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Vacuum Energy and Closed Orbits in Quantum Graphs

S. A. Fulling and J. H. Wilson

Abstract. The vacuum (Casimir) energy of a quantized scalar field in a given
geometrical situation is a certain moment of the eigenvalue density of an asso-
ciated self-adjoint differential operator. For various classes of quantum graphs
it has been calculated by several methods: (1) Direct calculation from the
explicitly known spectrum is feasible only in simple cases. (2) Analysis of
the secular equation determining the spectrum, as in the Kottos–Smilansky
derivation of the trace formula, yields a sum over periodic orbits in the graph.
(3) Construction of an associated integral kernel by the method of images

yields a sum over closed (not necessarily periodic) orbits. We show that for
the Kirchhoff and other scale-invariant boundary conditions the sum over non-
periodic orbits in fact makes no contribution to the total energy, whereas for
more general (frequency-dependent) vertex scattering matrices it can make a
nonvanishing contribution, which, however, is localized near vertices and hence
can be “indexed” a posteriori by truly periodic orbits. For the scale-invariant
cases complete calculations have been done by both methods (2) and (3), with
identical results. Indeed, applying the image method to the resolvent kernel
provides an alternative derivation of the trace formula.
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classical-mechanical system. Insofar as energy, pressure, etc. can be localized in
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Much of the article is based on the undergraduate research [43] of J. Wilson
under the direction of S. Fulling and G. Berkolaiko. Some results of that research
have been published in [9, 22, 23], to which we refer for details. We are happy to
acknowledge strong interactions with, and assistance from, the Texas A&M quan-
tum graph research group (Gregory Berkolaiko, Jonathan Harrison, Peter Kuch-
ment, Melanie Pivarski, and Brian Winn) and Lev Kaplan of Tulane University.
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The conclusions of Sec. 6 are heavily influenced by work with graduate students
Joel Bondurant [12] and Zhonghai Liu [34]. S.A.F. thanks Martin Sieber for an
enlightening discussion of the special classes of paths in [42].

The research has received support from the National Science Foundation under
Grants Nos. PHY-0554849 and DMS-0648786. During Spring 2007 we benefited
from the hospitality of the program Analysis on Graphs and Their Applications
at the Isaac Newton Institute for Mathematical Sciences at Cambridge University;
both of us gave talks there that are reflected in this paper. S.A.F.’s extended
stay there was made possible by a Faculty Development Leave from Texas A&M
University.

Independent research on vacuum energy in quantum graphs has been reported
from Pisa [7, 8, 6] and Tashkent [35]. The papers of the former group include
deeper discussions of quantum field theories on graphs and possible applications to
condensed-matter physics.

After a quick overview of the physics, we define vacuum energy mathematically
in Sec. 2, giving equivalent formulas in terms of spectral density and in terms of an
integral kernel. After reviewing notation for quantum graphs (Sec. 3) we demon-
strate the method of multiple reflection (images) for the shortest paths in a star
graph in Sec. 4. The full formula for a general graph (with scale-invariant boundary
conditions) is stated in Sec. 5, and the alternative derivation from the trace for-
mula for the spectral density is also summarized there. In Sec. 6 the more difficult
situation without scale invariance (i.e., with frequency-dependent scattering ampli-
tudes) is discussed, with a view to resolving a superficial contradiction between the
image and spectral methods; as pointed out independently by J. Bolte, the trace
formula for the density of states in that case contains some extra terms that have
sometimes been overlooked.

2. Vacuum energy

2.1. Physical background. Although vacuum energy can be posed as a
purely mathematical problem of intrinsic mathematical interest [21], readers with
some knowledge of quantum theory will want to know something of its physical ori-
gin and significance. Unfortunately, an adequate treatment would require inserting
a graduate course in quantum field theory. Here we provide a very streamlined
account, concentrating on a scalar field in one spatial dimension instead of the case
of greatest experimental relevance, the electromagnetic field in dimension 3. (Gen-
eral dimensions and general fields are potentially of interest in investigating, for
instance, the implications of string theory for cosmology.) We refer to [38, 37, 13]
for more information.

