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1 Introduction

“Asymptotic analysis” is the science and art of systematically revealing the
behavior of a mathematical object as some parameter becomes small — usually
by expanding in a power series or some suitable generalization of one. It means
roughly the same thing as “perturbation theory”, but in a generic sense (the
small parameter is not necessarily a coupling constant).

Asymptotics has two roles in our thinking. The most obvious is approxi-
mation: It enables us to find approximate solutions to problems that are too
hard to solve exactly. As someone has said, “Every application of mathematics
to physics involves a small parameter (though sometimes the small parameter
is the degree of contact with experiment).”

But asymptotic thinking is at least as important when it acts in the oppo-
site direction, as interpretation. When I begin teaching such material, I ask a
class to sketch the graph of the function

y =

√
1 + x2 − sin x

x

in 30 seconds, without a calculator. Few students will take up the challenge.
Then I show them that from what they have already been taught about Taylor
series it is easy to see that

y ∼ x+
1

2x
as x→ +∞

and

y ∼
√

7

6
|x| as x→ 0,

and in between y is just going to wiggle a bit, so that one now has a solid
picture of how this function behaves.



That is a very precise and mundane example. At the opposite extreme is
the grandiose and qualitative issue of “emergent reality”, brought out in two
famous essays by Philip Anderson [1] and Steven Weinberg [2]. They were
debating whether elementary particle physics is really more “fundamental”
than other parts of physics. Their eventual agreement is that as the size of
a system increases, it becomes qualitatively different, and new concepts are
needed to describe it. Perhaps someday someone will write a thesis entitled
“Derivation of the Navier–Stokes Equations from M-Theory” (including the
numerical value of the viscosity coefficient of water); but nobody would ever
discover hydrodynamics from just a knowledge of M-theory. So I would com-
promise the positions of Weinberg and Anderson by saying that, yes, quantum
gravity (or something) is fundamental, and although the rest of physics may
not be just “device engineering” (as Anderson accused some of his critics of
believing), it is asymptotics! But it is interpretive asymptotics, like that of

y =
√

1 + x2 − sinx
x

, where the approximation is more interesting and mean-
ingful than the details of the thing being approximated.

An intermediate level of asymptotics is exemplified by semiclassical approx-
imation: obtaining classical mechanics, plus small corrections, from quantum
mechanics in the limit where h̄ is small compared to the actions S character-
istic of the system studied. I would like to concentrate today on a similar and
related topic that arose in my early scientific work.

2 Does mathematical form dictate good physics?

Physicists cannot make up their minds on this question. Often we insist that
physics is ultimately an experimental science. On the other hand, we feel
that the simplest and most elegant theory is usually right. I don’t presume to
answer the question, but I shall address it from personal experience.

The physical problem involved is field quantization in an expanding uni-
verse, as it was investigated by Leonard Parker and me in the early ’70s.
Our approach had a lot in common with some earlier work by Zel’dovich and
Starobinsky [3], but our point of view was different.

We considered a space-time metric

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2)

and solved the corresponding Klein–Gordon equation as

φ(t,x) =
1

(2π)3/2

∫
d3k

[
Ake

ik·xψk(t) + A†
ke

−ik·xψk(t)
∗] .



The mode functions ψk must satisfy

d2ψk

dτ 2
= −a6ωk

2ψk , (1)

where

τ =
∫ t

a(t′)−3 dt′ and ωk(t)
2 =

k2

a2
+m2.

This much was quite straightforward, and exactly like the theory of the free
field in flat space. The problem is that in a time-dependent background all
solutions of (1) appear equally worthy. There is no natural definition of “pos-
itive frequency” by which to distinguish the physical annihilation operator Ak

from, say, A′
k ≡ αkAk + βkA

†
−k , therefore no clear definition of a vacuum

state and of particles. Furthermore, every early attempt to construct such a
definition (diagonalizing the instantaneous Hamiltonian, or some equivalent
prescription) predicted infinite rates of particle production at most times.

