
Chapter 3

Vector Spaces and Linear Functions

3.1 The Definition of a Vector Space

We began by saying that, loosely, vectors are any things that can be

added to each other and multiplied by numbers. Two things were implicitly

assumed then:

(1) The sum or product is always defined (“makes sense”, “exists”). (We

say that the space is closed under the addition and scalar-multiplica-

tion operations.)

(2) The operations satisfy algebraic properties that make them worthy of

their names.

These are the things that have to be made explicit in the formal, precise

definition:

Definition: A (real) vector space is a set V of elements ~x, ~y, ~z, . . .

equipped with

(A) an operation of addition, such that the sum, ~x+~y, of any two elements

of V is an element of V, and

(B) an operation of scalar multiplication, such that the product, r~x, of

any real number with any element of V is an element of V;

such that, moreover, the following conditions hold for all real numbers r, s,

. . . and all elements ~x, ~y, . . . of V:

1. (~x+ ~y) + ~z = ~x+ (~y + ~z) (associativity of addition)

2. ~x+ ~y = ~y + ~x (commutativity of addition)

3. There is an element ~0 in V such that ~x+~0 = ~x for all ~x.

(existence of an additive identity)

4. ~x+ (−1)~x = ~0 (existence of additive inverses)

5. 1~x = ~x (existence of a multiplicative identity)
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6. r(s~x) = (rs)~x (associativity of multiplication)

7. r~x+ s~x = (r + s)~x (distributivity)

8. r~x+ r~y = r(~x+ ~y) (another kind of distributivity)

In summary, the usual algebraic manipulations with addition and numerical

multiplication are valid. (But note that it is generally meaningless to divide

one vector by another.)

“Vector” will be synonymous with “element of V” — provided that V
is the only vector space under discussion, so that there’s no ambiguity. The

real numbers (in their role as potential multipliers of vectors) are called

“scalars”.

Some vector spaces are based on complex scalars instead of real ones.

Everything we say about real vector spaces (except their spatial visualiza-

tion) will also be true of complex spaces, until we reach the topics of inner

products and existence of eigenvectors in later chapters.

Examples

At the beginning of the book we looked at several examples of vectors:

• directed physical quantities such as velocities

• n-tuples of numbers

• polynomials

• solutions of homogeneous linear differential equations.

In all cases the operations of addition and scalar multiplication were natural

and familiar; it is easy (although a bit tedious) to verify that the conditions

(A), (B), 1–8 are satisfied in each case. Since then we discovered a new

example: the space of all m× n matrices is a vector space.

Example 1. Prove that R3 is a vector space. (The space of n-tuples

of scalars is called Rn or Cn, depending on whether the scalars are real or

complex.)

Solution: In this case the space V = R3 comprises all triples of (real)

numbers, (x1, x2, x3) . The definitions of addition and scalar multiplication

for these objects were stated in Sec. 1.1, and it is obvious that the resulting

sums and products are again objects of the same type, so (A) and (B) do

not require any additional proof. So, we proceed to the 8 “axioms” in the

definition of a vector space. We’ll start with the seventh one, r~x + s~x =
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(r + s)~x, just to have an example that involves both addition and scalar

multiplication. Let us write it out in full detail, for an arbitrary vector ~x

and arbitrary scalars r and s:

r(x1, x2, x3) + s(x1, x2, x3) = (r + s)(x1, x2, x3).

Using the definitions of scalar multiplication and addition, and the ordinary

distributive law for addition and multiplication of numbers, we can see that

the left side of this equation really is equal to the right side:

r(x1, x2, x3) + s(x1, x2, x3) = (rx1, rx2, rx3) + (sx1, sx2, sx3)

= (rx1 + sx1, rx2 + sx2, rx3 + sx3)

=
(

(r + s)x1, (r + s)x2, (r + s)x3

)

= (r + s)(x1, x2, x3).

The pattern is the same for each of the other axioms: it expresses some

familiar property of numbers, together with the definitions of the two vector

operations. We will not write out the verifications in full detail (except as

homework exercises). The only axiom that requires extra comment is the

third, the existence of the zero vector. In that case we need to point out

that the zero vector is the string of numbers whose elements are all zeros:

~0 = (0, 0, 0).

Example 2. Prove that the space P of all polynomials is a vector

space.

Solution: The hardest part of this proof is dealing with a notation

general enough to handle all possible polynomials at once. A polynomial (in

one variable, t) is a function of the form

p(t) = a0 + a1t+ a2t
2 + · · · + ant

n

=

n
∑

j=0

ajt
j .

The integer n will be different for different polynomials.* To see that addi-

tion is well-defined, let

p(t) =
n
∑

j=0

ajt
j and q(t) =

m
∑

j=0

bjt
j

* For any particular polynomial, each aj is a particular number, but t remains
a variable. Some of the aj may be 0, but normally it is tacitly understood that the
leading coefficient, an , is not zero (except in the special case n = 0, where there
would be nothing left in the expression if a0 = 0 were omitted).
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be two polynomials. Let N be the larger of n and m (N ≡ max(n,m)), and

whenever j is so big that aj or bj did not occur in the corresponding original

polynomial, define that coefficient to be 0. Then by the rules of algebra,

(p + q)(t) ≡ p(t) + q(t) =

N
∑

j=0

(aj + bj)t
j

— which, of course, is a polynomial, so (A) is true. Similarly but more

simply, scalar multiplication is just multiplication of each coefficient in the

polynomial by the scalar in question. We turn now to the verification of the

8 axioms; for variety, let’s start with the commutative law this time.

(q + p)(t) =

N
∑

j=0

(bj + aj)t
j

=
N
∑

j=0

(aj + bj)t
j

= (p+ q)(t).

Again it is fairly easy to see that all of the other axioms follow immediately

from the corresponding properties of real numbers. The zero vector in this

case is the zero function,

p(t) = 0 for all t

= a0 with a0 = 0.

We can get new examples from old by restricting them; the new, smaller

spaces are called subspaces (see Chapter 5). For example, instead of con-

sidering the space of all polynomials, let’s look just at the space P2 of all

quadratic polynomials,

p(t) = at2 + bt+ c.

