Notes on Sufficient Conditions for Extrema

Francis J. Narcowich
Department of Mathematics
Texas A\&M University

January 2006

1 The second variation

Let $J[x]=\int_{a}^{b} F(t, x, \dot{x}) d t$ be a nonlinear functional, with $x(a)=A$ and $x(b)=B$ fixed. As usual, we will assume that F is as smooth as necessary. The first variation of J is

$$
\delta J_{x}[h]=\int_{a}^{b}\left(F(t, x, \dot{x})-\frac{d}{d t} F_{\dot{x}}\right) h(t) d t,
$$

where $h(t)$ is assumed as smooth as necessary and in addition satisfies $h(a)=$ $h(b)=0$. We will call such h admissible.

The idea behind finding the first variation is to capture the linear part of the $J[x]$. Specifically, we have

$$
J[x+\varepsilon h]=J[x]+\varepsilon \delta J_{x}[h]+o(\varepsilon),
$$

where $o(\varepsilon)$ is a quantity that satisfies

$$
\lim _{\varepsilon \rightarrow 0} \frac{o(\varepsilon)}{\varepsilon}=0
$$

The second variation comes out of the quadratic approximation in ε,

$$
J[x+\varepsilon h]=J[x]+\varepsilon \delta J_{x}[h]+\frac{1}{2} \varepsilon^{2} \delta^{2} J_{x}[h]+o\left(\varepsilon^{2}\right) .
$$

It follows that

$$
\delta^{2} J_{x}[h]=\left.\frac{d^{2}}{d \varepsilon^{2}}(J[x+\varepsilon h])\right|_{\varepsilon=0} .
$$

To calculate it, we note that

$$
\frac{d^{2}}{d \varepsilon^{2}}(J[x+\varepsilon h])=\int_{a}^{b} \frac{\partial^{2}}{\partial \varepsilon^{2}}(F(t, x+\varepsilon h, \dot{x}+\varepsilon \dot{h})) d t .
$$

Applying the chain rule to the integrand, we see that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \varepsilon^{2}}(F(t, x+\varepsilon h, \dot{x}+\varepsilon \dot{h})) & =\frac{\partial}{\partial \varepsilon}\left(F_{x} h+F_{\dot{x}} \dot{h}\right) \\
& =F_{x x} h^{2}+2 F_{x \dot{x}} h \dot{h}+F_{\dot{x} \dot{x}} \dot{h}^{2}
\end{aligned}
$$

where the various derivatives of F are evaluated at $(t, x+\varepsilon h, \dot{x}+\varepsilon \dot{h})$. Setting $\varepsilon=0$ and inserting the result in our earlier expression for the second variation, we obtain

$$
\delta^{2} J_{x}[h]=\int_{a}^{b} F_{x x} h^{2}+2 F_{x \dot{x}} h \dot{h}+F_{\dot{x} \dot{x}} \dot{h}^{2} d t
$$

Note that the middle term can be written as $2 F_{x \dot{x}} h \dot{h}=F_{x \dot{x}} \frac{d}{d t} h^{2}$. Using this in the equation above, integrating by parts, and employing $h(a)=h(b)=0$, we arrive at

$$
\begin{align*}
\delta^{2} J_{x}[h] & =\int_{a}^{b}\{(\underbrace{F_{x x}-\frac{d}{d t} F_{x \dot{x}}}_{Q}) h^{2}+\underbrace{F_{\dot{x}}}_{P} \dot{h}^{2}\} d t \\
& =\int_{a}^{b}\left(P \dot{h}^{2}+Q h^{2}\right) d t . \tag{1}
\end{align*}
$$

2 Legendre's trick

Ultimately, we are interested in whether a given extremal for J is a weak (relative) minimum or maximum. In the sequel we will always assume that the function $x(t)$ that we are working with is an extremal, so that $x(t)$ satisfies the Euler-Lagrange equation, $\frac{d}{d t} F_{\dot{x}}=F_{x}$, makes the first variation $\delta J_{x}[h]=0$ for all h, and fixes the functions $P=F_{\dot{x} \dot{x}}$ and $Q=F_{x x}-\frac{d}{d t} F_{x \dot{x}}$. To be definite, we will always assume we are looking for conditions for the extremum to be a weak minimum. The case of a maximum is similar.