There is one way of invoking mathematics to deal with this problem that
didn’t lead to much. The reaction of some people at the time was along these
lines: “Your analysis is not sufficiently covariant or abstract. You should stop
looking at coordinates; you need to find the right Killing vector, the right Lie
derivative, the right polarization, the right complex structure, . . . , the right
second-quantization functor from single particle theories to field theories.” In
my opinion these viewpoints did not start from the right physics. Often they
ignored the clear fact that the field theory describes particle creation, at least
in certain models where the physical interpretation is unambiguous during
certain epochs of time. (If the scale factor a(t) equals a constant for t < −T ,
then ψ = e−iωt there and the particle interpretation is clear; but if also a(t)
is constant for t > +T , then in general ψ = αe−iωt + βeiωt in that epoch, and
particles have been created.)

What proved to be the right way to deduce the physical interpretation from
the mathematics involved some less abstract, applied mathematics. The essen-
tial step was to identify the effective frequency of oscillation of each mode at
each time. There is an elementary analogy with a damped harmonic oscillator:
The solutions of the equation

d2ψ

dt2
+ 2γ

dψ

dt
+ ω2ψ = 0 (0 < γ < ω)

are
ψ(t) = e−γt exp

[
±i

√
ω2 − γ2 t

]
.



They exhibit damping (as expected) on the time scale γ−1 — but also a fre-
quency shift of order γ2 from the unperturbed frequency ω. It is well known
in applied mathematics that if one does naive perturbation theory about the
old solutions with the old, wrong frequency, one gets a bad answer: one where
the error in the approximation grows rapidly with t. (This is called secular
behavior.)

Much the same thing happens to an oscillator with time-dependent fre-
quency. This theory was developed by Fröman [4] and Chakraborty [5] and
applied by Parker and me [6, 7, 8] to the cosmological problem. An optimal

approximate solution to d2ψ
dτ2 + a(t)6ωk(t)

2ψ = 0 is

ψk(t) =
1√

2a3Wk(t)
exp

[
±i

∫ t

Wk(t′) dt′
]
,

with
Wk(t)

2 = ωk(t)
2[1 + δ2(k, t)ωk

−2 + δ4(k, t)ωk
−4 + · · ·],

where the δj(k, t) are certain combinations of the time derivatives of a(t)6ωk(t)
2

whose precise form is not important for the present discussion. These two
functions (with the two choices of ±) are what we used to replace e±iωkt in
defining annihilation and creation operators. This refinement eliminates the
physically implausible prediction that an infinite density of particles is created
at intermediate times, which then largely disappears if the expansion of the
universe stops.

This higher-order WKB approximation is good applied math, but is it a
leap of faith to assume that it leads to the correct physics? Let us note several
points:

1. The series for W does not usually converge. It must be truncated at
some finite point, yielding a nonunique approximation.

2. Thereby the “particles” are defined up to some finite order in powers of
|k|−1 and m−1. But as I mentioned previously, during static epochs par-
ticles are precisely defined, and it turns out that the particle production
is exponentially small (for a smooth a(t)).

3. Therefore, our construction does not define “vacuum” and “particles”
exactly. Rather it determines the “right Fock space” containing the phys-
ically regular states — those in which field observables such as energy
density are Hadamard renormalizable, as shown by the work of DeWitt,
Christensen, Wald, Kay, Radzikowski, and others.



I conclude that the “adiabatic” definition of particles is not a dogma arbitrarily
built on the accidental algebraic form of a particular approximation, but rather
a recognition, guided by mathematics, of the “emergent reality” of particle-like
behavior in what is fundamentally a field theory (not a particle theory), in a
certain limit, that of slow variation of the background geometry.

Recently I have learned of a strange way to invoke very similar mathemat-
ics, again to define a physical interpretation. This one, however, strikes me as
abuse of the mathematics of asymptotic analysis. To explain this I must first
briefly review some more points of background.

First, note that in our problem above, the general solution is a sum,

ψ = α
1√
a3W

e−i
∫
W dt + β

1√
a3W

ei
∫
W dt,

where the distinguished basis solutions are those that have the right effective
frequency. Now it turns out [9] that any solution of the differential equation
can be written as a single term,

c√
a3W ei

∫
W dt,

for some function W. However, in general: (1) W oscillates as rapidly as the
solution itself (on the time scale of sin(ωt)), as opposed to the slow variation of
W on the scale of a(t). (2) W does not reduce to ω whenever a(t) approaches
a constant. Although this construction may be useful for some purposes, it
clearly has little to do with our strategy of isolating the true frequency of the
oscillations.