By “quadratic” we mean “of degree less than or equal to 2.” You can prove

that this is a vector space by going through the argument in Example 2

without the complications of summation signs and arbitrary degrees.† Notice

† As we’ll emphasize in Chapter 5, a better way to prove that such a set is a
vector space is just to check that conditions (A) and (B) are satisfied — that is,
addition and multiplication don’t take us out of the set concerned — since the 8
axioms are then inherited automatically from the larger space.
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that the polynomials with a = 0 must be included, else the set would not be

a vector space:

(3t2 + 1) + (−3t2 + 2t+ 2) = [0t2+]2t+ 3

(thus the set of polynomials of degree exactly 2 is not closed under addition).

Sometimes one has reason to enlarge a vector space, instead of restrict-

ing it. Another of our old examples was the space of functions

C cos t+D sin t

that satisfy a certain differential equation. This is a small part of a much

larger vector space containing all (real-valued) functions of a real variable t

(varying, say, from −∞ to ∞). This space includes many “crazy” functions

whose graphs are impossible to draw — for instance, there are functions

that are not continuous for any value of t. It is useful to restrict atten-

tion to smaller spaces of “nice” functions that satisfy certain conditions; for

example,

C(−∞,∞) ≡ the space of all continuous functions of t;

C1(−∞,∞) ≡ the space of all functions whose derivatives are continuous.

C1 is a subset of C, and our original space of solutions of the differential

equation is a subset of C1. One of the most important modern applications

of linear algebra is to solve many problems involving differential equations,

etc., by regarding functions as vectors. Notice that the variable t in such

examples is playing the same role as the index j in a vector space of n-tuples,

~x = (x1, . . . , xj , . . . , xn).

Earlier we saw that the differential equation provided an example of

the usefulness of looking at complex scalars. Another complex vector space,

of importance to physicists, is the Hilbert space H of possible states of a

quantum-mechanical system (e.g., all states of the electron in a hydrogen

atom). (In fact, the complex numbers enter here in a more fundamental way

than in the differential-equation case.)

Linear algebra is the study of what all these various vector spaces have

in common. We emphasize that this subject is the foundation, the heart and

soul, of modern applied mathematics.
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Exercises

3.1.1 Complete Example 1 (“R3 is a vector space.”) by verifying the other

7 axioms.

3.1.2 Complete Example 2 (“The polynomials form a vector space.”) by

verifying the other 7 axioms.

3.1.3 Prove that C(−∞,∞) (the space of all continuous functions of a real

variable) is a vector space.

3.2 Linear Functions

Definition: A function on a vector space, D, taking values in another

vector space, W, is linear if it “commutes” with the vector operations:

(1) ~L(~x+ ~y) = ~L(~x) + ~L(~y) for all ~x and ~y in D,

(2) ~L(r~x) = r~L(~x) for all real r and all ~x in D.

(Here we wrote “~L ” to emphasize that the value of the function is a

vector. From now on, however, the arrow will usually be omitted.)

From a practical point of view, linear functions are more important than

vector spaces themselves. Typically, in an application one starts with some

function or operation that satisfies the linearity conditions (for example, the

differential operator d2

dt2
+ 4 in Example 4 of Sec. 1.1); then, to study that

operator or solve equations involving it, one looks for vector spaces D and

W in which that function acts. The precise choice of the domain D may be

made for technical convenience — it may not be completely dictated by the

original problem.

Remarks on terminology: Linear functions are also called linear

transformations, linear mappings, or linear operators. (“Operator” is usually

limited to cases where D and W are the same space.) If L is real-valued

(W = R) and linear, it is called a linear functional (see Example 7). These

alternative terminologies are especially common and useful in situations like

Examples 2–7 below, where the vectors themselves are already functions;

referring to both types of object as “functions” could be confusing. Another

possible source of confusion when the elements of D and W are functions is

that the argument, f , and the value, L(f), of the linear transformation L
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have arguments of their own that sometimes need to be written explicitly;

to help with this, several slightly fussy remarks about notation are included

in Example 2.

Example 1. Let D be R2 with typical element ~x ≡
(

x1

x2

)

and let W be

R2 with typical element ~y ≡
(

y1
y2

)

. Then the linear system

y1 = 3x1 + x2

y2 = −x1

defines a linear function,

~y = L(~x) = A~x,

specified by the matrix A =

(

3 1
−1 0

)

. (More generally, every m×n matrix

defines a linear function on Rn (as D) into Rm (as W); this general theory

will be developed later in this section.)

Proof: Let us verify that the conditions of linearity are satisfied. Let

us consider two elements of D,

~x =

(

x1

x2

)

and ~z =

(

z1
z2

)

.

(We use “~z ” because “~y ” is already taken in the notation of this example.)

Then

L(~x+ ~z) =

(

3(x1 + z1) + (x2 + z2)
−(x1 + z1)

)

=

(

3x1 + x2

−x1

)

+

(

3z1 + z2
−z1

)

= L(~x) + L(~z);

L(r~x) =

(

3rx1 + rx2

−rx1

)

= r

(

3x1 + x2

−x1

)

= rL(~x).

Example 2. Let D = P2 (the quadratic polynomials) and let W be

either P2 or P1 (the linear polynomials). Let L be the operation of differen-

tiation:

[L(p)](t) ≡ p′(t).

[Example: If p(t) = 3t2 − 2t, then [L(p)](t) = 6t − 2, and [L(p)](4) = 22.]

Since our vectors are functions in this case, L is a function on functions,

taking a function as input and producing a new function as output. This



96 3. Vector Spaces and Linear Functions

L is linear on D into W — see Exercise 3.2.8. Here we have been careful

to write “[L(p)](t)” and “[L(p)](4)” to make it clear that a function L(p)

(a polynomial in W) has been defined or constructed, which is now to be

evaluated at a point t or 4 (a number, generic or specific) to yield, finally,

another number. In practice, shorter notations of the types L(p)(t) and Lp(t)

are common. Would it make sense to group the symbols in the other order?

The notation L[p(t)] is indeed sometimes used when “p(t)” is thought of as

a pattern of symbols, rather than the value of a function at a point t. For

instance, our concrete example above could have been written more briefly

as

L(3t2 − 2t) = 6t− 2.

But such notations are potentially ambiguous: Does L[p(4)] mean p′(4)

(which is 22), or d[p(4)]
dt

= d(40)
dt

(which is 0)?

