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There are many arguments why a uniformly accelerated charge
may not be emitting radiation. The main three being:

In the case of a uniformly accelerated charge in the instantaneous
rest frame, the magnetic field vanishes globally, meaning thereby a
nil Poynting vector everywhere and therefore no radiation.

The radiation reaction 1s directly proportional to the rate of change
of acceleration, implying that a uniformly accelerated charge
“feels' no radiation reaction.

From the strong principle of equivalence, a uniformly accelerated
charge 1s equivalent to a charge permanently stationary in a
gravitational field, and such a completely time-static system could
not be radiating power at all.



A finite Poynting flux at ifinity

On the other hand, if one computes the Poynting flux
at large distances from the charge in inertial frames
other than the instantaneous rest frame of the charge,
then one invariably finds a finite Poynting flux which
1s taken as evidence that there is radiation emitted by
a uniformly accelerated charge.



The electromagnetic field of a
uniformly accelerated charge

For an assumed one dimensional motion with a uniform proper aceeleration, a = v,
the “ present” velocity v, at time ¢ is related to its value v, at the retarded time {, =t —r/c
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where 7y, 7, are the corresponding Lorentz factors.
Using Eq. (1) we get the magnetic field of a uniformly accelerated charge as
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Thus we find that the magnetic field vector in the case of a uniformly acceleration is at

any space-time event is proportional to the ‘present’ velocity vy of the charge, how-so-ever
far it may be from the charge location.
In the instantaneous rest-frame, where, by definition, the present velocity vy = 0, we

have a nil magnetic field, B = 0 everywhere.




While the electric field of a uniformly accelerated charge is

(3)
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The transverse components are proportional to the ‘present’ velocity vy of the charge, and

the fields fall as 1/r%, irrespective of its distance from the charge location, and becomes zero,

when vo=0at t = (.

As the uniformly accelerated charge at time ¢ is located at z. = [zf + &2V, we can

rewrite the fields with respect to z, as
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These ‘real-time’ field expressions can be derived from the time-retarded field expressions

by an algebraic transformation’.
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FIG. 1. Electric field lines of a charge, moving with a uniform proper acceleration along the z-axis.

The field lines are drawn for a chosen time (a) # = =0.75zp/c when the charge was moving with

a velocity v = =(.6e, (b) at the time ¢ = .75z /c when the charge was moving with a velocity

v = (L. The charge at both events 15 located at z. and has a corresponding Lorentz factor,

= 1.25. The z + of =0 plane, in each case, denotes the causality hmit of helds.
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FIG. 2. The electric field distribution of a charge (a) moving with a uniform proper acceleration,

and is presently at z. moving with a ‘present’ velocity vg = =0.995¢, commesponding to o = 10 (b)

moving with a uniform proper acceleration, and is presently at z. moving with a *present” velocity

g = 0.995c, corresponding to g = 10 (¢) moving with a uniform velocity v = 0.995¢, corresponding

to v = 1. The spherical wave-front r = of is shown in the case of uniformly accelerated charge.




The electromagnetic fields, can be expressed in polar coordinates (R, 1), centered on the
instantaneous charge position, z, = /25 + (ct)2 = 72" Substituting z = 2z, + Rcos ¢,
p = Rsint and vy = t/z, in Eq. (4), and after some algebraic manipulations, we get
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with 1 = aR/27,c¢". All the remaining field components are zero.

The Povnting vector can be decomposed into radial and transverse components

Sp = -;":Eﬁ._ﬁﬂ

f

Py - B

v
47




£

iis
)
L
=5

fia
gk
12
2
W '3
1""["#
Wl
y
]
N o
o

"
¥
T ¥

—— ) —_—
¥g ¥o ¥

y=10 y=10
(a) (] ()

FIG. 3. The transverse Poynting vector component, 5. for a charge (a) moving with a uniform
proper acceleration, and is presently at z; moving with a ‘present’ velocity vg = =095, and
actually getting decelerated (b) moving with a uniform proper acceleration, and s presently at z.

moving with a ‘present” velocity vy = 0.905¢, corresponding to g = 10 (¢) moving with a uniform

velocity v = 0L995¢c, comresponding to y = 10. The spherical wave-fromt r = of is shown in the case

of uniformly accelerated charge. The overall Poynting How 15 along the direction of motion of the

charge.



