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The report has two themes: the relation between Casimir energy and the analysis of
spectral oscillations by periodic orbits, and the renormalization of energy densities
near boundaries and the issue of their consistency with renormalized total energies.

1 The Twisted Periodic Model

1.1 The Facts

We1 recently considered a massless scalar field in one spatial dimension satis-
fying the boundary condition φ(t, L) = eiθφ(t, 0) and similarly for ∂φ

∂t , where
θ is a fixed angle; that is, the field takes values in a line bundle over S1.
The normal modes have wave numbers (2πn + θ)/L (n ∈ Z) and hence two
sequences of eigenfrequencies, ω±i = (2πj± θ)/L (j ∈ N or Z+). The vacuum
energy is

Eθ = − π

12L

[
2− 6

θ

π
+ 3

(
θ

π

)2
]
. (1)

It is noteworthy that the extreme values, E0 = − π
6L and Eπ = + π

12L , come
when the two sequences coincide and hence the spectrum exhibits the largest
gaps, while Eθ = 0 for θ ≈ 0.42π, close to the value θ = π

2 where the full
spectrum is equally spaced. Initially this and similar observations suggested
that Casimir energy should be suppressed in chaotic systems, where eigen-
values are less clumpy than in integrable ones. However, closer inspection of
the calculation shows that the result owes more to the phases of the individ-
ual eigenvalue sequences than to their relative position. My current belief,
therefore, is that attention to eigenvalue oscillations (especially their loca-
tions along the frequency axis) will be most valuable in connection with the
notorious question of the sign of vacuum energy in various configurations.

1.2 Analysis by Periodic Orbits

In the original paper1 (1) in effect was derived in two ways, directly from
the eigenvalue spectrum and from the asymptotics of the cylinder kernel (see
below). Here we outline a third derivation, more in keeping with the modern
literature of quantum mechanics. We construct the nonrelativistic quantum
Green function (solving (H − E)G(E, x, y) = δ(x − y), with H = −d2/dx2)
from the periodic orbits of the related classical system. In this simple model
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this construction reduces to the elementary “method of images”. The Green
function for infinite space is G∞(ω2, x, y) = i

2ω e
iω|x−y|. That for the twisted

cylinder is therefore

GL,θ(ω2, x, y) =
∞∑

n=−∞
G∞(ω2, x, y + nL)einθ. (2)

It follows that the level density is

ρ(ω) =
∑

j

δ(ω − ωj) =
2ω
π

ImTrG(ω2)

=
2ωL
π

ImG(ω2, x, x) =
iL

π
Im

∞∑
n=−∞

eiω|n|Leinθ.

(3)

In the first exponent one recognizes the action of the periodic orbit that circles
the universe n times; in the second, θ plays a role analogous to the famous
Maslov index, which does not occur in this model.

Separating the term from n = 0, we have

ρ(ω) =
L

π
+
L

π

∞∑
n=1

[cos(ωnπ + nθ) + cos(ωnπ − nθ)]

≡ ρav(ω) + ρosc(ω). (4)

The average term of the eigenvalue density contributes to the energy precisely
the vacuum energy of infinite space, which is removed by renormalization.
The oscillatory term gives rise to the Casimir energy as follows. Define a
regularized energy by

E(t) ≡
∫ ∞

0

1
2ωρ(ω)e−ωt dω =

∑
j

1
2ωje

−ωjt. (5)

As t→ 0 the divergent term is exactly the ρav term, and the contribution of
ρosc is

Eosc(t) = − L

π

∞∑
n=1

−t2 + (nL)2

[t2 + (nL)2]2
cos(nθ), (6)

whose limit is the renormalized energy

Eosc(0) = − L

π

∞∑
n=1

1
(nL)2

cos(nθ) = − π

L
B2

(
θ

2π

)
, (7)

where B2 is a Bernoulli polynomial. Equations (1) and (7) agree.
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2 Periodic Orbit Theory