Consider a field u satisfying the wave equation

(1)
∂2u

∂t2
=
∂2u

∂x2

on a finite interval, 0 < x < L (for −∞ < t < ∞), and regard it as a quantum
object. That is, u(t, x) will become an operator (technically, an operator-valued
distribution) satisfying (1) in the Heisenberg picture and satisfying certain canonical
commutation relations with its time derivative. The quickest way to relate this
system to the more familiar elementary quantum mechanics is to pass to Fourier
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components by

(2) u(0, x) =

√

2

L

∞
∑

k=1

qk sin
kπx

L
,

∂u

∂t
(0, x) =

√

2

L

∞
∑

k=1

pk sin
kπx

L
.

Note that pk = dqk

dt and, because of (1),

(3)
d2qk

dt2
= −ωk

2qk , ωk ≡
kπ

L
.

We also postulate the standard relation

(4) [qk, pj ] ≡ qkpj − pjqk = iδkj .

In short, each normal mode of the field satisfies the equations defining a harmonic
oscillator in quantum mechanics.

The quantum solution of the oscillator problem is well known ([36, Ch. 12], [19,
Ch. 1]). The Hilbert space of a single oscillator is the closed span of vectors {|n〉},
n = 0, . . . ,∞. The energy of the vector |n〉 is (1

2 + n)ω. The Hilbert space of the
entire system is now some suitably defined tensor product of these spaces. In the
elementary quantum theory of free fields it is assumed that the only basis vectors
that are physically realizable are those for which the occupation numbers nk are 0
for all but finitely many k. Formally, the energy of such a state,

⊗∞
k=1 |nk〉, is

E =

∞
∑

k=1

(

1

2
+ nk

)

ωk(5)

=
1

2

∞
∑

k=1

ωk +

∞
∑

k=1

nkωk .

The first term in (5) is divergent, but it is independent of the state considered and is
usually ignored with the justification that the zero point of energy for each oscillator
is arbitrary. Under the stated assumption on nk the second term is finite, and the
Hilbert-space closure of this set of vectors (Fock space) supports this “renormalized”
energy as a densely defined self-adjoint operator.

Things become interesting when one tries to compare the energies of the vac-
uum states (where all nk are 0) for two different values of L. (See Fig. 1 for a
higher-dimensional analogue.) From what was said in connection with (5) it would

Configuration (a) Configuration (b)

L1 L∞ L2 L′
∞

Figure 1. Two possible configurations of three parallel Dirichlet
boundaries with L1 < L2, idealizing electrically conducting plates.
The role of the rightmost boundary in each case is merely to make
it unnecessary to consider the energies of varying infinite intervals.

seem that both energies should be 0. However, there are both theoretical and ex-
perimental reasons to believe that the two very nearby “plates” in configuration
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(a) attract each other; that is, the energy of (a) is smaller (more negative) than
that of (b). The decision to replace the infinite vacuum energy 1

2

∑

ωk by zero in
all circumstances is too naive. The zero of the energy scale is indeed arbitrary, but
the correct conclusion is now said to be that only differences of energies between
different configurations are finite and meaningful. (It was also naive to expect that
the vacuum of one configuration would belong to the Fock space of the other, but
we need not pursue that complication here.)

The recommended calculational procedure is to modify the theory temporarily
(by some cutoff procedure) to make the energy sums finite, subtract “under the
summation sign”, and then take a limit to remove the cutoff. It is found in many
situations, notably that of Fig. 1 and all those discussed in the remainder of this
paper, that the result is indeed finite and is the same for a large class of reasonable
cutoff methods (regularizations). One very convenient regularization is to insert a
factor e−tωk in the sum (taking t→ 0 at the end). This method is discussed in more
detail in [21]. An asymptotic expansion of the sum at small t (which has a close
connection to both the spectral distribution of the operator in the field equation

— − ∂2

∂x2 in the example (1) — and the geometry of the configuration) displays
divergent terms that are independent of the configuration and hence disappear when
the energies are subtracted. It is common then just to ignore these terms and regard
the resulting finite limit as the renormalized energy of the single configuration under
study.