Example 3. Again let L be d/dt. Then L is linear as a function on

C1(−∞,∞) into C0(−∞,∞) ≡ C(−∞,∞). For this case, the two conditions

in the definition of linearity are basic theorems of elementary calculus, which

we take to be common knowledge.

Example 4. Let T be the operation on functions of multiplication by t:

[T (f)](t) ≡ t f(t).

[Example: If f(t) = 3t + 1, then [T (f)](t) = 3t2 + t.] It is easy to see that

T is a linear function on P2 into P3 , and also on C(−∞,∞) into itself. (See

Exercise 3.2.9.) More generally, for any fixed function c in C(−∞,∞) (say

c(t) = e−t
2

) we can define a function Mc from C(−∞,∞) into itself by

Mc(f) ≡ cf ; that is, [Mc(f)](t) = e−t
2

f(t).

Example 5. Let us generalize Examples 2 and 4: d/dt is linear on Pn
into Pn−1 (or into Pn , for that matter). T is linear on Pn into Pn+1 .

Example 6. A more advanced physical example: The electrostatic field

due to a distribution of electric charges in empty space is a linear function

of the charge density. This fact is called “the principle of superposition” in

courses on electromagnetism. (Without becoming technical about multiple

integrals and partial differential equations, we can’t be precise now about

which vector spaces are involved here as D and W.)
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Example 7. To approximate a definite integral numerically, one uses

a quadrature rule, such as Simpson’s rule or the trapezoidal rule. This is a

formula of the type

∫ b

a

f(t) dt ≈ Q(f) ≡
n
∑

k=1

ckf(tk),

where the tk are certain points in the interval [a, b] and the ck are certain

coefficients (independent of f). Like the definite integral itself, a quadrature

rule is a linear mapping from C[a, b] into R. (See Sec. 7.1 for more on this.)

Remark: The two equations in the definition of linearity can be sum-

marized in one equation:

L(r~x+ ~y) = rL(~x) + L(~y) (†)

for all scalars r and all vectors ~x and ~y. (To prove that a function is lin-

ear, you may either verify (†) or verify the conditions (1) and (2) in the

definition.) Furthermore, by induction, if L is linear, then it can be pushed

through any linear combination of vectors:

L

( N
∑

j=1

rj~xj

)

=

N
∑

j=1

rjL(~xj). (‡)

This last equation expresses the full power of linearity — the way in which

it is used. See Exercises 3.2.26–27 for further discussion.

Domain and codomain

This is a good place to insert some remarks about the concept of a

function in general (when the arguments (input; independent variables) and

values (output; dependent variables) are not necessarily numbers). Let S
and T be sets or “spaces” of any kind. (In our case, they are the vector

spaces D and W.) A function f on S into T is an assignment of an element

y ≡ f(x) in T to each element x of S. Such a situation is symbolized by the

shorthand

f :S → T .

Note that “into T ” means “taking values in T ”. It does not mean that

all of T is “reached” in this way. (On the other hand, it is ordinarily
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understood that f(x) is defined for every x in S. However, in the sections

of this book that treat nonlinear functions, we occasionally write things

like “f :R3 → R2” when we really have in mind functions f that might

be defined only in certain regions of R3; the excuse for this sloppiness is

avoiding complicated and pedantic statements.)
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f :S → T

The elements of S or T may be functions themselves. For example, d/dt

maps functions into functions, while

∫ 3

0

. . . dt

maps functions into numbers (it’s a linear functional).

With this generalized understanding of functions, we don’t really need

the concept of “function of several variables” anymore. A function f(x, y, z)

of three real variables becomes f(~x), a function of one variable ranging

through R3 (or a subset thereof).

Since our primary concern is with vector spaces and linear functions,

we shall now revert to the notation L, D, W instead of f , S, T , although

many of the definitions and remarks that follow apply to functions in general.

Thus, let L be a function on a set D into a set W. That is, if x ∈ D, then

L(x) is defined and is in W. In shorthand, L:D →W.

Definition: The set D (consisting of all the vectors (or other objects)

on which L is defined) is the domain of L, sometimes denoted domL.

Remark: When L is linear, part of the definition of “linear” is that D
is a vector space (and not just a fragment of one, such as the unit square

in R2).
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Definition: The set W in which L takes its values is the codomain

of L.

The crucial point is that this definition does not say that every point y

inW actually occurs as a value L(x). Therefore, we need to define a separate

concept, that of “range”, defined in Sec. 5.2.

Notice that if a setW satisfies the definition of codomain of L, then any

larger set (containingW as a subset) also satisfies the definition. This means

that there is a slight arbitrariness in the specification of the codomain of a

function. For instance in Example 2 above we observed that the operation of

differentiation, with P2 (the quadratic polynomials) as domain, is linear, and

that the result of differentiating any quadratic polynomial is a first-degree

polynomial. Therefore, we could regard that operator as having codomain

P1 and write L:P2 → P1 ; but we could also say that P2 is the codomain

and write L:P2 → P2 . In what follows we’ll see that this makes a difference

for matrix representations of L; in the first case it will be represented by a

2× 3 matrix, in the second case by a 3× 3 matrix.

In most situations, however, there is a “natural” codomain consisting of

all objects of the “type” that could reasonably be considered as candidates

for values of the function. For instance, a linear function L:R2 → R2 is

defined by the equations

y1 = 2x1 + x2 ,

y2 = 4x1 + 2x2 .

It is easy to see that the vector ~y =
(

1
0

)

, for instance, is not L(~x) for any ~x.

Nevertheless, one says that the codomain of the function is R2, to empha-

size that the values of the function are 2-component vectors, not numbers,

or 3-component vectors, or functions. This is the most common type of

appearance of the codomain concept.

Linear functions from Rn into Rp

Theorem 1: Any p × n matrix, A, defines a linear function L on Rn

into Rp:

yj =

n
∑

k=1

Ajkxk (j = 1, 2, . . . , p);

~y = A~x (~x ∈ Rn, ~y ∈ Rp).
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This theorem says that we get a linear function from any formula which

is “linear” in the elementary sense: it consists entirely of terms each of which

is of first degree in just one of the independent variables, like y = 3x1 + x2 .

Conversely, formulas which are “nonlinear” in the elementary sense, such as

y = x1
2−3x2 , define functions which are nonlinear in the vector-space sense

— unless such a formula happens to be equivalent to a linear one, as in the

case

y =
x1(x2

2 + 1)

x2
2 + 1

.

