\
\lambda_{1}\left\langle Y_{1}, Y_{2}\right\rangle & =\bar{\lambda}_{2}\left\langle Y_{1}, Y_{2}\right\rangle
\end{aligned}
$$

Now, since the eigenvalues are real, $\bar{\lambda}_{2}=\lambda_{2}$. Hence, $\left(\lambda_{1}-\lambda_{2}\right)\left\langle Y_{1}, Y_{2}\right\rangle=0$, and, because $\lambda_{1} \neq \lambda_{2},\left\langle Y_{1}, Y_{2}\right\rangle=0$.

From (1), it is easy to see that $\lambda=0$ is in fact an eigenvalue, and that the only eigenfunction corresponding to it is $Y=$ constant. So assume that $\lambda>0$ for the rest of the discussion, and that that Y is an eigenfunction corresponding to λ.

The function Y satisfies the boundary conditions described earlier; thus, Y is 2π-periodic in φ. If we fix θ, then we can expand $Y(\theta, \varphi)$ in a Fourier series in φ,

$$
\begin{equation*}
Y(\theta, \varphi)=\sum_{m=-\infty}^{\infty} Y_{m}(\theta) e^{i m \varphi} \tag{2}
\end{equation*}
$$

Apply Δ_{S} to both sides and assume that switching sum and Δ_{S} is permissible. The result is

$$
\begin{aligned}
-\lambda Y=\Delta_{S} Y & =\sum_{m=-\infty}^{\infty} \Delta_{S} Y_{m}(\theta) e^{i m \varphi} \\
\sum_{m=-\infty}^{\infty}(-\lambda) Y_{m} e^{i m \varphi} & =\sum_{m=-\infty}^{\infty}\left(\frac{1}{\sin \theta} \frac{d}{d \theta}\left\{\sin \theta \frac{d Y_{m}}{d \theta}\right\}-\frac{m^{2}}{\sin ^{2} \theta} Y_{m}\right) e^{i m \varphi}
\end{aligned}
$$

Comparing Fourier coefficients in the Fourier series for Y and the Fourier series for λY above, we see that

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left\{\sin \theta \frac{d Y_{m}}{d \theta}\right\}-\frac{m^{2}}{\sin ^{2} \theta} Y_{m}=-\lambda Y_{m} \tag{3}
\end{equation*}
$$

In addition, we have shown that

$$
\begin{equation*}
\Delta_{S}\left(Y_{m} e^{i m \varphi}\right)+\lambda Y_{m} e^{i m \varphi}=0 \tag{4}
\end{equation*}
$$

In other words, each non-zero component of the Fourier series for Y is also an eigenfunction for Δ_{S} corresponding to λ. (Functions that are identically 0 are not called eigenfunctions.) Consequently, we may use $Y_{m} e^{i m \varphi}$ as Y in (1). This gives

$$
\begin{aligned}
\lambda & =\frac{1}{\left\|Y_{m} e^{i m \varphi}\right\|^{2}} \int_{\mathbf{S}^{2}}\left(\left|\frac{\partial Y_{m} e^{i m \varphi}}{\partial \theta}\right|^{2}+\frac{1}{\sin ^{2} \theta}\left|\frac{\partial Y_{m} e^{i m \varphi}}{\partial \varphi}\right|^{2}\right) d \mu \\
& \geq \frac{1}{\left\|Y_{m}\right\|^{2}} \int_{\mathbf{S}^{2}} \int_{\mathbf{S}^{2}} \frac{1}{\sin ^{2} \theta}\left|\frac{\partial Y_{m} e^{i m \varphi}}{\partial \varphi}\right|^{2} d \mu \\
& \geq \frac{m^{2}}{\left\|Y_{m}\right\|^{2}} \int_{\mathbf{S}^{2}} \frac{1}{\sin ^{2} \theta}\left|Y_{m}\right|^{2} d \mu \\
& \geq \frac{m^{2}}{\left\|Y_{m}\right\|^{2}}\left\|Y_{m}\right\|^{2}=m^{2}
\end{aligned}
$$

This puts an upper bound on the number of Fourier components in Y. Namely, the largest value of $|m|$ is the integer $\ell:=\lfloor\sqrt{\lambda}\rfloor$, and also on the dimension of the eigenspace of λ. This is because Y_{m} satisfies the ODE (3), which has at most two linearly independent solutions. In fact, the boundary conditions for functions on \mathbf{S}^{2} allow only one solution for given integer $|m|$.

Since m itself runs from $m=-\ell$ to $m=\ell$, there are only $2 \ell+1$ solutions. Thus the dimension of the eigenspace corresponding to λ is $2 \ell+1=2\lfloor\sqrt{\lambda}\rfloor+1$. We summarize this below.