Let's look at the integrand $P \dot{h}^{2}+Q h^{2}$ in (1). It is generally true that a function can be bounded, but have a derivative that varies wildly. Our intuition then says that $P \dot{h}^{2}$ is the dominant term, and this turns out to be true. In looking for a minimum, we recall that it is necessary that $\delta^{2} J_{x}[h] \geq 0$
for all h. One can use this to show that, for a minimum, it is also necessary, but not sufficient, that $P \geq 0$ on $[a, b]$. We will make the stronger assumption that $P>0$ on $[a, b]$. We also assume that P and Q are smooth.

Legendre had the idea to add a term to $\delta^{2} J$ to make it nonnegative. Specifically, he added $\frac{d}{d t}\left(w h^{2}\right)$ to the integrand in (1). Note that $\int_{a}^{b} \frac{d}{d t}\left(w h^{2}\right) d t=$ $\left.w h^{2}\right|_{a} ^{b}=0$. Hence, we have this chain of equations,

$$
\begin{align*}
\delta^{2} J_{x}[h] & =\delta^{2} J_{x}[h]+\int_{a}^{b} \frac{d}{d t}\left(w h^{2}\right) d t \\
& =\int_{a}^{b}\left(P \dot{h}^{2}+Q h^{2}+\frac{d}{d t}\left(w h^{2}\right)\right) d t \\
& =\int_{a}^{b}\left(P \dot{h}^{2}+2 w h \dot{h}+(\dot{w}+Q) h^{2}\right) d t \tag{2}\\
& =\int_{a}^{b} P\left(\dot{h}+\frac{w}{P} h\right)^{2} d t+\int_{a}^{b}\left(\dot{w}+Q-\frac{w^{2}}{P}\right) h^{2} \tag{3}
\end{align*}
$$

where we completed the square to get the last equation. If we can find $w(t)$ such that

$$
\begin{equation*}
\dot{w}+Q-\frac{w^{2}}{P}=0 \tag{4}
\end{equation*}
$$

then the second variation becomes

$$
\begin{equation*}
\delta^{2} J_{x}[h]=\int_{a}^{b} P\left(\dot{h}+\frac{w}{P} h\right)^{2} d t . \tag{5}
\end{equation*}
$$

Equation (4) is called a Riccati equation. It can be turned into the second order linear ODE below via the substitution $w=-(\dot{u} / u) P$:

$$
\begin{equation*}
-\frac{d}{d t}\left(P \frac{d u}{d t}\right)+Q u=0 \tag{6}
\end{equation*}
$$

which is called the Jacobi equation for J. Two points $t=\alpha$ and $t=\tilde{\alpha}, \alpha \neq$ $\tilde{\alpha}$, are said to be conjugate points for Jacobi's equation if there is a solution u to (6) such that $u \not \equiv 0$ between α and $\tilde{\alpha}$, and such that $u(\alpha)=u(\tilde{\alpha})=0$.

When there are no points conjugate to $t=a$ in the interval $[a, b]$, we can construct a solution to (6) that is strictly positive on $[a, b]$. Start with the two linearly indepemdent solutions u_{0} and u_{1} to (6) that satsify the initial conditions

$$
u_{0}(a)=0, \quad \dot{u}_{0}(a)=1, u_{1}(a)=0, \text { and } \dot{u}_{1}(a)=1 .
$$

Since there is no point in $[a, b]$ conjugate $a, u_{0}(t) \neq 0$ for any $a<t \leq b$. In particular, since $\dot{u}_{0}(a)=1>0, u(t)$ will be strictly positive on $(a, b]$. Next, because $u_{1}(a)=1$, there exists $t=c, a<c \leq b$, such that $u_{1}(t) \geq$ $1 / 2$ on $[a, c]$. Moreover, the continuity of u_{0} and u_{1} on $[c, b]$ implies that $\min _{c \leq t \leq b} u_{0}(t)=m_{0}>0$ and $\min _{c \leq t \leq b} u_{1}(t)=m_{1} \in \mathbb{R}$. It is easy to check that on $[a, b]$,