This is made clear by the next theorem.

Theorem 2: Conversely, every linear function L:Rn → Rp can be

expressed in terms of a matrix A as in Theorem 1. In fact, there is a rule

for finding A: The kth column of A is the result of applying L to the vector

êk ≡















0
...
1
...
0















which has a 1 in the kth row and 0 everywhere else.

Remarks: The definition of êk is summarized by

(êk)j = δjk .

Here δjk is the Kronecker delta symbol, defined by

δjk =

{

1 if j = k

0 if j 6= k

The set of vectors {êk}nk=1 is called the natural basis of Rn. The rule in

Theorem 2 is summarized thus:

The kth-column rule: The kth column of the matrix of L is the

image, under L, of the kth element of the natural basis.

Proof of Theorems: It’s easy to verify (generalizing Example 1)

that linear formulas give linear functions (Theorem 1), but the converse

(Theorem 2) is more profound. Given that

L

( N
∑

k=1

rk~xk

)

=

N
∑

k=1

rkL(~xk)
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for all vectors ~xk ∈ Rn, we want to show:

For any ~x ≡





x1
...
xn



 in Rn,

yj ≡ [L(~x)]j =
n
∑

k=1

Ajkxk (j = 1, . . . , p),

where Ajk = [L(êk)]j for each j and k.

Well, ~x =
∑n
k=1 xk êk implies that

L(~x) = L

(

∑

k

xkêk

)

=

n
∑

k=1

xkL(êk)

(by linearity). Therefore,

[L(~x)]j =

[

∑

k

xkL(êk)

]

j

=

n
∑

k=1

xk[L(êk)]j

(by definition of vector addition). But this is just
∑n
k=1Ajkxk , Q.E.D.

Observe that a linear function is completely determined by its action

on just a few vectors (here, the n vectors êk). We’ll have much more about

this in Chapter 4.

Remark: If p, the dimension of the codomain, is 1, then the matrix

has only one row — it is a row vector. This is the “philosophical” difference

between row vectors and column vectors: Row vectors represent linear func-

tionals mapping vectors into numbers (L:Rn → R), while columns represent

the fundamental vectors themselves. (A column vector can also be regarded

as a mapping of row vectors into numbers. And, of course, it is also the

matrix of a mapping of numbers into vectors, L:R→ Rp.)

Affine functions

In elementary algebra, a function of the form

y = f(x) = ax+ b
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(with a and b real numbers, and x and y real variables) is called “linear”.

But it is not linear by our definition:

f(rx+ z) = a(rx+ z) + b = (ar)x+ az + b,

but

rf(x) + f(z) = r(ax+ b) + az + b = (ar)x+ az + (1 + r)b.

An analogous function in higher dimensions is (for example)

y1 = x1 − 3x2 + 6

y2 = x1 + 4x2 + 12

The general pattern is

~y = F (~x) = A~x+~b,

where ~x is in Rn, ~y and ~b are in Rp, and A is a p× n matrix.

Such functions are called affine functions. (In older books they’re called

“nonhomogeneous linear functions”.) In abstract vector spaces the definition

is the following.

Definition: A function F :D →W is affine if

~F (~x) = ~L(~x) +~b (for all ~x ∈ D),

where L is a linear function on D into W and ~b is a (fixed) vector in W.

Technically, the affine functions include the linear functions, since ~b

could be ~0. However, occasionally the term “affine” may be used specifically

to emphasize that the function in question is not linear (~b 6= ~0). Analogy:

The real numbers are complex numbers; but sometimes we say “z is complex”

to mean that z is not real. Writers and readers of mathematics have to be

careful about such ambiguities, interpreting terms sensibly in each context;

the alternative would be an intolerably pedantic style.

Physical examples: The group of Euclidean motions (rotations and

translations) in R2 (or in a physical plane) consists of the functions

Fθ,~b(~r) = Rθ~r +~b, Rθ ≡
(

cos θ − sin θ
sin θ cos θ

)

.

Note that Fθ,~0(~r) = Rθ~r, a pure rotation (which is linear). (See Exercises

3.2.17–18.) In three-dimensional space, three angles are required to specify
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a rotation; otherwise, the Euclidean group can be described in the same way

as in dimension 2. (The detailed description of all the possible rotations

in dimension 3 and how they are related to each other is rather subtle,

requiring the notions of Euler angles and Lie algebra, which are beyond the

scope of this course. Introductions to these matters appear in advanced

physics courses on classical and quantum mechanics.) The group of Galilean

transformations consists of translations in space-time together with (linear)

transformations to moving frames of reference:

(~r ′, t′) = G~v,~b,β(~r, t);
~r ′ = ~r − ~vt+~b,

t′ = t+ β.

These are affine functions on R4 into itself. The 3-vector parameter~b and the

scalar parameter β can be grouped together into a 4-vector parameter. In

special relativity the Galilean transformations are replaced by the celebrated

Lorentz transformations, in which the t′ equation contains an ~r term.

Geometry and physics

Algebra and arithmetic are powerful and straightforward, but to make

full use of vectors and linear functions on them in physical applications, it is

also important to visualize what the linear functions are doing geometrically

— that is, how they move vectors (and lines and planes) around in space. You

should learn to recognize certain simple and frequently occurring motions as

they are represented by matrices. We have just mentioned rotations. Here

are some other examples; you might find it helpful to draw a sketch in each

case of one or more typical vectors ~r =
(

x
y

)

and the resulting vectors L~r.

The matrix

(

1 0
0 −1

)

represents a reflection of the y coordinate (also

called a reflection through the horizontal axis). This linear function changes

the sign of y while leaving x unchanged. Visualize that: The vector is flipped

“upside down”.

The linear function with matrix

(

0 1
1 0

)

interchanges x with y. By

trying this out on a few examples, such as

(

1
0

)

,

(

0
2

)

,

(

1
1

)

,

(

1
−2

)

,



104 3. Vector Spaces and Linear Functions

you should be able to see that this operation has the geometrical description

of a reflection through the diagonal line x = y.

Finally,

(

0 1
−1 0

)

is not a reflection, but rather a rotation through

a right angle. This is a special case of rotations as discussed above, but

you should also see it by considering a variety of example vectors, as in the

previous case.

More examples of matrices with simple geometrical interpretations are

given in Exercises 3.2.16–24.

