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1 The second variation

Let J [x] =
∫ b
a F (t, x, ẋ)dt be a nonlinear functional, with x(a) = A and

x(b) = B fixed. As usual, we will assume that F is as smooth as necessary.
The first variation of J is

δJx[h] =
∫ b

a

(
F (t, x, ẋ)− d

dt
Fẋ

)
h(t)dt,

where h(t) is assumed as smooth as necessary and in addition satisfies h(a) =
h(b) = 0. We will call such h admissible.

The idea behind finding the first variation is to capture the linear part
of the J [x]. Specifically, we have

J [x + εh] = J [x] + εδJx[h] + o(ε),

where o(ε) is a quantity that satisfies

lim
ε→0

o(ε)
ε

= 0.

The second variation comes out of the quadratic approximation in ε,

J [x + εh] = J [x] + εδJx[h] +
1
2
ε2δ2Jx[h] + o(ε2).

It follows that

δ2Jx[h] =
d2

dε2

(
J [x + εh]

)∣∣∣∣
ε=0

.
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To calculate it, we note that

d2

dε2

(
J [x + εh]

)
=

∫ b

a

∂2

∂ε2

(
F (t, x + εh, ẋ + εḣ)

)
dt.

Applying the chain rule to the integrand, we see that

∂2

∂ε2

(
F (t, x + εh, ẋ + εḣ)

)
=

∂

∂ε

(
Fxh + Fẋḣ

)
= Fxxh2 + 2Fxẋhḣ + Fẋẋḣ2,

where the various derivatives of F are evaluated at (t, x + εh, ẋ + εḣ). Set-
ting ε = 0 and inserting the result in our earlier expression for the second
variation, we obtain

δ2Jx[h] =
∫ b

a
Fxxh2 + 2Fxẋhḣ + Fẋẋḣ2dt .

Note that the middle term can be written as 2Fxẋhḣ = Fxẋ
d
dth

2. Using this
in the equation above, integrating by parts, and employing h(a) = h(b) = 0,
we arrive at

δ2Jx[h] =
∫ b

a

{(
Fxx −

d

dt
Fxẋ︸ ︷︷ ︸

Q

)
h2 + Fẋẋ︸︷︷︸

P

ḣ2

}
dt

=
∫ b

a
(Pḣ2 + Qh2)dt. (1)

2 Legendre’s trick

Ultimately, we are interested in whether a given extremal for J is a weak
(relative) minimum or maximum. In the sequel we will always assume that
the function x(t) that we are working with is an extremal, so that x(t)
satisfies the Euler-Lagrange equation, d

dtFẋ = Fx, makes the first variation
δJx[h] = 0 for all h, and fixes the functions P = Fẋẋ and Q = Fxx − d

dtFxẋ.
To be definite, we will always assume we are looking for conditions for the
extremum to be a weak minimum. The case of a maximum is similar.

Let’s look at the integrand Pḣ2 + Qh2 in (1). It is generally true that
a function can be bounded, but have a derivative that varies wildly. Our
intuition then says that Pḣ2 is the dominant term, and this turns out to be
true. In looking for a minimum, we recall that it is necessary that δ2Jx[h] ≥ 0
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for all h. One can use this to show that, for a minimum, it is also necessary,
but not sufficient, that P ≥ 0 on [a, b]. We will make the stronger assumption
that P > 0 on [a, b]. We also assume that P and Q are smooth.

