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Abstract

We revisit the long-standing question of whether or not uniformly accelerated

sources radiate for coaccelerating observers; we keep our discussion as down-to-

Earth as possible to avoid unphysical issues that mystify the problem. We end up

explaining in what conditions observing Larmor radiation reflects the existence of

the Unruh thermal bath.
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1 Main Part

1. In 1992 it was shown [1] that the emission of a usual photon from a uniformly

accelerated charge in the Minkowski vacuum corresponds to either the absorption

from or the emission to the Unruh thermal bath of a zero-energy Rindler photon.

2. We recall that zero-energy Rindler modes have, in general, nonzero transverse mo-

menta and so are nontrivial. We recall in addition, that Rindler frequency and

transverse momenta are independent of each other being linked by no dispersion

relation.

3. Because zero-energy Rindler photons concentrate on the horizon, (physical) Rindler

observers do not have any access to them. This harmonizes the fact that uni-

formly accelerated charges radiate for inertial observers but do not for coacelerating

(Rindler) ones, who only see a distorted Coulomb field.

4. Perhaps because the concept of zero-energy Rindler photons may be unfamiliar

or maybe because of the regularization procedure used there, the resolution given

in [1] to the question whether or not uniformly accelerated sources radiate with

respect to coaccelerating observers does not seem widely accepted yet.

5. Our primary aim here is to render the original argument given in [1] in terms

of Unruh-DeWitt detectors which are more familiar to most of the people. Our

secondary aim is to enumerate recent spin-offs, which hopefully will be discussed

in more detail further in this workshop.

6. Cautionary remark: Rendering a piece of work to a more familiar language, many

times like in poetry, leads to the impoverishment of the original message. I apologize

in advance to my collaborators if they find this is what I did here. I hope this may

be compensated by leading more people to visit the original papers. The paragraphs

will be enumerated to make easier the discussion for the audience. Natural units

are assumed h̄ = c = k = 1.
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7. Let us begin considering the usual Unruh-DeWitt two-level pointlike detector rep-

resented by the monopole operator m̂(τ). It acts on the detector energy eigenstates

|E±〉 as

m̂(0)|E±〉 = |E∓〉, (E+ > E−, 〈E±|E∓〉 = 0, 〈E±|E±〉 = 1). (1)

8. The detector is minimally coupled to a massless scalar field φ̂ through the interac-

tion action

SI =
∫
dτc(τ)m̂(τ)φ̂[xµ(τ)], (2)

where xµ = xµ(τ) is the detector worldline and τ is its proper time. The switching

function c = c(τ) is assumed to be at least C0 (to avoid unphysical divergencies

[2]). The detector is kept switched on only for a finite amount of proper time T .

9. You may think of the detector as follows:

(a) It enters the Rindler wedge inertially when it is still switched off,

(b) Then, an external agent puts it into a uniformly accelerated trajectory with

proper acceleration a,

(c) Once the detector is uniformly accelerated, it is switched on,

(d) The detector stays so (uniformly accelerated and switched on) for proper time

T ,

(e) After this, the process is reversed back; firstly, it is switched off, and, next, it

is set inertial before leaving the wedge.

10. Obviously, what the detector does while it is switched off will not affect our calcu-

lations; still, it is conceptually useful to have the whole physical picture in mind.

We want to preclude our massive detector (it has internal energy; so it has mass)

to asymptotically approach the speed of light: v → c. A real parameter α regulates

how fast the detector is switched on/off: the larger the α the faster the detector is

switched on/off (i.e., the larger the α the smaller the switching time).

3



11. We stress that we want to keep out from this presentation the (interesting but

academic) discussion about whether or not eternally accelerated electric charges

(if it were possible to accelerate a charge forever) would radiate according to in-

ertial observers themselves. We assume that we all agree that accelerated charges

with physical trajectories do radiate according to the Larmor formula for inertial

observers. Indeed, this is used as a benchmark in the discussion below.

12. It is much easier to calculate the excitation rate of a uniformly accelerated detector

using Rindler observers since the detector is static for them; then, all calculations

next are performed by these observers. (We will follow here Ref. [2].)

13. We assume that we are in the Minkowski vacuum. Then, Rindler observers must

use the fact that they are in a thermal state with the Unruh temperature [3].

14. According to the action (2), the detector can excite by absorbing or emitting a

Rindler particle with Rindler frequency ωR and transverse momentum k⊥. (In the

latter case, the external agent switching on/off the detector is the one who provides

the energy to allow such a process.)