$$
u:=\frac{1+2\left|m_{1}\right|}{2 m_{0}} u_{0}+u_{1} \geq 1 / 2
$$

and, of course, u solves (6).
This means that the substitutuion $w=-(\dot{u} / u) P$ yields a solution to the Riccati equation (4), and so the second variation has the form given in (5). It follows that $\delta^{2} J_{x}[h] \geq 0$ for any admissible h. Can the second variation vanish for some h that is nonzero? That is, can we find an admissible $h \not \equiv 0$ such that $\delta^{2} J_{x}[h]=0$? If it did vanish, we would have to have

$$
P\left(\dot{h}+\frac{w}{P} h\right)^{2}=0, a \leq t \leq b
$$

and, since $P>0$, this implies that $\dot{h}+\frac{w}{P} h=0$. This first order linear equation has the unique solution,

$$
h(t)=h(a) e^{-\int_{a}^{t} \frac{w(\tau)}{P(\tau)} d \tau} .
$$

However, since h is admissible, $h(a)=h(b)=0$, and so $h(t) \equiv 0$. We have proved the following result.

Proposition 2.1. If there are no points in $[a, b]$ conjugate to $t=a$, the the second variation is a positive definite quadratic functional. That is, $\delta^{2} J_{x}[h]>0$ for any admissible h not identically 0 .

3 Conjugate points

There is direct connection between conjugate points and extremals. Let $x(t, \varepsilon)$ be a family of extremals for the functional J depending smoothly on a parameter ε. We will assume that $x(a, \varepsilon)=A$, which will be independent of ε. These extremals all satisfy the Euler-Lagrange equation

$$
F_{x}\left(t, x(t, \varepsilon), \dot{x}(t, \varepsilon)=\frac{d}{d t} F_{\dot{x}}(t, x(t, \varepsilon), \dot{x}(t, \varepsilon)\right.
$$

If we differentiate this equation with respect to ε, being careful to correctly apply the chain rule, we obtain

$$
\begin{aligned}
F_{x x} \frac{\partial x}{\partial \varepsilon}+F_{x \dot{x}} \frac{\partial \dot{x}}{\partial \varepsilon} & =\frac{d}{d t}\left(F_{x \dot{x}} \frac{\partial x}{\partial \varepsilon}+F_{\dot{x} \dot{x}} \frac{\partial \dot{x}}{\partial \varepsilon}\right) \\
& =\frac{d F_{x \dot{x}}}{d t} \frac{\partial x}{\partial \varepsilon}+F_{x \dot{x}} \frac{\partial \dot{x}}{\partial \varepsilon}+\frac{d}{d t}\left(F_{\dot{x} \dot{x}} \frac{\partial \dot{x}}{\partial \varepsilon}\right) .
\end{aligned}
$$

Cancelling and rearranging terms, we obtain

$$
\begin{equation*}
\left(F_{x x}-\frac{d}{d t} F_{x \dot{x}}\right) \frac{\partial x}{\partial \varepsilon}-\frac{d}{d t}\left(F_{\dot{x} \dot{x}} \frac{\partial \dot{x}}{\partial \varepsilon}\right)=0 . \tag{7}
\end{equation*}
$$

Set $\varepsilon=0$ and let $u(t)=\frac{\partial x}{\partial \varepsilon}(t, 0)$. Observe that the functions in the equation above, which is called the variational equation, are just $P=F_{\dot{x} \dot{x}}$ and $Q=$ $F_{x x}-\frac{d}{d t} F_{x \dot{x}}$. Consequently, (7) is simply the Jacobi equation (6). The difference here is that we always have the initial conditions,

$$
\left\{\begin{aligned}
u(a) & =\frac{\partial x}{\partial \varepsilon}(a, 0)=\frac{\partial A}{\partial \varepsilon}=0 \\
\dot{u}(a) & =\frac{\partial \dot{x}}{\partial \varepsilon}(a, 0) \neq 0
\end{aligned}\right.
$$

We remark that if $\dot{u}(a)=0$, then $u(t) \equiv 0$.
What do conjugate points mean in this context? Suppose that $t=\tilde{a}$ is conjugate to $t=a$. Then we have

$$
\frac{\partial x}{\partial \varepsilon}(\tilde{a}, 0)=u(\tilde{a})=0
$$

which holds independently of how our smooth family of extremals was constructed. It follows that at $t=\tilde{a}$, we have $x(\tilde{a}, \varepsilon)=x(\tilde{a}, 0)+o(\varepsilon)$. Thus, the family either crosses again at \tilde{a}, or comes close to it, accumulating to order higher than ε there.