Legendre had the idea to add a term to δ2J to make it nonnegative.
Specifically, he added d

dt(wh2) to the integrand in (1). Note that
∫ b
a

d
dt(wh2)dt =

wh2|ba = 0. Hence, we have this chain of equations,

δ2Jx[h] = δ2Jx[h] +
∫ b

a

d

dt
(wh2)dt

=
∫ b

a
(Pḣ2 + Qh2 +

d

dt
(wh2))dt

=
∫ b

a

(
Pḣ2 + 2whḣ + (ẇ + Q)h2

)
dt (2)

=
∫ b

a
P

(
ḣ +

w

P
h
)2

dt +
∫ b

a

(
ẇ + Q− w2

P

)
h2, (3)

where we completed the square to get the last equation. If we can find w(t)
such that

ẇ + Q− w2

P
= 0, (4)

then the second variation becomes

δ2Jx[h] =
∫ b

a
P

(
ḣ +

w

P
h
)2

dt. (5)

Equation (4) is called a Riccati equation. It can be turned into the
second order linear ODE below via the substitution w = −(u̇/u)P :

− d

dt

(
P

du

dt

)
+ Qu = 0, (6)

which is called the Jacobi equation for J . Two points t = α and t = α̃, α 6=
α̃, are said to be conjugate points for Jacobi’s equation if there is a solution
u to (6) such that u 6≡ 0 between α and α̃, and such that u(α) = u(α̃) = 0.

When there are no points conjugate to t = a in the interval [a, b], we can
construct a solution to (6) that is strictly positive on [a, b]. Start with the
two linearly indepemdent solutions u0 and u1 to (6) that satsify the initial
conditions

u0(a) = 0, u̇0(a) = 1, u1(a) = 0, and u̇1(a) = 1.
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Since there is no point in [a, b] conjugate a, u0(t) 6= 0 for any a < t ≤ b.
In particular, since u̇0(a) = 1 > 0, u(t) will be strictly positive on (a, b].
Next, because u1(a) = 1, there exists t = c, a < c ≤ b, such that u1(t) ≥
1/2 on [a, c]. Moreover, the continuity of u0 and u1 on [c, b] implies that
minc≤t≤b u0(t) = m0 > 0 and minc≤t≤b u1(t) = m1 ∈ R. It is easy to check
that on [a, b],

u :=
1 + 2|m1|

2m0
u0 + u1 ≥ 1/2,

and, of course, u solves (6).
This means that the substitutuion w = −(u̇/u)P yields a solution to the

Riccati equation (4), and so the second variation has the form given in (5).
It follows that δ2Jx[h] ≥ 0 for any admissible h. Can the second variation
vanish for some h that is nonzero? That is, can we find an admissible h 6≡ 0
such that δ2Jx[h] = 0? If it did vanish, we would have to have

P
(
ḣ +

w

P
h
)2

= 0, a ≤ t ≤ b,

and, since P > 0, this implies that ḣ + w
P h = 0. This first order linear

equation has the unique solution,

h(t) = h(a)e−
∫ t

a
w(τ)
P (τ)

dτ
.

However, since h is admissible, h(a) = h(b) = 0, and so h(t) ≡ 0. We have
proved the following result.

Proposition 2.1. If there are no points in [a, b] conjugate to t = a, the
the second variation is a positive definite quadratic functional. That is,
δ2Jx[h] > 0 for any admissible h not identically 0.

3 Conjugate points

There is direct connection between conjugate points and extremals. Let
x(t, ε) be a family of extremals for the functional J depending smoothly on
a parameter ε. We will assume that x(a, ε) = A, which will be independent
of ε. These extremals all satisfy the Euler-Lagrange equation

Fx(t, x(t, ε), ẋ(t, ε) =
d

dt
Fẋ(t, x(t, ε), ẋ(t, ε).
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If we differentiate this equation with respect to ε, being careful to correctly
apply the chain rule, we obtain

Fxx
∂x

∂ε
+ Fxẋ

∂ẋ

∂ε
=

d

dt

(
Fxẋ

∂x

∂ε
+ Fẋẋ

∂ẋ

∂ε

)
=

dFxẋ

dt

∂x

∂ε
+ Fxẋ

∂ẋ

∂ε
+

d

dt

(
Fẋẋ

∂ẋ

∂ε

)
.