The relation between eigenvalues and periodic orbits traces back to the 19th-
century Poisson summation formula (which suffices to treat the simple one-
dimensional models in this talk). It has been extended to surfaces of con-
stant negative curvature,2 cavities,3 manifolds,4 chaotic potentials,5 integrable
potentials,6 and potentials of intermediate symmetry,7 and is now well known
in atomic, nuclear, molecular, and condensed-matter physics. Its connection
with Casimir energy is at least implicit in the work of Balian and Duplantier8

and has been in the backs of the minds of many people in the field,9,10,11 but
I believe that Schaden and Spruch12 were the first to use periodic orbits as
a serious tool for the calculation of vacuum energies. (See also Mazzitelli et
al.13 and the contribution of Mazzitelli to this volume.)

Here I summarize the facts catalogued in a number of recent papers14,1,15

about the relationships among the vacuum energy, the integral kernels asso-
ciated with the differential operator in question, and the eigenvalue density
(or comparable local quantities for energy density calculations and/or systems
with continuous spectra).

First it is necessary to define the Riesz means of the eigenvalue sequence.
Let N(λ) be the number of eigenvalues ωn

2 of the operator H that are less
than or equal to λ. Note in passing that the regularized energy density (5)
can be written as a Stieltjes integral

E(t) = − 1
2
d

dt

∑
n

e−ωnt = − 1
2
d

dt

∫
e−t

√
λ dN(λ). (8)

Now define the Riesz mean of order α with respect to λ as

Rα
λN(λ) =

1
α!
λ−α

∫ λ
α· · ·

∫
N(λ̃) dλ̃, (9)

where α successive indefinite integrations are intended. (That is, Rα
λN is an

average of N over an α-dimensional simplex). Similarly, the Riesz means with
respect to the variable ω =

√
λ are defined by

Rα
ωN(ω) =

1
α!
ω−α

∫ ω
α· · ·

∫
N(ω̃2) dω̃. (10)

The important equations of the subject fall into three groups:
(1) N itself does not have a literal asymptotic expansion at high fre-

quencies beyond the famous first term of Weyl, precisely because of the spec-
tral oscillations that are the center of our attention and the source of the
Casimir energy. Each integration, however, averages out the oscillations by
one degree to yield a rigorous asymptotic formula with one more term. Thus
one has, as λ→ +∞,

Rα
λN =

α∑
s=0

aαsλ
(d−s)/2 +O

(
λ(d−α−1)/2

)
, (11)
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Rα
ωN =

α∑
s=0

cαsω
d−s +

α∑
s=d+1

s−d odd

dαsω
d−s lnω +O

(
ωd−α−1 lnω

)
. (12)

The coefficients a, c, d are determined by the operatorH and hence ultimately
by the mechanical system whose Hamiltonian it is (including, in particular,
the geometry of the region, M).

(2) The famous heat kernel expansion says that the Green function
K(t, x, y) ≡ 〈x|e−tH |y〉 has the small-t behavior

∞∑
n=1

e−tωn
2

=
∫

M

K(t, x, x) dx ∼
∞∑

s=0

bst
(−d+s)/2. (13)

The heat-kernel coeffients are related to the Riesz-mean coefficients by

bs =
Γ((d+ s)/2 + 1)

Γ(s+ 1)
ass . (14)

More pertinent to Casimir calculations is the cylinder (Poisson) kernel,
T (t, x, y) ≡ 〈x|e−t

√
H |y〉 (which solves a boundary-value problem for the el-

liptic equation ∂2u
∂t2 −Hu = 0 in the space R+×M with data on the face M).

Its expansion as t→ 0 is
∞∑

n=1

e−tωn =
∫

M

T (t, x, x) dx ∼
∞∑

s=0

est
−d+s +

∞∑
s=d+1

s−d odd

fst
−d+s ln t, (15)

where the coefficients are related to those in (12) by

es =
Γ(d+ 1)
Γ(s+ 1)

css if d− s is even or positive; (16)

fs = − Γ(d+ 1)
Γ(s+ 1)

dss , es =
Γ(d+ 1)
Γ(s+ 1)

[ess + ψ(d+ 1)dss] (17)

if d− s is odd and negative.