Operations on functions

(Building new linear functions from old)

The following remarks are mostly reformulations of observations already

made in Chapter 2.

Addition: The sum of two functions is defined by

[f + g](~x) ≡ f(~x) + g(~x).

The sum of linear functions is linear. Addition of linear functions corre-

sponds to addition of their matrices: If L(~x) = A~x and K(~x) = B~x, then

[L+K](~x) = (A+B)~x.

Scalar multiplication: Similar remarks apply.

Composition: If we have functions K:U → V and L:V → W, then

their composition, L ◦K, is a function on U into W defined by

[L ◦K](~x) ≡ L
(

K(~x)
)

.

The composition of linear functions is linear. Composition of linear functions

corresponds to multiplication of their matrices: If L(~y) = A~y and K(~x) =

B~x, then [L ◦K](~x) = A(B~x) = (AB)~x.

An example involving infinite-dimensional vector spaces: The

most general second-order linear differential operator,

Af ≡ a(t) d
2f

dt2
+ b(t)

df

dt
+ c(t)f(t),

(

A: C2(−∞,∞)→ C0(−∞,∞)
)

,
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is built up by composition and addition from the operator d/dt and the

operators of multiplication by the fixed functions a, b, c.

Inversion: Given L:U → W, there may exist a function L−1:W → U
such that L ◦ L−1 = L−1 ◦ L = the identity function. That is,

L−1
(

L(~x)
)

= ~x for all ~x ∈ U , and L
(

L−1(~y)
)

= ~y for all ~y ∈ W.

The inverse of a linear function L is linear, and its matrix is the inverse of

the matrix of L.
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U W

→ L:U → W →

← L−1:W → U ←

Exercises

3.2.1 The equations

u = x− 2y, v = x+ 3y, w = x− 6y

define a linear function L:Rn → Rp.

(a) What are [the numerical values of] n and p?

(b) What is the matrix that represents L?

3.2.2 Prove or disprove that each of these functions from R2 into itself is

linear.

(a) f

(

x1

x2

)

=

(

x1 + 3x2

3x1 − x2
2

)

(b) f

(

x1

x2

)

=

(

x1 + 3x2

3x1 − 2x2

)

(c) f

(

x
y

)

=

(

x+ 4y
3x− y

)

3.2.3 Find the matrices representing these linear transformations of R3.

(a) L(~x) = (x1, x2 + 2x1, x3)

(b) L(~r) = (x, z, y − 3x)

(c) L(~r) = (z, y, x+ y + z)

(d) L(~x) = (x1 + x2, x2 − x1, x3 + x1 − x2)
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3.2.4 Referring to Example 5 of Sec. 2.2, and letting

~x =

(

2
−1

)

, ~z =





1
0
2



 ,

calculate B~x and A( ~B~x) and compare the latter with (AB)~x; calcu-

late A~z and B( ~A~z) and compare the latter with (BA)~z.

3.2.5 Suppose that

L

(

1
2

)

=

(

1
1

)

, L

(

−2
1

)

=

(

0
1

)

,

and that L is a linear function on all of R2. Find the matrix rep-

resenting L. Hint: Start by expressing the natural basis vectors ê1

and ê2 as linear combinations of

(

1
2

)

and

(

−2
1

)

.

3.2.6 Suppose that f :R3 → R2 is affine. Find the matrix A and vector ~b

such that f(~x) = A~x+~b, given that

f(~0) =

(

1
1

)

, f(ê1) =

(

2
0

)

, f(ê2) =

(

0
2

)

, f(ê3) =

(

−1
1

)

.

3.2.7 Show that under a change of origin in Rn as discussed in Sec. 1.3, an

affine function f :Rn → Rn remains an affine function, but a linear

function usually does not remain linear.

3.2.8 Verify that the operator of differentiation, acting as a function from

P2 to P1 , is linear. (Work out the derivatives of two polynomials,

a1t
2 + b1t+ c1 and a2t

2 + b2t+ c2 , and of their sum.)

3.2.9 Prove that the operation of multiplication by t (the argument variable

of the functions) is a linear function from Pn to Pn+1 .

3.2.10 Define A: C2(−∞,∞) → C(−∞,∞) by [A(f)](t) ≡ f ′′(t) + 2f ′(t) −
et f(t). Prove or disprove that A is a linear operator.

3.2.11 Define K: C[0, 1] → C[0, 1] by

K(f)(t) = t2f(t) +

∫ t

0

f(t̃) dt̃.

Show that K is linear (as a function of f).
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3.2.12 For u ∈ C(−∞,∞), let’s define Bu ∈ C(−∞,∞) by

Bu(x) =

∫ x

0

tu(t) dt.

Show that B is a linear function.

3.2.13 Here are two mappings defined on some space of continuously differ-

entiable functions. Determine whether each is linear or nonlinear.

(a) L(f) =
d2f

dt2
+ 4tf (b) L(f) =

df

dt
− 3f3

3.2.14 State a reasonable choice of domain and codomain for the mapppings

(differential operators) L in the previous exercise. (There is more

than one possible correct answer.)

3.2.15 Let D: C1 → C be the differentiation operator, and let T : C → C be

the operation of multiplication of a function (f(t)) by its variable, t.

(The domain of the functions f may be R or any fixed subinterval

of R.)

(a) Check that C ≡ DT −TD makes sense as a linear function from

C1 into C, provided that the domain of each operator is properly

interpreted. (C is called the commutator of the two original

operators.)

(b) Calculate C(f)(t) for f(t) = t2 + 3t.

(c) Calculate C(f)(t) for f = sin.

(d) Calculate C(f)(t) for an arbitrary function f ∈ C1.
3.2.16 Describe geometrically (using words like “rotation” and “reflection”)

the transformations of R3 represented by these matrices.

(a) A =





0 1 0
−1 0 0
0 0 1



 (b) B =





0 0 1
0 1 0
1 0 0



 (c)

C =





1 0 0
0 1 0
0 0 −1





3.2.17 The matrix Rθ =

(

cos θ − sin θ
sin θ cos θ

)

describes a rotation of R2 coun-

terclockwise through the angle θ.

(a) Calculate and compare RθRφ and Rθ+φ.