This line of thought breaks down when two configurations are not sufficiently
similar for their energies’ divergent terms to be considered identical. For example,
first consider comparing one of the configurations in Fig. 1 with the situation where
the middle plate is completely absent. Their energies formally differ by an infinite
term associated with the missing surface. However, one may regard this surface
energy as being somehow inherently associated with the material surface itself and
probably rendered finite by a detailed microscopic model of the matter consitut-
ing the surface. The renormalization described earlier amounts to just excluding
this surface energy from the accounting. In this way renormalized vacuum-energy
calculations are considered satisfactory for studying the attraction of rigid bodies.
But trouble reappears in dealing with the energy of a deformable closed surface.
From a physical point of view, the dynamics of such a system much take account of
the microscopic forces within the surface itself, in addition to the forces associated
with the quantized field, so it is not surprising if the difference between the regu-
larized energies of two different shapes does not converge as the cutoff is removed.
With this caveat (which turns out not to be relevant to quantum graphs) we shall
proceed to make a precise definition of the renormalized vacuum energy in a large
class of field models and to study it as a mathematical topic.

2.2. The fundamental formulas. Let H be a second-order, elliptic, self-
adjoint partial differential operator, such as −∇2 acting in a compact region Ω ⊂
Rn. Assume that the spectrum of H is nonnegative and discrete, and introduce
the normalized eigenvectors by

(6) Hϕn = λnϕn , ‖ϕn‖ = 1.

Let

(7) ωn ≡
√

λn .
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Formally, the total vacuum energy is

(8) E ≡
∞
∑

n=1

1

2
ωn .

There are two ways to define the renormalized energy:

(1) From the density of states :

(9) E =

∫ ∞

0

ω

2
[ρ(ω)− ρWeyl(ω)] dω.

Here ρ(ω) dω is a sum of point measures at the eigenfrequencies ωn , and
ρWeyl(ω) stands for enough terms of the well known continuum approx-
imation to render the integral convergent at infinity; in some cases this
maneuver may introduce a new divergence at 0 and a resulting ambiguity
in E, but that complication is beyond the scope of this paper.

(2) From the cylinder (Poisson) kernel :

T (t, x, y) ≡
∞
∑

n=1

ϕn(x)ϕn(y)e−tωn

= integral kernel of e−t
√

H .(10)

T solves a certain elliptic boundary value problem for the equation

(11)
∂2T

∂t2
= HT

in R+ × Ω. (In this context t is not a time, though it can be thought
of as an analytical continuation of the time variable in the original field

equation, −∂2u
∂t2 = Hu.) Define a regularized total energy (for t > 0) by

E(t) ≡ − 1

2

∂

∂t

∫

Ω

T (t, x, x) dx ≡ − 1

2

∂

∂t
TrT(12)

= Weyl terms [O(t−(d+1)), etc.] + E +O(t).

Then the renormalized total energy is defined as the limit as t ↓ 0 of the
regular part of E(t). In other words, one examines the asymptotic behav-
ior of E(t) as t approaches 0, which will normally exhibit various negative
and positive powers of t, and extracts the constant term. The previously
mentioned complication manifests itself here as a term proportional to
ln t, and the renormalized energy must be regarded as ambiguous modulo
a term obtained by replacing ln t by an arbitrary finite constant; fortu-
nately, the functional dependence of that term onH (e.g., on the geometry
of Ω) is closely circumscribed.

In the same spirit, one defines a local vacuum energy density by forming the
regularized quantity

(13) E(t, x) ≡ 1

2

∞
∑

n=1

ωn|ϕn(x)|2e−ωnt = − 1

2

∂T

∂t
(t, x, x)

and defining the renormalized density as its regular part.
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3. Quantum graphs

Our intention now is to investigate vacuum energy when the region Ω is replaced
by a quantum graph, Γ. We shall consider only models where H is a self-adjoint

extension of the Laplacian, − d2

dx2 .
Our notation for quantum graphs [30, 27, 31, 24] is fairly standard. The

graphs we consider have V vertices v and B edges e (sometimes called bonds) of

lengths Le <∞, yielding a total length L ≡∑B
e=1 Le .

To make − d2

dx2 self-adjoint, boundary conditions are needed. Let H be such a
self-adjoint extension, which acts on functions on the graph, The vacuum energy
is to be found from the “cylinder equation” (11). After separation of variables in
(11), we have on each edge e a function ψe that satisfies

(14) − d2

dx2
ψe(x) = ω2ψe(x)

and suitable boundary conditions at each vertex. This can equally well be done
with other equations corresponding to different kernels (the heat equation, the
Schrödinger equation, etc.).