(3) So far we have discussed two sets of quantities in parallel. They are
related this way:

css =
Γ((d− s+ 1)/2)Γ((d+ s)/2 + 1)

2sΓ((d+ 1)/2)Γ(d/2) + 1)
ass if d− s is even or positive,

(18)
whereas if d− s is odd and negative

dss =
(−1)d+1Γ((s− d)/2)

(s− d− 1)! d! Γ(−(d+ s)/2)
ass , but css is undetermined by the arr .

(19)
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Combining these equations with those above for the kernel expansions, we see
that the cylinder coefficients determine the heat coefficients, but not entirely
vice versa:

es = π−1/22d−sΓ((d− s+ 1)/2)bs if d− s is even or positive, (20)

whereas if d− s is odd and negative

fs =
(−1)(s−d+1)/22d−s+1

√
π Γ((s− d+ 1)/2)

bs , but es is undetermined by the br . (21)

The “new” coefficients, es with d − s odd and negative, are nonlocal in
their dependence on H and the geometry of its spatial domain, M . It is only
they that are sensitive to the existence of periodic orbits and to the shape
effects (often miscalled “topological”) that give rise to Casimir energy. In
particular, the renormalized vacuum energy is

E = − 1
2e1+d + possible local terms. (22)

(The local terms may depend on the detailed definition of the renormalization
prescription, but the nonlocal term does not.) Because the cylinder kernel
probes the spectrum of H and the geometry of M more deeply than the heat
kernel does, it is not surprising that it is harder to calculate. Nevertheless,
finding the first few terms in the expansion (15) is easier than finding the
whole spectrum of eigenvalues or the whole spectrum of periodic orbits.

3 Local Energy Density

3.1 Analysis by Closed Orbits

The quantum energy density T 00(x) is related to closed classical paths that
are not necessarily periodic; that is, they start and end at x but not necessarily
with the same initial and final direction. For a scalar field in 2-dimensional
flat space-time the formula for T 00 contains a free parameter:

T 00 =
1
2

[(
∂φ

∂t

)2

+
(
∂φ

∂x

)2

− 4ξ
∂

∂x

(
φ
∂φ

∂x

)]
. (23)

The conformally invariant choice is ξ = 0, but the theoretically simplest value
is15 ξ = 1

4 ; in particular, T 00 for that case has the most direct relation to the
cylinder kernel.

For a finite interval with a Dirichlet or Neumann condition at each end,
the regularized T 00(x) can be written as a sum over all paths that start at x,
bounce off the ends arbitrarily often, and return to x (cf. Fig. 1 of Schaden
and Spruch12). The sum can be evaluated in closed form as a complicated
combination of hyperbolic functions (unpublished).a After renormalization it

aThis calculation was aided by Mathematica Version 4, which also created the two figures
that follow.
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Figure 1. Vacuum energy on an interval (ξ = 1
4
)

exhibits Casimir energy (independent of ξ) throughout the interval, plus a
term (proportional to ξ) that concentrates at the boundaries (but does not
vanish at the center); see Fig. 1. The boundary behavior is more clearly seen
in the simple problem of a single boundary at x = 0. With an exponential
cutoff analogous to (5) one finds (for ξ = 1

4 )

T 00
bdry(t, x) = − 1

2π

∫ ∞

0

cos(2kx)e−ktk dk = − 1
2π

t2 − 4x2

(t2 + 4x2)2
. (24)

This function satisfies ∫ ∞

0

T 00
bdry(t, x) dx = 0; (25)

as long as the cutoff is in place, the boundary energy density does not con-
tribute to the total energy (which must be independent of ξ). As the cutoff
is removed, the energy of one sign immediately adjacent to the boundary (see
Fig. 2) is squeezed into an increasingly narrow region and eventually disap-
pears, leaving an uncompensated renormalized energy density of the oppo-
site sign in a larger neighborhood of the boundary, which formally produces
an infinite total energy when t = 0. (Similar effects have been observed
earlier;16,17,18 see also the contribution by Graham to this volume.)