(b) What is R−1
θ ?
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3.2.18 Justify the description of Rθ (see the previous exercise) as a rotation

through angle θ by showing the following:

(a) ‖Rθ~r‖ = ‖~r‖ for all ~r (i.e., Rθ preserves the lengths of vectors).

(b) ~r · Rθ~r = ‖~r‖2 cos θ.

(c) detRθ is positive (i.e., Rθ preserves the orientation of R2).

3.2.19 The matrix X =





1 0 0
0 0 −1
0 1 0



 represents a 90◦ counterclockwise

rotation around the x axis in R3.

(a) Find the corresponding matrices Y and Z for rotations around

the other axes.

(b) Calculate XYX−1. Rotate a book in your hands to convince

yourself that the result is correct.

(c) Deduce geometrically (i.e., doing as little matrix multiplication

as possible) the five analogous products,

Y ZY −1, ZXZ−1, Y XY −1, ZY Z−1, XZX−1.

3.2.20 Find the matrix of the linear function A:R3 → R3 if:

(a) A is rotation by 90◦ around the axis ê3 .

(b) A is rotation by 180◦ around the axis ê2 .

(c) A is the reflection in the plane containing ê2 and ê3 .

3.2.21 Let ~a0 be a fixed vector in R3. Which of these transformations in R3

are linear?

(a) A(~r) = a0 (for all ~r) (b) A(~r) = ‖~r‖~a0

(c) A(~r) = ~r + ~a0 (d) A(~r) = (~a0 · ~r)~r
(e) A(~r) = (~a0 · ~r)~a0 (f) A(~r) = ~a0 × ~r

3.2.22 Find the matrix of the linear operator of reflection in the plane per-

pendicular to the unit vector ~a0 = α1ê1 +α2ê2 +α3ê3 . Hint: Use (e)

of the previous exercise to extract the component of a vector parallel

to ~a0 . Under reflection, this component changes sign while the rest

of the vector is unchanged.
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3.2.23 The linear function A:R2 → R2 with matrix

(

1 a
0 1

)

is an example

of a shear transformation. Describe it geometrically. (What happens

to points on a typical horizontal line, y = y0 ?)

3.2.24 If 0 < k < n, let P be the operator from Rn to Rk that maps

(x1, . . . , xk, xk+1, . . . , xn) to (x1, . . . , xk).

(P is called a projection operator.)

(a) Show that P is linear.

(b) Illustrate the action of P by a sketch, in the case where k = 1

and n = 2.

3.2.25 Which of these functionals on C[0, 1] (mappings from C[0, 1] to R) are

linear functionals?

(a)

∫ 1

0

t|p(t)| dt (b) max
0≤t≤1

p(t)

(c)

∫ 1

0

p2(t) dt (d)

∫ 1

0

p(t) sin2 t dt.

3.2.26 To prove that the condition (†) is equivalent to the definition of lin-

earity [conditions (1) and (2)], one must show that each implies the

other. The proof that (1) and (2) imply (†) is quite easy. What is

wrong with the following alleged proof that (†) implies (1) and (2)?

First, setting r = 1 in (†) yields L(~x + ~y) = L(~x) + L(~y),

which is (1). Second, setting ~y = ~0 in (†) yields L(r~x) =

rL(~x) +~0 = rL(~x), which is (2).

Insert the third step needed for a correct proof.

3.2.27 (a) Prove by mathematical induction that (‡) follows from (†) [or

from (1) and (2)].

(b) Since (†), (1), and (2) are trivial special cases of (‡), it follows

that (‡) is equivalent to the definition of linearity. Discuss the

advantages or disadvantages of using (‡) as the “official” defini-

tion of linearity. [Hint: Sometimes an important mathematical

concept arises as the hypothesis of a theorem; sometimes it arises

as the conclusion of a theorem.]
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3.3 Nonlinear Functions

In Sec. 1.4 we looked at nonlinear functions from R into Rp and observed

that they represent curves, either in Rp or in Rp+1. In Sec. 2.4 we looked

at nonlinear functions from Rn into R and their geometrical representations

by either graphs or level surfaces. Now we want to consider the general

situation, functions from Rn (or some subset thereof)* into Rp. As in the

special cases discussed earlier, there are several conceptual or geometrical

points of view that one can take toward such a function.

1a. If n = 2 or 3 and p = n, we may visualize the function as an attach-

ment of a vector to each point (a vector field).
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1b. The codomain may not have the same dimension as the domain, or

directions in one may not have any natural identification with direc-

tions in the other. Then it is hard to draw a picture, but the principle

is the same. Examples: ~f(~r) at each point ~r could be a symmet-

ric matrix (representing electric polarizability, or stress or strain, or

the index of refraction of a crystal). In the quantum mechanics of

an electron, ~f(~r) can be in C2. Or consider the location hit by an

artillery shell as a function of the elevation and azimuth of the gun:

~r = f(θ, φ) ∈ R2. (In this case we’d be more likely to sketch the

codomain than the domain.)

2a. If n < p, then ~f :Rn →֒ Rp may yield a parametrized submanifold.

That is, the range of ~f is a geometrical set that is n-dimensional, in

* In this section we shall write f :Rn →֒ R
p (rather than . . .Rn → . . .) to

indicate that the possible values of the independent variable of f belong to R
n but

the domain of f is not necessarily all of R
n. Later on, however, we shall usually

not bother to make this fine distinction.
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the sense that it takes n numbers (coordinates) to specify a point on

it, but it may (or may not) be “curved” so that it won’t fit into a flat

space of dimension less than p. If n = 2 and p = 3, the submanifold is

a patch of surface floating in 3-dimensional space. For example, the

formulas

x = R sin θ cosφ

y = R sin θ sinφ

z = R cos θ

(

R = constant, 0 < θ < π
4 , 0 < φ < 2π

)

embed a patch of R2 into R3 as a spherical cap (a fragment of a

sphere, with a circular boundary).

2b. If n = p, ~f may be a coordinate transformation. For example, replac-

ing the constant R by a variable r in the equations above gives the

standard definition of spherical coordinates in R3.