The boundary conditions are implemented in terms of a vertex scattering ma-
trix. Consider an arbitrary vertex v and without loss of generality take the coor-
dinates on all the bonds leaving v to increase away from v. Now, consider a plane
wave e−iωx on bond e and incident on vertex v. The boundary conditions at v
imply a formula of the form

(15) ψe′(x) =

{

e−iωx + σ
(v)
ee (ω)eiωx if e′ = e,

σ
(v)
e′e(ω)eiωx if e′ 6= e,

for each e′ incident on v. The σ
(v)
e′e(ω) coefficients in (15) define the vertex scattering

matrix σ(v)(ω).
A directed bond is an edge together with a choice of direction along it. Each

edge e corresponds to two directed bonds, say e+ and e−, so the set of directed
bonds has size 2B. A directed bond will be denoted by a greek letter (α or β
usually). If α = e+ or α = e−, we say α is associated with edge e. Also, ᾱ is the
reversal of α (i.e. if α = e+, then ᾱ = e−).

Using directed bonds we can define a 2B × 2B scattering matrix such that

Sβα(ω) = σ
(v)
e′e(ω) if α is associated with e terminating at v and β is associated

with e′ originating at v. Otherwise, Sβα = 0. The matrix S is the notation of
Kottos and Smilansky; Kostrykin and Schrader have an equivalent matrix, S(ω),
indexed by edge-ends instead of directed bonds. These two matrices are related by

S = SJ, Jβα ≡ δβᾱ .

The most common kind of boundary condition, called Kirchhoff, natural, or
sometimes Neumann, calls for continuity of u and conservation of its “flux” at each
vertex v: If dv vertices meet at v, then

(16) ue(v) = same for all e,

dv
∑

e=1

u′e(v) = 0 .
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As usual, the derivative in Eq. (16) is taken outward from the vertex v. The
corresponding vertex scattering matrix is

(17) σ
(v)
ee′ =

2

dv
− δee′ .

More generally, the boundary conditions for the Laplacian of a graph are called
scale-invariant if the resulting scattering matrices are independent of ω. These are
precisely the conditions that do not mix the endpoint values of u with those of u′.
A detailed discussion of equivalent conditions appears in [23]. The key lemma we
need here is the following, established by Kostrykin and Schrader [27, 28, 26]:

Lemma 3.1. For any scale-invariant boundary conditions, S
2 = (SJ)2 = I.

(Equivalently, for all v, (σ(v))2 = I.)

4. Star graphs

4.1. A star graph with equal edge lengths treated directly. As a simple
first example [22] we consider star graphs all of whose edges have the same length
(Fig. 2). Its eigenfrequencies are

•....................
......
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......
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......
......
......
......
......
.....

.......................................................................................................

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
.

.......................................................................................................

•

•

•

•

Figure 2. A star graph with 4 edges of length a.

(18) ω =

{

nπ
a with multiplicity 1,

(

n+ 1
2

)

π
a with multiplicity B − 1.

For the Kirchhoff boundary conditions (16) the cylinder trace can be calculated
exactly:

TrT (t) =

∞
∑

n=1

e−nπt/a + (B − 1)e−πt/2a
∞
∑

n=0

e−nπt/a(19)

=
1 + (B − 1)e−πt/2a

1− e−πt/a

=
a

πt
+

1

2
+

πt

12a
+ (B − 1)

[

a

πt
− πt

24a

]

+ · · ·

=
L

πt
+

1

2
− (B − 3)πt

24a
+O(t2).

Therefore, the renormalized total energy, according to (12) and the discussion fol-
lowing, is

(20) E =
(B − 3)π

48a
.

Note the sign change at B = 3 [22]; the sign of Casimir energy in various situations
is far from completely understood physically.
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4.2. The general star graph treated by multiple reflection. When the
edge lengths are not equal, exact spectral calculations are more difficult. However,
the cylinder kernel can still be constructed exactly by an appropriate generalization
of the method of images [43, 9]. One starts with the “free” cylinder kernel on the
real line,