Proposition 2.2 For $\lambda>0$, the eigenfunctions $\Delta_{S} Y+\lambda Y$ are linear combinations of solutions to (4), where Y_{m} is, up to a constant, uniquely determined by (3). Moreover, if $\ell:=\lfloor\sqrt{\lambda}\rfloor$, then $|m| \leq \ell$ and the dimension of the eigenspace of λ is $2 \ell+1$.

The next step in solving the eigenvalue problem is to introduce two new operators,

$$
\begin{equation*}
L_{ \pm}=e^{ \pm i \varphi}\left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \varphi}\right) . \tag{5}
\end{equation*}
$$

For reasons that will be clear later, L_{+}is the called the raising operator and L_{-}is the lowering operator. A routine, if tedious, calculation gives that the raising and lowering operators commute with Δ_{S} - that is,

$$
L_{ \pm} \Delta_{S}=\Delta_{S} L_{ \pm} .
$$

Consequently, if $\Delta_{S} Y=-\lambda Y$, we have that $L_{ \pm} \Delta_{S} Y=\Delta_{S} L_{ \pm} Y=-\lambda L_{ \pm} Y$. Thus, $L_{ \pm} Y$ are also eigenfunctions of Δ_{S}, assuming they are not zero. In particular, we can apply them to $Y_{m}(\theta) e^{i m \varphi}$,

$$
L_{ \pm}\left(Y_{m}(\theta) e^{i m \varphi}\right)=\left(\frac{d Y_{m}}{d \theta} \mp m \cot \theta Y_{m}(\theta)\right) e^{i(m \pm 1) \varphi} .
$$

The right side above is an eigenfunction that has its Fourier series in φ consisting of a single term. By what we said above, it must be a multiple of $Y_{m \pm 1}(\theta) e^{i(m \pm 1) \varphi}$. Now, let $m=\ell$ and use L_{+}. The result would be an eigenfunction $Y_{\ell+1}(\theta) e^{i(\ell+1) \varphi}$. That is, an eigenfuntion with $m=\ell+1>\ell$. The previous proposition implies that the only way this is possible is if

$$
L_{+}\left(Y_{\ell}(\theta) e^{i \ell \varphi}\right)=\left(\frac{d Y_{\ell}}{d \theta}-\ell \cot \theta Y_{\ell}(\theta)\right) e^{i(\ell+1) \varphi}=0
$$

which implies that Y_{ℓ} satisfies the first order ODE, $\frac{d Y_{\ell}}{d \theta}-\ell \cot \theta Y_{\ell}(\theta)=0$. Solving this is easy; the result is $Y_{\ell}(\theta)=C \sin ^{\ell} \theta, C \neq 0$. Plugging this solution back into (3) results in the identity $-\ell(\ell+1) Y_{\ell}=-\lambda Y_{\ell}$, from which it follows that $\lambda=\ell(\ell+1)$. The other eigenfunctions for $\lambda=\ell(\ell+1)$ may be found by recursively applying L_{-}to $Y_{\ell}(\theta) e^{i \ell \varphi}$. Up to normalization, this procedure gives us the eigenvalues and eigenfunctions of Δ_{S}. We have thus proved the following.

Theorem 2.3 The eigenvalues for $\Delta_{S} Y+\lambda Y$ are of the form $\lambda=\ell(\ell+1)$, where $\ell=0,1,2, \ldots$. Corresponding to each ℓ, there are $2 \ell+1$ linearly independent eigenfunctions, $Y_{\ell, m}(\theta, \varphi)=L_{-}^{\ell-m}\left(\sin ^{\ell} \theta e^{i \ell \varphi}\right)$.

3 The Spherical Harmonics

Spherical harmonics are eigenfunctions of the Laplace-Beltrami operator Δ_{S}. Theorem 2.1 tells us that spherical harmonics corresponding to differing values of ℓ and, hence differing values of $\lambda=\ell(\ell+1)$, are orthogonal. Theorem 2.3 gives us a way of constructing a basis of spherical harmonics for each fixed ℓ. Because of the factor $e^{i m \varphi}$ in each of these, they are also orthogonal. By adjusting normalization constants, one can get the all of the spherical harmonics to be an orthonormal set.

Theorem 3.1 For $\ell=0,1,2, \ldots$, and $m=-\ell, \ldots, \ell$, the functions

$$
Y_{\ell, m}(\theta, \phi):=\sqrt{\frac{2 \ell+1}{4 \pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} \sin ^{|m|} \theta P_{\ell}^{(|m|)}(\cos \theta) e^{i m \varphi}
$$

form an orthonormal set. Moreover, these are a basis for $L^{2}\left(\mathbf{S}^{2}\right)$. The function $P_{\ell}(x)$ whose derivative appears above is the ℓ-th order Legendre polynomial.

We remark that the normalization for $Y_{\ell, m}$ is only one of many possible. Also, there are real versions of the spherical harmonics that use $\sin (m \varphi)$ and $\cos (m \varphi)$ rather than $e^{i m \varphi}$.