FIG. 4. As a charge moves with a velocity v from its position () to (b, its self-helds also move
with it. If we consider two spherical volumes, £ and Es, each of radius R around the two charge
positions, the field energy in the region of intersection B between the two spheres increases at the

cost of the field energy in the region A, where it reduces. The Poynting flows in Figures 2 as well

as 3, represent the convective How of the self-field energy along with the moving charge.
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FIG. 5. The radial Poyvnting vector component, Sg, (4) for a charge moving with a uniform proper
acceleration, and is presently at z. moving with a ‘present” velocity vy = =0.995c, and actually

getting decelerated with the Poynting How being everywhere inward toward the charge (b) for a

charge moving with a uniform proper acceleration. and is presently at z, moving with a “present’

velocity vy = 0.995¢. corresponding to 4y = 10, the Poynting flow being outward for the accelerating

charge. The spherical wave-front r = of is shown with respect to z.




It is a misconception that the radiation emitted from the uniformly accelerated charge

goes bevond the horizon, the regions of space-time inaccessible to an observer co-accelerating

with charge. In fact, from Eq. (5), E, = 0 at the z = 0 plane at any time ¢, implying that

there 1s no component of Poynting flux through the z = ( plane ever. This statement is
true for all inertial frames at all times. The only exception is at ¢ = 0 when an infinite 2-
component of Poynting vector due to d-fields is present at z = (). However, the d-field is in no
way causally related to the charge during its uniform acceleration, whose influence lies only
in the z + ¢ > ( region only. All fields, originating from the accelerating charge positions,
lie in the region z > () at time ¢ = () and the radiation, if any, from the accelerating charge
should also lie only be present there. In fact, it has been explicitly shown! that the §-field has
a causal relation with the event when acceleration is first imposed on the charge at infinity
and because of a rate of change of acceleration at that event the charge moving undergoes
radiation losses owing to the Lorentz-Dirac radiation reaction, that neatly explains the total

energy lost by the charge into d-field.?




In a typical radiation scenario, the radiation moves away (to infinity!), with the charge
remaining behind, perhaps not very far from its original location. Such a bound motion of
the charge necessarily implies its velocity and acceleration having a sort of cyelic behaviour.

However, in the case of a uniform acceleration, such is not true. First thing, as the charge
picks up speed due to its constant acceleration. its Doppler factor soon becomes large and
due to the relativistic beaming. the fields as well as the associated Poynting flux, lie in a
narrow cone of an opening angle, # ~ 1/+, around the direction of motion.

Secondly, the charge, moving with v — ¢, 1s not very far behind the wave-front r = f, and

lags behind by a distance ~ ct(1 — 1/2+?), and the fields are all around the charge ‘present’

position. Actual calculations show that the fields, in fact, very much resemble those of
a charge moving with a uniform wvelocity equal to the “present’ velocity of the umiformly

accelerated charge.

The rate of energy being “fed” into fields during the acceleration phase is exactly equal
to that of the energy being “retrieved” from the fields during the deceleration phase. Why
we see only an outward Povnting flow for r — oc¢ is because by the nature of the problem
it also means ¢ — oo, with the charge then being necessarily in the accelerating phase, and

accordingly there being seen only an outgoing Povnting flux.




FIG. 6. Angular distribution of the electric field strength with respect to the time-retarded position
z; of the charge, moving along the z-axis with a velocity v = 0.995 and the corresponding Lorentz

factor v = 10). The maxima of the beld strength 15 along the direction OF, which 1s at an angle

g = 1,-".,-"'3':-. Thus the feld distribution mostly lies with a cone of angle # ~ 1/, By the time

the fields from the retarded position z; reach at the field poiot P, the charge moves to z.. The
maxima of the electric field with respect to “present’ position z, of the charge seems to be in a plane
perpendicular to the z-axis. The upper panel (a) is for the uniformly accelerated charge, while the
lower panel (b) is for a charge moving with a uniform velocity. There is hardly any difference in
the two panels, except that the *present’ charge position is slightly nearer to the spherical front in

the case (a) where because of the acceleration the final velocity becomes v = (L99995 than in case

(b). where the velocity throughout remains unchanged at v = 0.995.
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FIG:. 7. The electric field distribution (a) of a uniformly accelerated charge. with a ‘present’

velocity v = 0, 99995¢, corresponding to v = 100 (b) of a charge moving with a uniform wvelocity

v = (0, 90995¢, corresponding to v = 100.




It has been shown, from explicit calculations, that in the case of a charge moving with
a uniform wvelocity vy and a corresponding Lorentz factor 9. the energy in the transverse

self-fields in a region between two spheres of retarded radii r and r + dr is,®

e i
d€ = —(yva/c)” — . (21)
: r2
Now, we consider a charge with uniform acceleration @ = 7*#, instantly stationary (i.e.,
v = 0) at time ¢ = 0, then the energy in its transverse fields is zero. After a time ¢, when it
is moving with a velocity ~ove = at = ar/ec, due to its ‘present’ velocity vg, an energy in its

transverse self-fields in a spherical shell between r and r + dr would be,
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the last term on the right hand side exactly accounting for the commonly-believed energy
‘radiated away’ during the time interval dt = dr/c, which actually goes into building the
self-fields of the uniform accelerated charge.