15. The detector excitation probability with simultaneous absorption of a Rindler par-

ticle from the Unruh thermal bath is

Pexcabs =
∫
dW exc

abs

1

eωR/TU − 1
, (3)

where TU = a/(2π),

dW exc
abs ≡ |Aexcabs|2d2k⊥dωR, (4)

and

Aexcabs = 〈0R| ⊗ 〈E+|SI |E−〉 ⊗ |ωRk⊥〉, (5)

where |0R〉 is the Rindler vacuum.
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16. Analogoulsly, the excitation probability with simultaneous emission of a Rindler

particle into the Unruh thermal bath is given by

Pexcem =
∫
dW exc

em

(
1 +

1

eωR/TU − 1

)
, (6)

where

dW exc
em = |Aexcem |2d2k⊥dωR. (7)

and

Aexcem = 〈ωRk⊥| ⊗ 〈E+| SI |E−〉 ⊗ |0R〉. (8)

The two terms in the parentheses in Eq. (6) are associated with spontaneous and

induced emissions, respectively.

17. Thus, according to Rindler-observers’ calculations, the total excitation probability

will be

Pexc = Pexcem + Pexcabs . (9)

This is also precisely what inertial observers measure since the excitation probability

of a detector is an observable which depends only on the detector properties and

field state. This can be explicitly verified by a direct inertial frame calculation.

18. So far so good. However, we are interested in radiation emission rather than on

detector excitation. It lacks, thus, to calculate the emission and absorption of

Rindler particles associated with detector deexcitation. If we aim to look at radi-

ation emission, we must eventually trace out on the detector internal state. The

corresponding results are expressed below.

19. Deexcitation probability with simultaneous absorption of a Rindler particle from

the Unruh thermal bath:

Pdeexcabs =
∫
dW deexc

abs

1

eωR/TU − 1
, (10)
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where

dW deexc
abs ≡ |Adeexcabs |2d2k⊥dωR, (11)

with

Adeexcabs = 〈0R| ⊗ 〈E−|SI |E+〉 ⊗ |ωRk⊥〉 (12)

20. Deexcitation probability with simultaneous emission of a Rindler particle into the

Unruh thermal bath

Pdeexcem =
∫
dW deexc

em

(
1 +

1

eωR/TU − 1

)
, (13)

where

dW deexc
em = |Adeexcem |2d2k⊥dωR. (14)

with

Adeexcem = 〈ωRk⊥| ⊗ 〈E−| SI |E+〉 ⊗ |0R〉. (15)

21. The switching on/off process was only introduced to keep our problem as physical as

possible. Notwithstanding, we do not want our conceptual message to depend on T

or α. Hence, we will focus on the regime where (i) the detector stays switched on for

a time interval T larger than any other time scale in the problem and (ii) the time

scales defined by a−1 and ∆E−1 are both large compared with the switching on/off

time scale α−1 (keeping in mind that the switching on/off cannot be instantaneous

in order to avoid ultraviolet divergencies):

T � (a−1,∆E−1)� α−1 > 0, (16)

where ∆E ≡ E+ − E− > 0.

22. In the regime (16), the leading term for the transition rates

Γ
exc/deexc
em/abs ≡ P

exc/deexc
em/abs /T

will only depend on a and ∆E (see, e.g., Ref. [2] for more details).
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23. One of our aims is to show that a detector with unresolved inner-structure radiates

as a structureless scalar source does. If the inner structure is unresolved, there is

no way to know whether it is excited or unexcited. We cope with it considering

the detector’s initial state to be a mixed state ρ̂ = a|E−〉〈E−| + b|E+〉〈E+|. For

the sake of simplicity, we consider that it is initially half excited and half deexcited

(but any mixed state would not alter the final result (21)). Then, the combined

absorption and emission rates (associated with either excitation or deexcitation)

can be cast in the regime (16) as

ΓL ≡ (Γexcem + Γdeexcem + Γexcabs + Γdeexcabs )/2 (17)

≈ (Γdeexcem + Γexcabs)/2, (18)

where the 1/2 factor appears because we are averaging on initial excited/unexcited

detector states. We note that Γexcem and Γdeexcabs were dismissed because in the regime

(16), we have Aexcem ,Adeexcabs
∝∼ δ(ωR + ∆E) – reflecting energy conservation.

24. Now, a straightforward calculation allows us to cast ΓL as

ΓL ≈ c2
0

2

[
∆E

2π
+ 2× ∆E

2π

1

e∆E/TU − 1

] ∫ ∞
0

dωRδ[ωR −∆E], (19)

where c0 = const was “hidden” in c(τ) and should be interpreted as the coupling

constant between the detector and field.

25. The integral is maintained to make explicit that in the regime (16) energy conser-

vation only allows the detector to interact with particles of the thermal bath with

ωR = ∆E.

26. Now, suppose that the energy gap is small with respect to the Unruh thermal bath,

∆E � TU = a/(2π). In this case Eq. (19) reduces to

ΓL|∆E�a ≈
c2

0

2π

∆E

e2π∆E/a − 1

∫ ∞
0

dωRδ[ωR −∆E]. (20)

Clearly, such a detector is only able to interact with infrared Rindler particles

ωR = ∆E � a.
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27. Think, now, of the physical situation where ∆E is so small that the detector inner

structure cannot be resolved by current technology. Then, by (i) performing the

integral in Eq. (20) and next (ii) taking the ∆E/a→ 0 limit, we have

ΓL|∆E/a→0 ≈
c2

0a

4π2
, (21)

where ≈ is only used because the detector is not accelerated forever. This is,

thus, the combined absorption and emission rates of super infrared (“zero-energy”)

Rindler particles associated with our detector with an unresolved inner structure.