Cancelling and rearranging terms, we obtain(
Fxx −

d

dt
Fxẋ

)
∂x

∂ε
− d

dt

(
Fẋẋ

∂ẋ

∂ε

)
= 0. (7)

Set ε = 0 and let u(t) = ∂x
∂ε (t, 0). Observe that the functions in the equation

above, which is called the variational equation, are just P = Fẋẋ and Q =
Fxx − d

dtFxẋ. Consequently, (7) is simply the Jacobi equation (6). The
difference here is that we always have the initial conditions,

u(a) =
∂x

∂ε
(a, 0) =

∂A

∂ε
= 0,

u̇(a) =
∂ẋ

∂ε
(a, 0) 6= 0.

We remark that if u̇(a) = 0, then u(t) ≡ 0.
What do conjugate points mean in this context? Suppose that t = ã is

conjugate to t = a. Then we have

∂x

∂ε
(ã, 0) = u(ã) = 0,

which holds independently of how our smooth family of extremals was con-
structed. It follows that at t = ã, we have x(ã, ε) = x(ã, 0) + o(ε). Thus,
the family either crosses again at ã, or comes close to it, accumulating to
order higher than ε there.

4 Sufficient conditions

A sufficient condition for an extremal to be a relative minimum is that the
second variation be strongly positive definite. This means that there is a
c > 0, which is independent of h, such that for all admissible h one has

δ2Jx[h] ≥ c‖h‖2
H1 ,
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where H1 = H1[a, b] denotes the usual Sobolev space of functions with
distributional derivatives in L2[a, b].

Let us return to equation (2), where we added in terms depending on
an arbitrary function w. In the integrand there, we will add and subtract
σP ḣ2, where σ is an arbitary constant. The only requirement for now is
that 0 < σ < mint∈[a,b] P (t). The result is

δ2Jx[h] =
∫ b

a

(
(P − σ)ḣ2 + 2whḣ + (ẇ + Q)h2

)
dt + σ

∫ b

a
ḣ2dt .

For the first integral in the term on the right above, we repeat the argument
that was used to arrive at (5). Everything is the same, except that P is
replaced by P − σ. We arrive at this:

δ2Jx[h] =
∫ b

a
(P − σ)

(
ḣ +

w

P − σ
h

)2

dt

+
∫ b

a

(
ẇ + Q− w2

P − σ

)
h2 + σ

∫ b

a
ḣ2dt .

(8)

We continue as we did in section 2. In the end, we arrive at the new
Jacobi equation,

− d

dt

(
(P − σ)

du

dt

)
+ Qu = 0 . (9)

The point is that if for the Jacobi equation (6) there are no points in [a, b]
conjugate to a, then, because the solutions are continuous functions of the
parameter σ, we may choose σ small enough so that for (9) there will be no
points conjugate to a in [a, b]. Once we have fouund σ small enough for this
to be true, we fix it. We then solve the corresponding Riccati equation and
employ it in (8) to obtain

δ2Jx[h] =
∫ b

a
(P − σ)

(
ḣ +

w

P − σ
h

)2

dt + σ

∫ b

a
ḣ2dt

≥ σ

∫ b

a
ḣ2dt .

Now, for an admissble h, it is easy to show that
∫ b
a h2dt ≤ (b−a)2

2

∫ b
a ḣ2dt, so

that we have

‖h‖2
H1 =

∫ b

a
h2dt +

∫ b

a
ḣ2dt ≤

(
1 +

(b− a)2

2

) ∫ b

a
ḣ2dt.
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Consequently, we obtain this inequality:

δ2Jx[h] ≥ σ

1 + (b−a)2

2

‖h‖2
H1 = c‖h‖2

H1 ,

which is what we needed for a relative minimum. We summarize what we
found below.

Theorem 4.1. A sufficient condition for an extremal x(t) to be a relative
minimum for the functional J [x] =

∫ b
a F (t, x, ẋ)dt, where x(a) = A and

x(b) = B, is that P (t) = Fẋẋ(t, x, ẋ) > 0 for t ∈ [a, b] and that the interval
[a, b] contain no points conjugate to t = a.
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