Second, the WKB approximation has analogues in higher dimensions, ap-
plied in particular to wave functions in quantum mechanics (by Maslov [10]
and others). In that theory, one seeks a solution of the Schrödinger equation
of the form

ψj = Aje
iSj/h̄,

and one interprets Sj as the action of the classical particle in the sense of
Hamilton–Jacobi theory. That is,

∇Sj = pj

is the momentum of a beam labeled by j (and then transport along the classical
trajectories is used to construct the quantum wave function). In general, ψ is
a sum of several such beams (typically four in dimension 2 — see, for instance,
Fig. 1 in [11]).



Now to the point: The Bohm interpretation of quantum mechanics [12], in
its mathematical essence (at least for single-component wave functions) is the
demand that one should always write the whole wave function as ψ = AeiS/h̄

(just one term!) and interpret p = ∇S as the momentum of one real physical
particle, which randomly finds itself on one of the resulting classical orbits.
As for the function W discussed above, these results are complicated and far
from the simple physics of a properly constructed single beam.

The eigenstates sin(kx) of a one-dimensional particle in a box are real, thus
p equals 0 in that case, and there is no motion! — even though the particle
still has the appropriate energy, k2/2m. The particle just sits in one of the
lobes of the function |ψ|2 = sin2(kx).

In higher dimensions there is a famous picture, reproduced by both friends
([12], Fig. 2) and foes [13] of the Bohm theory, which shows how wiggles in the
complicated Bohm trajectories create density fluctuations that yield the cor-
rect interference pattern in the classic two-slit experiment. These trajectories
never cross each other. This means that opening the second slit causes the
particle coming from the first slit to steer away from its natural trajectory; it
bounces off one of the other trajectories that it might have taken, but didn’t.

As you can tell, I am not favorably disposed toward the Bohm theory. It
seems to fly in the face of our previous lesson: A good semiclassical analysis
needs to start from the identification of the correct effective frequencies (gener-
alized to vectors ∇Sj in this case), and a general solution is the superposition
of several such elementary beams, not just one.

3 How I would have discovered path integrals if
Feynman had not already done it 50 years earlier

Now for something (relatively) new. It grew out of my work with Tom Osborn
and Frank Molzahn [14, 15, 16, 17] and Davin Potts [18] on asymptotic approx-
imations to fundamental solutions of time-dependent Schrödinger equations.

The Schrödinger propagator K(t,x,y) corresponding to a Hamiltonian op-
erator H is the integral kernel of the operator e−itH/h̄. In other words, the
solution of the Schrödinger equation in terms of its initial data is

ψ(t,x) =
∫
Rd
K(t,x,y)ψ(0,y) dy.

When there is no potential, K has the well known form

K0(t,x,y) =
(

m

2πih̄t

) d
2

eim|x−y|2/2h̄t.



When

H = − h̄2

2m
∇2 + V (x),

one can construct an adiabatic, or Wigner–Kirkwood, expansion

K ≈ KWK = K0e
− i

h̄

∫
V (x̃(t)) dt exp

( ∞∑
k=1

m−kJk
)
, (2)

where the construction of Jk (including the
∫
V prefactor shown) requires in-

tegrations along the straight line from (0,y) to (t,x). In contrast, there is
a WKB approach to this problem, developed by Van Vleck, Birkhoff, Keller,
Maslov, Marcus, Delos, . . . , which requires integrations along the exact clas-
sical orbits from (0,y) to (t,x). The WKB series is an expansion in h̄, while
the WK series (2) is clearly an expansion in 1

m
.

Naturally, one tries out these methods on exactly solvable test cases. The
simplest case is a constant electric field, V = E · x. In this case the series (2)
truncates after two terms and is exactly correct! Namely,

K = KWK = KWKB = K0e
−itE·(x+y)/2te−it

3E2/24h̄m.