4 Sufficient conditions

A sufficient condition for an extremal to be a relative minimum is that the second variation be strongly positive definite. This means that there is a $c>0$, which is independent of h, such that for all admissible h one has

$$
\delta^{2} J_{x}[h] \geq c\|h\|_{H^{1}}^{2}
$$

where $H^{1}=H^{1}[a, b]$ denotes the usual Sobolev space of functions with distributional derivatives in $L^{2}[a, b]$.

Let us return to equation (2), where we added in terms depending on an arbitrary function w. In the integrand there, we will add and subtract $\sigma P \dot{h}^{2}$, where σ is an arbitary constant. The only requirement for now is that $0<\sigma<\min _{t \in[a, b]} P(t)$. The result is

$$
\delta^{2} J_{x}[h]=\int_{a}^{b}\left((P-\sigma) \dot{h}^{2}+2 w h \dot{h}+(\dot{w}+Q) h^{2}\right) d t+\sigma \int_{a}^{b} \dot{h}^{2} d t .
$$

For the first integral in the term on the right above, we repeat the argument that was used to arrive at (5). Everything is the same, except that P is replaced by $P-\sigma$. We arrive at this:

$$
\begin{align*}
\delta^{2} J_{x}[h] & =\int_{a}^{b}(P-\sigma)\left(\dot{h}+\frac{w}{P-\sigma} h\right)^{2} d t \tag{8}\\
& +\int_{a}^{b}\left(\dot{w}+Q-\frac{w^{2}}{P-\sigma}\right) h^{2}+\sigma \int_{a}^{b} \dot{h}^{2} d t
\end{align*}
$$

We continue as we did in section 2. In the end, we arrive at the new Jacobi equation,

$$
\begin{equation*}
-\frac{d}{d t}\left((P-\sigma) \frac{d u}{d t}\right)+Q u=0 . \tag{9}
\end{equation*}
$$

The point is that if for the Jacobi equation (6) there are no points in $[a, b]$ conjugate to a, then, because the solutions are continuous functions of the parameter σ, we may choose σ small enough so that for (9) there will be no points conjugate to a in $[a, b]$. Once we have fouund σ small enough for this to be true, we fix it. We then solve the corresponding Riccati equation and employ it in (8) to obtain

$$
\begin{aligned}
\delta^{2} J_{x}[h] & =\int_{a}^{b}(P-\sigma)\left(\dot{h}+\frac{w}{P-\sigma} h\right)^{2} d t+\sigma \int_{a}^{b} \dot{h}^{2} d t \\
& \geq \sigma \int_{a}^{b} \dot{h}^{2} d t .
\end{aligned}
$$

Now, for an admissble h, it is easy to show that $\int_{a}^{b} h^{2} d t \leq \frac{(b-a)^{2}}{2} \int_{a}^{b} \dot{h}^{2} d t$, so that we have

$$
\|h\|_{H^{1}}^{2}=\int_{a}^{b} h^{2} d t+\int_{a}^{b} \dot{h}^{2} d t \leq\left(1+\frac{(b-a)^{2}}{2}\right) \int_{a}^{b} \dot{h}^{2} d t .
$$

Consequently, we obtain this inequality:

$$
\delta^{2} J_{x}[h] \geq \frac{\sigma}{1+\frac{(b-a)^{2}}{2}}\|h\|_{H^{1}}^{2}=c\|h\|_{H^{1}}^{2},
$$

which is what we needed for a relative minimum. We summarize what we found below.

Theorem 4.1. A sufficient condition for an extremal $x(t)$ to be a relative minimum for the functional $J[x]=\int_{a}^{b} F(t, x, \dot{x}) d t$, where $x(a)=A$ and $x(b)=B$, is that $P(t)=F_{\dot{x} \dot{x}}(t, x, \dot{x})>0$ for $t \in[a, b]$ and that the interval $[a, b]$ contain no points conjugate to $t=a$.