3.2 Consistency of a Model Gravitational Equation

The divergent energy density near a boundary was a matter of controversy two
decades ago19,20,21 and remains so today (see, for instance, the contributions
of Jaffe and his associates to this volume). Not only does it cast doubt on the
allegedly finite renormalized total energy of finite-volume systems; it appears
to be incompatible with a meaningful Einstein gravitational field equation
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Figure 2. Closeup of the energy density near a boundary

with the local stress tensor T µν(x) as source. The results of the previous sub-
section support the old suggestion20 that the nonintegrable vacuum energy
can be considered to be cancelled by a singular term concentrated exactly
on the boundary. Here we address the question of whether the nonintegrable
term, suitably interpreted, can be treated as a source in a differential equa-
tion; this is very recent, unpublished research in collaboration with Ricardo
Estrada, Klaus Kirsten, and Kimball Milton.b

We consider a linearized 1-dimensional analog of Einstein’s equation with
source equal to (24) on one side only:

d2y

dx2
= −2πT 00

bdry(t, x) =
t2 − 4x2

(t2 + 4x2)2
θ(x). (26)

The solution is

y(t, x) =
1
8

ln
(

1 +
4x2

t2

)
θ(x) +Ax+B, (27)

where the last two terms are the general solution of the homogeneous equation,
which we henceforth ignore. We take the limit t ↓ 0 in both (26) and (27) in
the sense of finite parts of distributions22 (discussed also by Elizalde in this
volume). At small t (27) becomes

y ∼ 1
4

ln
(

2x
t

)
≡ 1

4
ln

(
x

x0

)
. (28)

In a maneuver familiar from ordinary renormalization theory, we reinterpret
the vanishing parameter t

2 as an arbitrary but finite parameter x0 , which

bOur gathering was kindly supported financially by the Baylor University Mathematics
Department.
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introduces a new length scale into the theory. The limit of (26) is more
subtle, requiring the finite-part operation:

d2y

dx2
= −2πT 00

bdry ∼ −F.P.
(
θ(x)
4x2

)
− 1

4
(1 + lnx0)δ′(x). (29)

The finite part is defined so that it integrates to 0; the operation is not scale-
invariant, and that fact accounts for the apparent dimensional incoherence of
the δ′ lnx0 term. (Note that the singular boundary term is proportional to
δ′, not δ; the δ contribution vanishes because of (25).) Careful attention to
the definitions22 shows that (28) is indeed the solution of (29).

In other words, (26) survives the renormalization process as a mathemat-
ically consistent differential equation. I conjecture that the same thing hap-
pens to the Einstein equation with source including the notorious x−2 terms,
proportional to boundary curvature squared, that arise in 3-dimensional elec-
tromagnetism with perfect conductors.19,21 Of course, only experiment can
determine whether such idealized renormalized theories provide useful ap-
proximate models of laboratory systems built of real materials.

4 Conclusions

• Vacuum energy is related to the oscillatory fine structure of the spectral
distribution, hence to closed or periodic classical trajectories.

• The phases of spectral oscillations determine the sign of vacuum energy.

• Cut-off energy densities are consistent with cut-off total energies (at least
in the simplest models; further calculations or a more abstract analysis
will be needed to confirm this conclusion in general).

• When the cutoff is removed, there appears to be a consistent renormal-
ization procedure for using a boundary-divergent energy density as a dis-
tributional source in a differential equation. (This also requires further
investigation.)

• Casimir-type calculations (even for unphysical models) are of mathemat-
ical interest, because they cast light on the spectral mathematics and
related classical physics and geometry of partial differential operators of
the Hamiltonian type. The benefits flow from physics to mathematics as
well as vice versa.
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