28. Because each absorption or emission of a Rindler particle uniquely corresponds to

the emission of a Minkowski particle [4], Eq. (21) is also precisely the emission

rate of usual Minkowski particles radiated by our detector (with unresolved inner

structure) as seen by inertial observers. This can be verified through a usual inertial-

frame calculation.

29. We call attention to the fact, now, that a straightforward inertial-frame calculation

for the emission rate of Minkowski particles radiated by a structureless pointlike

uniformly accelerated classical scalar source j(x) coincides with Eq. (21) [5]:

ΓL|∆E=0 =
c2

0a

4π2
, (22)

i.e., the emission of a Minkowski particle from a UD detector with unresolved inner

structure coincides with the one from a structureless scalar source and corresponds

to the emission/absorption of a zero-energy Rindler particle to/from the Unruh

thermal bath – recall the limit ∆E/a→ 0 in par 27.

30. If one compares the present approach with Ren and Weinberg’s one [5], one will

see that what we have done here is to replace Ren and Weinberg’s oscillating scalar

source by the UD detector (no dipoles, let me emphasize). Our ∆E → 0 final limit

corresponds in their work to the procedure of vanishing the oscillation at the end.

31. Translating this to electric charges one can say that [1]: the emission of a usual

(finite-energy) Minowski photon from a uniformly accelerated charge as defined by
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inertial observers corresponds to either the absorption or emission of a zero-energy

Rindler photon as defined by Rindler observers. (The same conclusion can be

obtained from Ref. [8], where no oscillating dipoles are introduced.)

32. Now it is easy to understand why inertial observers do see radiation from a uni-

formly accelerated source, while Rindler observers do not. One way to understand

it is to recall that zero-energy Rindler modes concentrate on the horizon, where

physical Rindler observers do not have access.

33. Recently the relationship above between zero-energy Rindler particles and finite-

energy Minkowski particles was strengthened even more by explicitly showing how

the usual classical Larmor radiation can be entirely built from the zero-energy

Rindler modes [6].

34. Because zero-energy Rindler modes present in the Unruh thermal bath are crucially

used to build Larmor radiation, we claim that under proper conditions the

observation of Larmor radiation is circumstantial evidence for the Unruh thermal

bath. The link between the classical Larmor radiation and the quantum Unruh

effect requires the use of a simple extra quantum ingredient, namely the Planck-

Einstein relation E = hν [7].

35. The proper conditions we refer above are discussed in [8]-[9] and are mostly related

to the fact that the charge must have enough time to thermalize in the Unruh

thermal bath. Although the experiment is feasible under present technology, it was

not realized yet to the best of our knowledge.

36. Larmor radiation may be seen as a shadow of the Unruh thermal bath in Plato’s

cave. It reveals some thing about the true thing but not the whole thing. Anyway,

is not that always the case?
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2 Appendix – Degenerated UD detector

37. Now, let us see what happens if the inner structure of the detector is collapsed from

the start. By collapsed, we mean that E+ = E− ≡ E, in which case (see Eq. (1))

m̂(0)|E〉 = |E〉, 〈E|E〉 = 1. (23)

38. Once, this is done, it becomes pointless to talk of excitation and deexcitation and

par 23 must be changed accordingly. The combined emission and absorption rates

are then cast as

ΓL ≡ Γem + Γabs (24)

≡ (Pem + Pabs)/T, (25)

=
∫ dWem

T

[
1 +

1

eωR/TU − 1

]
+
∫ dWabs

T

1

eωR/TU − 1
(26)

with

dWem/abs ≡ |Aem/abs|2d2k⊥dωR, (27)

and

Aem = 〈ωRk⊥| ⊗ 〈E| SI |E〉 ⊗ |0R〉. (28)

Aabs = 〈0R| ⊗ 〈E|SI |E〉 ⊗ |ωRk⊥〉. (29)

39. This can be evaluated as before, leading to

ΓL ≈ c2
0

∫ ∞
0

dωR

[
ωR
2π

+ 2× ωR
2π

1

eωR/TU − 1

]
δ(ωR). (30)

Compare it with Eq.(19) in par 24 (and recall that there is no averaging here to

understand why we have here c2
0 rather than c2

0/2).

40. Now, in order to make sense of it, we must cast it as (this is the price of dealing

with a degenerate pair of modes from the start)

lim
ωR→0

[
ωR
2π

+ 2× ωR
2π

1

eωR/TU − 1

]
=

a

2π2
(31)
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and

∫ ∞
0

dωRδ(ωR) = 1/2. (32)

Using it in Eq. (30), we recover again Eq. (21):

ΓL ≈ c2
0a

4π2
. (33)
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