(21) T0(t, x, y) =
t

π

1

t2 + (x− y)2 ,

and constructs the kernel on Γ satisfying the necessary differential equation (11)
and boundary conditions by adding the propagation of T0 from y ∈ Γ to x ∈ Γ via
all possible paths, using the scattering matrix (17) (or its analogue for any other
scale-invariant model) to calculate the amplitude for reflection or transmission at
each vertex. To take the trace, we are interested in y = x; in particular, x and y

will lie on the same edge e, and the relevant piece of the kernel will be a function
T e

e (t, x, y) on R+ × e× e (where e is associated with the interval (0, Le)).
This process has been derived in full generality (for scale-invariant boundary

conditions) in [43]. (More general boundary conditions will be treated elsewhere.)
Here, for expository purposes, we consider a star graph with Kirchhoff conditions
and write out only the simplest few classes of paths and the corresponding expres-
sions. In [43], these terms are taken from Ch. 3, Sec. C, Eq. (3.27), with slight
changes in notation. Let the pertinent edge be e = 1. We compile the path of
zero length, then the two paths that visit exactly one vertex (for which conceptual
“images” are shown), then the two paths that visit two vertices, the three path
types that visit three, the four types that visit four, and the seven types that visit
five:

T 1
1 (t, x, x) = T0(t, x, x)(22)

• •
•

•
× ×→
←

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

. . . . . + T0(t, x, 2L1 − x)

• •
•

•
×× →
←
................................................................................
.......
.......
.......
.......
.......
.....

...............................................

.... +

(

2

B
− 1

)

T0(t, x,−x)

• •
•

•
×→ →
←−

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)

T0(t, x, x − 2L1)

+ reverse + same with y = x+ 2L1 (instead of x− 2L1)

• •
•

•
×→
←տց ................................................................................

.......
.......
.......
.......
.......
.....

...............................................

+
∑

e6=1

(

2

B

)2

T0(t, x,−2Le − x)

• •
•

•
×→
←−→
←−................................................................................

.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)2

T0(t, x,−2L1 − x)

• •
•

•
×→
←

←−
−→

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)

T0(t, x, 4L1 − x)
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• •
•

•
×−→
← ←տց ................................................................................

.......
.......
.......
.......
.......
.....

...............................................

+
∑

e6=1

(

2

B

)2

T0(t, x, x + 2L1 + 2Le)

+ reverse + same with y = x− 2L1 − 2Le

• •
•

•
×← ←
←−−→
−→

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)2

T0(t, x, x + 4L1)

+ reverse + same with y = x− 4L1

• •
•

•
×→
←տցւր
................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+
∑

16=e6=e′ 6=1

(

2

B

)3

T0(t,−2Le − 2Le′ − x, x)

• •
•

•
×→
←
−→
←−տց ................................................................................

.......
.......
.......
.......
.......
.....

...............................................

+
∑

e6=1

(

2

B

)2 (

2

B
− 1

)

T0(t,−2L1 − 2Le − x, x)

+ reverse + same

• •
•

•
×→
←տց
ցտ ................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+
∑

e6=1

(

2

B

)2 (

2

B
− 1

)

T0(t,−4Le − x, x)

• •
•

•
×→
←
←−
−→
−→
←−

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)3

T0(t,−4L1 − x, x)

• •
•

•
×←
→

−→
←−տց ................................................................................

.......
.......
.......
.......
.......
.....

...............................................

+
∑

e6=1

(

2

B

)2

T0(t, 4L1 + 2Le − x, x)

• •
•

•
×←
→

←−
−→
−→
←−

................................................................................
.......
.......
.......
.......
.......
.....

...............................................

+

(

2

B
− 1

)2

T0(t, 6L1 − x, x)

+ · · · .
The periodic paths are precisely those with an even number of vertices.

The total energy is to be obtained from the trace,

(23) TrT =

B
∑

e=1

∫ Le

0

T e
e (t, x, x) dx.

At this point distinctions between the roles of various types of path become evident.
The contributions to the trace of paths with fewer than three vertices are

L

πt
(leading Weyl term) path of zero length(24)

+
1

2π

∑

e

tan−1

(

2Le

t

)

retracing

nonperiodic path

+
1

2π

(

2

B
− 1

)

∑

e

tan−1

(

2Le

t

)

retracing

nonperiodic path

+
t

π

(

2

B
− 1

)

∑

e

Le

t2 + (2Le)2 2 periodic orbits

+ same.
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The paths with three vertices are retracing nonperiodic paths. The corresponding
integrals in (23) collectively yield

(25) − 1

πB

∑

e

tan−1

(

2Le

t

)

from their lower limits and

(26)
1

πB

[(

2

B
− 1

)

∑

e

tan−1

(

4Le

t

)

+
2

B

∑

e6=e′

tan−1

(

2Le + 2Le′

t

)]

from their upper limits. Because (25) is the negative of the sum of the similar
tan−1(two lengths) terms in (24), the tan−1(four lengths) terms (26) are the cu-
mulation so far from the nonperiodic paths.