Limits and continuity

Not every function is tame enough to work with. Ideally, we would like

a function to be differentiable, so that it can be approximated locally by

a linear function, as described in the next section. Failing that, we would

like a function to be continuous, so that a small error in the input variable

~x will cause only a small error in the output, f(~x). In an abstract sense,

“most” functions satisfy neither of these conditions. However, most functions

encountered in practice — functions for which we can write down a formula

in terms of familiar, elementary functions, or solutions of equations expressed

in terms of such functions — are piecewise continuous (and differentiable):

They are continuous everywhere in their domains except possibly for some

isolated points or sets (lines, surfaces, etc.) of lower dimension than the

domain.† One needs to be able to recognize the places where continuity

fails, and to have a suitable language for describing what can happen there.

† It can be argued that any discontinuity that arises in a function representing
a physical quantity, such as temperature or index of refraction, is an artifact of a
mathematical idealization of the problem. When one looks at a discontinuity on
a sufficiently small scale, either (1) the “true” function has a rapid but smooth
variation there, or (2) the function becomes meaningless because the mathematical
model has broken down (for example, because real matter is made of molecules,
not continuum substances). This observation does not relieve us of the need to
deal somehow with the discontinuities that are present in the model itself, even if
only as a reason for rejecting the model for certain purposes.
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The fundamental notion involved here is that of a limit. Recall that in

single-variable calculus the definition of

lim
x→a

f(x) = b

is

For every ǫ > 0 there is a δ > 0 such that 0 < |x − a| < δ implies

|f(x)− b| < ǫ.

The absolute values here are our way of measuring distances between num-

bers. To extend the definition to vector functions f :Rn →֒ Rp, therefore,

we need the distance function on vectors, which is defined in terms of the

dot product:

‖~x− ~y‖ ≡
√

(~x− ~y) · (~x− ~y)

≡

√

√

√

√

m
∑

j=1

(xj − yj)2 for ~x and ~y ∈ Rm. (∗)

(Of course, if either n or p equals 1, the distance function reverts to the

elementary one.)

Remark: This distance is the length of the vector ~x− ~y. So the more

fundamental concept is the length of a vector in Rm,

‖~x‖ ≡

√

√

√

√

m
∑

j=1

xj2 .

Sometimes (for instance, in Exercise 3.3.2) it is convenient or necessary to

use some other measure of the size of a vector. For example, we might define

|~x| ≡ max
1≤j≤m

|xj |.

As far as limits are concerned, it doesn’t really matter which definition of

the size of ~x−~y is used, because if ‖~x−~y‖ is small, then |~x−~y| is also small,

and vice versa. To see this, note that

m
∑

j=1

xj
2 ≤ m max

1≤j≤m
xj

2 = m

(

max
1≤j≤m

xj

)2

,
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so that

‖~x‖ ≤
√
m |~x|,

and also
(

max
1≤j≤m

xj

)2

≤
m
∑

j=1

xj
2,

so that

|~x| ≤ ‖~x‖.

Definition: lim
~x→~a

f(~x) = ~b means that

For every ǫ > 0 there is a δ > 0 such that 0 < ‖~x− ~a‖ < δ implies

‖f(~x)−~b‖ < ǫ.

Such a limit statement makes two separate assertions: that the limit

exists, and that it is equal to the particular vector ~b. Often only the first of

these is important, and the relevant statement begins “There exists a ~b ∈ Rp

such that . . . .”

Definition: f is continuous at ~x ∈ Rn if

lim
~z→~x

f(~z) = f(~x).

This statement makes three assertions: (1) f(~x) is defined; (2) the limit

exists; and (3) these two vectors are equal.

Often one says just “f is continuous” to mean that f is continuous at

every point in some tacitly understood set — usually all of Rn, or at least

the entire domain where f is defined.

Examples. Consider n = 2 with notation ~x =

(

x
y

)

, and p = 1.

(1) f(x, y) =
1

x− y is continuous everywhere except on the line x =

y. On that line the function is not even defined. Any attempt to

define the function there by a supplementary condition will leave the

function discontinuous.

(2) f(x, y) =
x2 − y2

x− y is technically undefined (and hence discontinuous)

on the line x = y. However, this discontinuity is removable. Every-

where else, the formula simplifies to f(x, y) = x+y, and this function
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extends smoothly to the problematical line. In most applications this

extended definition of f is perfectly appropriate. Algebraic simplifi-

cation without attention to possible division by 0 will get you into

trouble perhaps one percent of the time, so the phenomenon should

be understood and kept in the back of your mind. (Beware of compli-

cated computer calculations involving symbolic algebra programs.)

(3) f(x, y) = |x− y| is defined and continuous everywhere. (On the line

x = y it is not differentiable.) The graph of the function consists of

two planes meeting on the line x = y. The gradient of f is a function

g:R2 →֒ R2 given by

g(x, y) =

{

(1,−1) if x > y,

(−1, 1) if x < y;

g is continuous (and differentiable) everywhere except on our favorite

line, where it is not defined.

From the large number of elementary consequences of limits and conti-

nuity we list just the following. (If the functions are not everywhere defined,

it is to be understood that their domains match up so that the compound

function has a nontrivial domain of definition.)

Theorem 1:

(1) Linear combinations
(

r1f(~x) + r2g(~x)
)

and products
(

f(~x)g(~x)
)

of

continuous functions are continuous.

(2) The composition f ◦ g,

(f ◦ g)(~x) ≡ f(g(~x)),

of two continuous functions (g:Rn →֒ Rm, f :Rm →֒ Rp) is continu-

ous. More generally,

lim
~x→~a

f(g(~x)) = f

(

lim
~x→~a

g(~x)

)

if f is continuous and the limit on the right exists and is in the

domain of f . This last equation may be regarded as the operational

significance, or practical power, of continuity: A continuous function

“commutes” with taking limits and therefore enables limits like that

on the left to be evaluated easily.
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Theorem 2: f :Rn →֒ Rp is continuous if and only if its p coordinate

functions fj :R
n →֒ R,

yj ≡
(

f(x)
)

j
= fj(x1, . . . , xn),

are continuous.

Proof: This follows from the definition of the distance function (∗)
in the vector spaces. If the fj are continuous at ~x = (x1, . . . , xn), then for

every ǫ there is a δj such that ‖~z − ~x‖ < δj guarantees |fj(~z) − fj(~x)| <
ǫ/
√
p. Choose δ to be the smallest of the δj ; then ‖~z − ~x‖ < δ implies

‖f(~z) − f(~x)‖ < ǫ. Conversely, if ‖~z − ~x‖ < δ guarantees ‖f(~z) − f(~x)‖ to

be small, then it certainly guarantees the individual terms (fj(~z) − fj(~x))2

in (∗) to be small.