After all for a charge now moving with vy = 0.99995 and ~ = 100, its self-fheld energy

X tﬁ’;ﬁ = 10" was zero at # = () with vp = 0. and 7y = 1 with minimal self-field energy. This

erowth in self-field energy could come where else from but the acceleration fields.




As the fields move toward infinity, so does the charge. The fields actually are the self-
fields of the charge and as the charge picks up speed, the fields increase in strength, due to
the acceleration fields, to an equivalent value expected from those of the charge moving with
a uniform velocity which is equal to the ‘present’ velocity of uniformlv accelerated charge.

At ¢t > (), the Poynting Hlux at all distances is radially away from the charge as it is
petting accelerated, and the energy in the self-fields is increasing even at far-off points. On
the other hand. at ¢ < (), when the charge is getting decelerated, the Poynting flux at all
distances is radially inward toward the ‘present’ charge position, again at all distances from
it. This is because the energy in the self-fields is decreasing even at far-off points. Of course

at t = (), when the charge is stationary, Poynting flux is zero everywhere.

The answer to the question why the comoving acceleration frame observer does not see any

Poynting flux while in any inertial frame, sooner or later, an observer does find the Poynting

flux, is that actually in the comoving acceleration frame, the observer is continuously jumping

from one instantaneous rest frame to another, where transverse sell-fields are nil




OUne has to actually, at an given time, take a holistic view of the fields everywhere, i.e.,
at all distances from the charge, even if the fields at various points pet determined from the
corresponding time-retarded past positions of the charge. One comes across such a scenario
in the case of a charge moving with a uniform wvelocity, where electric fields are in radial
directions from the ‘present’ position of the charge, even though the fields everywhere are
determined from the past time-retarded positions of the charge. The argument used there is
that in the field expressions, since no acceleration term is being used, the information that
gets fed into the hield computation is that the charge is moving with a uniform velocity. The
situation is similar in the case of a uniform acceleration case, where the held expressions
determine fields according to the information of only the velocity and acceleration of the

charge and there is no term in the field expressions for ‘a rate of change of acceleration’, the

field expressions therefore determine fields for a farther point at distance r for time, t = r/c,

for a uniform acceleration case.
Naturally there is no radiation reaction on the uniformly accelerated charge, since no
field energy is being ‘radiated away’ from such a charge. This. of course, also makes it fully

conversant with the strong principle of equivalence.




There is thus no radiation going away from the charge, instead the fields, including the
contribution of acceleration fields, remains attached to the charge and is not dissociated
from the charge as long as it is moving with a uniform acceleration.

The picture that emerges is this. In this case. the ‘present’ velocity of the charge is also
constantly increasing, approaching ¢, and the Lorentz factor + approaching oc. Since the
mformation about the velocity and the acceleration of the charge is contained in the electric
field expression and from the value of acceleration the future velocity of the charge after
a time t 15 known, the acceleration field in collusion with velocity fields tends to keep the
energy in the causally linked spherical surface at r = ¢f synchronized with the extrapolated

velocity of the uniformly accelerated charge at time ¢. As long as the charge continues

to move with the same value of (uniform) acceleration, the things remain synchronized as

far the total energy in the self-fields is concerned. Omnly when there is a change in the
acceleration, and as there i1s no information contained in the field expressions about the rate
of change of acceleration, then the energy in fields does not remain synchronized with that of
the actual motion of the charge, which is affected by the rate of acceleration, therefore there
is a mismatch in field energies and the excess energy becomes the radiated away energy, no

longer part of the self-fields of the charge, and thus dissociated from the charge.




The contrary conclusions in literature have been arrived at in most cases, firstly, by
considering only the acceleration fields, an approach which though might be valid in vast
majority of cases of radiation from an accelerated charge, is not valid in the case of a
uniformly accelerated charge. This is because in this case the velocity at the retarded time,
vy  at = ar/c and then the velocity fields, v/r* x ar/cr® = a/re become comparable to
the acceleration fields oc afre for all r.

Secondly, almost no attention is generally paid to the ‘present’ position of the charge

which during the intervening time interval { = r/c, when the fields move to a large r (toward

infinity!) is almost keeping in step with the fields, being just a distance ~ r{1—1/+") behind

for all r, and with + continuously increasing due to the uniform acceleration. In fact, helds
remain appreciable only in a region Az oc 1/, very similar to the uniform velocity case
where electric field is appreciable near the “present’ position of the charge, in a region whose
extent falls as 1/ and where the fields component is mostly along the direction normal to

the direction of motion.
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