The contributions to the trace of the remaining terms in (22), rendered a bit
more schematically, are

2t

π

(

2

B

)2
∑

e6=e′

Le

t2 + (2Le + 2Le′)2
periodic orbits(27)

+
2t

π

(

2

B
− 1

)2
∑

e

Le

t2 + (4Le)2
periodic orbits

+
∑

tan−1(six lengths) nonretracing

− 1

2π
(B − 2)

(

2

B

)3
∑

e6=e′

tan−1

(

2L2 + 2Le′

t

)

nonperiodic paths

+
∑

tan−1(six lengths) nonretracing

− 1

π

(

2

B

)2 (

2

B
− 1

)

∑

e6=e′

tan−1

(

2L2 + 2Le′

t

)

nonperiodic paths

+
∑

tan−1(six lengths) retracing

+ [negative of (26)]. nonperiodic paths

The cancellation involving the retracing nonperiodic paths hinges on the identity

(B − 1)
(

2
B

)2
+

(

2
B − 1

)2
= 1.

Furthermore, because

(B − 2) 2
B + 2

(

2
B − 1

)

= 0,

the tan−1(four lengths) contributions of the nonretracing nonperiodic paths add to
zero!

These patterns will persist to all orders: The terms from nonretracing non-
periodic paths cancel; the terms from retracing nonperiodic paths telescope to
1
π tan−1(∞) = 1

2 (a constant!), the second (and last) term of the Weyl series; the

terms from periodic paths have the form Ct + O(t3). Only the periodic terms
contribute to the total energy,

(28) E ≡ − 1

2

∂

∂t

[

TrT − L

πt

]∣

∣

∣

∣

t=0

= − 1

2

∑

periodic orbits

C.
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5. General scale-invariant graphs

5.1. Treatment by multiple reflection. The construction applied to Kirch-
hoff star graphs in the previous section extends to a systematic sum over paths of
all lengths, in a general graph, and for general scale-invariant boundary conditions.
We define

(29) u(z) ≡ T0(t, z, 0) =
t

π

1

t2 + z2
, ue(x) ≡ T e

e (t, x, x),

(30) Aq ≡ Sαn,αn−1
· · ·Sα2,α1

for path q,

and the key formula [43] is

ue(x) = u(0)(31)

+
∑

p

[Aᾱpαu(Lp + 2Le − 2x) +Aαpᾱu(−Lp − 2x)

+ Aαpαu(−Lp − Le) +Aᾱpᾱu(−Lp + Le)]

= direct + nonperiodic + periodic.

The lemma of Kostrykin and Schrader stated above plays a major role here; its
consequences are that nonretracing nonperiodic paths cancel, and retracing nonpe-
riodic paths sum to a constant. Additionally, the fact that we use scale-invariant
scattering matrices allowed us to write the function u times an amplitude Aq in
Eq. (31).

The method applied here directly to the cylinder kernel is essentially the same
as that applied by Roth [40] to the heat kernel (for the Kirchhoff case only), and
in [5] and [29] to the resolvent kernel (for the general case). The result of [29] was
used in [26] to derive the heat kernel and its trace.

5.2. Treatment by the trace formula. For scale-invariant graphs, the Kot-
tos–Smilansky [30] trace formula for the eigenvalue density is

(32) ρ(ω) =
L

π
+ Cδ(ω) + Re

∑

p

∞
∑

r=1

Lp

π
Ap

reiωrLp .

Although periodic orbits appear in this formula, it is not derived in the first instance
by tracing out classical paths, but rather by analyzing a certain secular determinant.
The constant C is hard to determine from the determinant; it doesn’t contribute to
the vacuum energy anyway. (See, however, [23].) The sum in (32) is over primitive
periodic orbits and their repetitions, r.

From (32) one calculates the total energy

(33) E =

∫ ∞

0

ω

2
ρosc(ω) dω = − 1

2π
Re

∑

p,r

Ap
r

Lpr2
.