But this triumph is short-lived. The next simplest case is the harmonic oscil-
lator, V = 1

2
mω2x2. One finds that the WK series breaks down for t <∼ 3

ω
—

that is, in less than half a period! The reason is clear in hindsight: All the
exact orbits of this system issuing from point (0,y) refocus at time t = π

ω
,

so a technique that approximates them as straight lines is going to be rather
bad. In contrast, the WKB approximation is exact for this (purely quadratic)
Hamiltonian.

This is bad news. One would dearly love to use straight lines instead of
computing exact classical trajectories. In hopes of rescuing the WK method,
I contemplated a hybrid asymptotic and numerical approach: Let us evolve
the wave function in small time steps, for which the WK approximation is
accurate:

K(∆t,x,y) ≈ KWK = K0 exp
( ∞∑
k=0

m−kJk
)
. (3)

Iteration to attain the solution at a macroscopic t now requires a spatial inte-
gration on each time slice:

ψ(t,x) =
∫
Rd
dyN KWK

(
t

N
,x,yN

)
· · ·

∫
Rd
dy1KWK

(
t

N
,y2,y1

)
ψ(0,y1).

Then I sat back to look at what I had done, and I realized that I had rein-
vented the Feynman path integral! Actually, the single-step propagator (3) is



more sophisticated than those in the standard treatments of path integration;
the exponent is J0 = − i

h̄

∫
V (x̃(t)) dt, plus higher-order terms, as opposed to

− i
h̄

t
N
V (yN). (See, however, Fujiwara [19] and related papers, e.g., [20].)

Feynman’s intention, of course, was to take the limit N → ∞, to define
quantum dynamics. My strategy was, and is, to take N as small as possible
consistent with accuracy, so as to get a practical computational scheme. This
distinction is the same as that between Riemann’s definition of the definite
integral and the numerical evaluation of integrals by the trapezoidal rule or
Simpson’s rule. Note, however, that the path integral is not really needed to
define the Schrödinger equation. But it is amusing that the path integral can
be discovered through the back door as the limit of increasingly accurate WK
approximations for a Schrödinger equation assumed from the start. It is as if
one defined integration as simply the inverse of differentiation, somehow in-
vented the trapezoidal rule as a way of computing antiderivatives numerically,
and then arrived at the Riemann integral by taking the mesh size smaller and
smaller in search of better numerical results.

I hope that in the reasonably near future I will be able to present a practical
implementation of this scheme and comparisons of its accuracy and efficiency in
comparison with the WKB approximation, on the one hand, and conventional
partial-differential-equation numerical solution methods, on the other.
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[4] N. Fröman, Ark. Fys. 32 (1966) 541.

[5] B. Chakraborty, J. Math. Phys. 14 (1973) 188.

[6] L. Parker, Phys. Rev. 183 (1969) 1057.



[7] L. Parker and S. A. Fulling, Phys. Rev. D 9 (1974) 341.

[8] S. A. Fulling, Gen. Rel. Grav. 10 (1979) 807.

[9] P. C. Waterman, Am. J. Phys. 41 (1973) 373.

[10] V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quan-
tum Mechanics, Reidel, Dordrecht, 1981.

[11] S. K. Knudson, J. B. Delos, and D. W. Noid, J. Chem. Phys. 84 (1986)
6886.

[12] D. Bohm, B. J. Hiley, and P. N. Kaloyerou, Phys. Reps. 144 (1987) 321.

[13] B.-G. Englert, M. O. Scully, G. Süssmann, and H. Walther, Z. Natur-
forsch. A 47 (1992) 1175.

[14] Y. Fujiwara, T. A. Osborn, and S. F. J. Wilk, Phys. Rev. A 25 (1982) 14.

[15] T. A. Osborn and F. H. Molzahn, Phys. Rev. A 34 (1986) 1696.

[16] L. Papiez, T. A. Osborn, and F. H. Molzahn, J. Math. Phys. 29 (1988)
642.

[17] F. H. Molzahn, T. A. Osborn, and S. A. Fulling, Ann. Phys. (N.Y.) 214
(1992) 102.

[18] D. M. Potts, Undergraduate Research Fellow Thesis, Texas A&M Univer-
sity, 1995.

[19] D. Fujiwara, J. Analyse Math. 35 (1979) 41.

[20] A. Intissar, Comm. Partial Diff. Eqs. 7 (1982) 1403.