This is the same result as given by the method of multiple reflections, but the
calculation is more efficient. On the other hand, the trace method does not easily
yield the local energy density. Detailed proofs of (33), including discussion of
convergence issues, appear in [43, 9]. In fact, E is a C∞ function of the edge
lengths Le in the domain where all Le > 0 [9].
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5.3. Many routes to the same goal. In summary, there is a progression of
approaches that can be (and have been) taken to calculate the vacuum energy in
quantum graphs:

Direct

Secular function

Resolvent kernel

Cylinder kernel

Spectral

methods

Image

methods

State-density

methods

{

{

}

In some contexts the methods are interchangeable, but in other respects they have
different virtues. (For example, if one wants to know the spectrum of the system,
not just the vacuum energy, then one of the first three methods is indicated, but if
one wants the energy density, the cylinder method is better.)

6. “Robin” problems

Boundary conditions that are not scale-invariant, but are nevertheless local in
the sense that they relate the values of the field and its derivatives at the endpoints
of edges that meet at vertices, are the graph analogue of Robin boundary conditions
on intervals or billiards. Here we make some qualitative remarks upon this situation,
with emphasis on how the multiple-reflection and trace-formula approaches are to
be reconciled. (Similar observations have been made by Bolte and Endres [10, 11].)

The previous discussions do not apply, because two things go wrong simulta-
neously. First, the fact that the scattering matrix is frequency-dependent implies
that the reflection law for the cylinder kernel (or the other standard time-dependent
kernels, those for the heat, wave, and Schrödinger equations) is nonlocal in t. (This
effect has been studied in detail, for a single Robin endpoint, in [12].) Second,
the Kostrykin–Schrader identity S

2 = I fails, and consequently nonperiodic closed
paths make nontrivial contributions to the traces of kernels (including the total
vacuum energy).

These issues already arise for the simplest of compact quantum graphs, the
interval, when it is equipped with a Robin boundary condition:

(34) • •.....................................0 L u′(0) = αu(0) (α > 0), u(L) = 0.

The mathematical behavior and quantum field theory of this model have been
studied in [32, 33, 39, 12, 34]. (A Robin-type condition at the central vertex of
an infinite star graph was treated in [20] and [7].)

It is instructive to investigate

(1) the local energy density, E(x);
(2) the total energy, E;
(3) the density of states, ρ(ω).

(There is also a local spectral density, but we shall not belabor that point here.
See [21].) In general, each Robin quantity is equal to the corresponding Neumann
quantity plus a correction dependent on α.

6.1. Analysis by multiple reflection. The following picture emerges from
[12, 34] and the analogy with billiards discussed below. There are three types of
closed paths (besides the one of zero length):
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(1) Gutzwiller type (periodic orbits). For them E(x) is uniform in space. E
carries a factor of order L (is an “extensive” quantity); ρ(ω) also carries
a factor of order L and is oscillatory.

(2) Weyl type (roughly analogous to retracing nonperiodic paths). For them
E(x) is concentrated near an endpoint. E involves no factor L in its
numerator; ρ(k) has no factor L and is not oscillatory. These terms in ρ

are the boundary terms in the well-known Weyl series [16].
(3) Sieber type (roughly analogous to nonretracing nonperiodic paths, but no

longer ignorable as they were in Sec. 4). For them E(x) is concentrated
near an endpoint. E has no factor L; ρ(ω) has no factor L but is oscilla-
tory. These terms are not part of the Weyl series, and they are of higher
semiclassical or adiabatic order than Gutzwiller terms. (“Semiclassical”
becomes meaningful when ~ is introduced via 1

kL = ~

pL .)

To clarify this classification we point out the analogy with the well-known
situation in rectangular billiards.

(1) Periodic paths yield the Gutzwiller oscillations [3, 17, 25] (Fig. 3).

........
........
........
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........
........
........
.......
........
........
........
........
........
........
........
........
............................................................................................................................................................................................................................................................................

........
........

........
........

........
........

........
........

........
........

........
........

........
........

........
.

Figure 3. A periodic path in a rectangle.

(2) Nonperiodic paths perpendicular to edges, or hitting corners, yield the
edge and corner terms in the Weyl series (Fig. 4).

.................................................................................................... .............
.

...................................................................................................
.

.............. .................................................................................................... .............
.

...................................................................................................
.

........................................................................................................... .............
.

............................................................................................
.

.............. ................................................................................................................................ .............
.

...............................................................................................................................
.

..............

...............................................................................................................................
......
..

..............
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............
..............

Figure 4. Typical retracing nonperiodic closed paths in a rectan-
gle. The one in the middle bounces twice from the left side of the
rectangle and once from the right; such “long” paths individually
make nonsingular contributions to the boundary vacuum energy,
but their effects must be combined with that of the single-bounce
paths to constitute the entire Weyl surface term.

(3) Nonperiodic paths with transverse drift yield non-Weyl, non-Gutzwiller
terms associated with the edge regarded as a special periodic orbit (Fig. 5).
We call these Sieber paths because of their prominence in [42, Sec. 2.3]
and [41, Sec. 2.2]. (Of course, the choice of the labels “Gutzwiller” and
“Sieber” is a somewhat arbitrary convenience.)
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Figure 5. A nonperiodic orbit that contributes to a correction
to ρ. The full effect of the family of similar orbits near the left
edge of the rectangle can be described as a contribution of the
edge itself, a periodic orbit [42]. The resulting contribution to the
energy density is concentrated near that boundary [18].

6.2. Analysis by the trace formula. It must be possible to calculateE from
(9) and the trace formula (32). At first glance, however, there is a contradiction
with the foregoing considerations, because the trace formula refers only to Weyl
terms and periodic paths.

Let us examine the situation more closely. The counting function, N(ω) ≡
∫

ρ(ω) dω, satisfies N(ω) = 0 when ω < 0. When ω > 0, for the Robin–Dirichlet
interval (34) one has

(35) N(ω) =
Lω

π
+ C′ +

1

π
tan−1 ω

α
+ Im

∑

p,r

1

πr
Ap

reiωrLp ,

hence by differentiation

ρ(ω) =
L

π
+ Cδ(ω) +

α

π

1

ω2 + α2
(36)

+ Re
∑

p,r

Lp

π
Ap

reiωrLp + Im
∑

p,r

1

π
Ap

r−1 dAp

dω
eiωrLp

= Weyl series + Gutzwiller terms + Sieber terms.

Here there is only one p, with Lp = 2L, and −Ap is the Robin reflection coefficient,

(37) σ
(0)
11 =

ω − iα
ω + iα

;
dσ

dω
=

2iα

(ω + iα)2
.

So the factor

Ap

r−1

(

iLpAp +
dAp

dω

)

that emerges from the Gutzwiller and Sieber terms taken together contains the
factor

(38) L+
α

ω2 + α2

— the same factor that appears in (36) in the Weyl terms. The first term in
(38) is extensive. The second term, which vanishes in a scale-invariant model, is
associated with the boundary. The Sieber terms are smaller than the Gutzwiller
terms by factors of order

(39) Ap
r−1 dAp

dω

/

LpAp
r = O

(

1

L
√
ω2 + α2

)

.

Thus the resolution of the apparent paradox is twofold:
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• The ω derivatives of the amplitudes Ap cannot be neglected, and they
yield Sieber terms.
• In global quantities (density of states, total energy) the Sieber terms,

being associated with an endpoint instead of a whole edge of the graph,
are “indexed” by periodic orbits. In local quantities, though, they must
be assigned to nonperiodic closed orbits.

In [12] the convergence of the closed-path sums for the Robin interval is studied
numerically and analytically. The sum is conditionally distributionally convergent,
even for ω on the real axis, but the strength of the δ(ω) at the origin is sensitive to
the ordering of the terms.

7. Final comments

The image method is the classic approach to boundary-value problems with
only one essential spatial dimension. In multidimensional problems the closest ana-
logue of the image method is multiple reflection in billiards [1] or multiple scattering
in potentials [2, 4]. These should not be confused with geometrical optics [3] or
semiclassics [4] in those respective situations; in the latter, stationary-phase ap-
proximations are made. The beauty of quantum graphs (and also of rectangles and
parallelepipeds) is that the

spectrum↔ paths

connection can be separated from the high-frequency approximation, with calcula-
tions still feasible. (In higher dimensions, the paths in the multiple-reflection/scat-
tering expansion are generally not “classical”. In graphs, the paths are classical on
the edges and nonclassical at the vertices, which are singularities where a semiclas-
sical picture breaks down.)

Vacuum energy density (or the cylinder kernel) is more sensitive to global
geometry than is the (small-t asymptotics of the) heat kernel. It contains the
extra information in a more accessible and intuitive form than does the resolvent
kernel (or the local density of states), because magnitudes are easier to grasp than
oscillations; its sign still contains some phase information. It deserves more study
by mathematicians.
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