Remark: When a function is not everywhere defined, it is convenient

and customary to consider only points in the function’s domain in the role

of ~z in the definition of a limit. This makes it possible to discuss limits and

continuity at points ~x in the boundary of the domain. Furthermore, if ~x is

isolated from the domain (neither in the domain, nor even in its boundary),

then the question of continuity at ~x does not even arise. Examples: The

largest natural domain of f(x, y) =
√
x− y is the set where x ≥ y. (In this

discussion we are not admitting complex numbers as values of the square

root.) In particular, f is defined and continuous on the line x = y. One

would not say that f is discontinuous in the region x < y, although it is

undefined there. The largest natural domain of g(x, y) = 1/
√
x− y is x > y.

On the boundary x = y, g is discontinuous (and undefined). For x < y, g is

undefined, and again one would not ask whether it is continuous there.

Exercises

3.3.1 For functions of the following types, indicate whether f ◦ g, g ◦ f ,

both, or neither can be defined.

(a) f :R3 → R, g:R→ R2.

(b) f :R3 → R, g:R2 → R.

(c) f :R3 → R3, g:R3 → R2.

(d) f :R3 → C, g:R2 → R3.
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3.3.2 Prove that any linear function f :Rn → Rp is continuous. (This is

not necessarily true of a linear function whose domain is an infinite-

dimensional vector space such as C2(−∞,∞).) Recommended steps:

(a) Show that because f is linear, if f is continuous at ~x = ~0 then it

is continuous at any ~x.

(b) Combine the definition of continuity with the definition of limit

above it in the text (with ~a and ~b equal to ~0, because of (a)) to

get a precise ǫ-δ statement of the theorem to be proved.

(c) The main step: In the notation of the Remark above the defi-

nition of limit, show that |f(~x)| is less than some constant times

|~x|. (The constant depends on the matrix A representing the

linear function; it is independent of ~x.)

(d) Appeal to the Remark itself to show that (c) proves what we

wanted to prove (the statement in (b)).

3.3.3 Discuss the pitfalls of solving the equation

(sin x− sin y)z = (x2 − y2)

for z by computer. [Consider (1) guaranteeing uniqueness of the solu-

tion, and (2) writing a program that will execute properly (not crash)

for all numerical values of the input parameters, x and y.]

3.3.4 Prove part (2) of Theorem 1.

3.3.5 Describe and sketch the surface defined parametrically by




x
y
z



 =





sin v cosw
sin v sinw√

2 cos v



 , 0 ≤ v ≤ π, 0 ≤ w < 2π.

3.3.6 Describe and sketch the surface defined parametrically by




x
y
z



 =





(2 + 1
2 cos θ) cos φ

(2 + 1
2 cos θ) sin φ
1
2 sin θ



 , 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π.

3.3.7 Sketch these vector fields in R2. (Pick at least 4 diverse points ~r and

draw the arrow f(~r) with its tail at ~r. Choose the field of view as

−1 ≤ x ≤ 2, −1 ≤ y ≤ 2.)

(a) F (x, y) =

(

x
y

)

(b) F (x, y) =

(

y
x

)

(c) F (x, y) =

(

−y
x

)
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In the remaining exercises, (a) identify n and p in the characteri-

zation

f :Rn →֒ Rp;

(b) state the largest natural domain D (a subset of Rn) of the

function f ; and (c) find all points (in D or on the boundary of D)

where the function fails to be continuous.

3.3.8 f(x, y) =





1

x2 + y2
√

|x2 − y2|





3.3.9 f(x, y, z) =















1

x− y
x2 − z2

x− z
1√
y − z















3.3.10 f(u, v) =





tan(u+ v)
tanh(u+ 2v)
ln(u+ 3v)





(

tanh z ≡ sinh z

cosh z
=
ez − e−z
ez + e−z

)

3.4 Differentials

In an earlier section (2.4) we reviewed the relation between the partial

derivatives of a function f :R2 → R and (a) the tangent plane to the graph

of f at the point concerned; (b) directional derivatives of f ; (c) the gradient

vector, ∇f . Linear algebra makes these connections easier to understand and

points the way to the generalization to higher dimensions (f :Rn → Rp).

First, let’s review the fundamental idea of the differential calculus of

functions f :R1 → R1 from a point of view that lends itself to a multivariable

generalization (and a geometrical interpretation). Let us pose the problem

of approximating f(x) for x near some fixed x0 by an affine function,

(1) f̂(x) = y0 +m(x− x0),

where y0 and m are constants. Which such function is the “best” approxi-

mation to f near x0? A reasonable criterion is that

(2) f(x)− f̂(x) = |x− x0|ǫ,
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where ǫ is a function of x which approaches 0 as x→ x0 . In other words,

(3) lim
x→x0

f(x)− y0 −m(x− x0)

|x− x0|
= 0.

If you succeed in finding numbers y0 and m with this property, then any

other choice of y0 or m will not work; the error would not get small. This

justifies the claim that f̂ is the best approximation, and shows that it is

unique, if it exists. It is clear that the right choice for y0 is f(x0) (if f is

continuous at x0 ; otherwise (2) can’t be satisfied). Then rearrangement of

(3) leads to

(4) m = lim
x→x0

f(x)− f(x0)

x− x0
≡ f ′(x0) ≡

dy

dx

∣

∣

∣

∣

x0

.

This is the standard definition of the derivative. Thus an affine approxi-

mation f̂ at x0 exists if and only if f is differentiable at x0 , and the 1 × 1

matrix of the linear part of f̂ is f ′(x0). Also, f̂ is the function whose graph

is the tangent line to the graph of f at x0 . (Note that, indeed, any other

straight line would be a worse approximation (near x0) to the curve.)

In the traditional notation of increments and differentials,

∆y ≡ f(x)− y0 , dy ≡ f̂(x)− y0 , ∆x = dx ≡ x− x0 ,

(1) becomes

(5) dy = mdx =
dy

dx
dx,

and (2) becomes

(6) ∆y = dy + |x− x0|ǫ =
dy

dx
∆x+ o(∆x),

where “o(∆x)” is a notation for any quantity which approaches 0 faster

than ∆x itself does. (Typically this term will behave like (∆x)2, and for

that reason is also written “O
(

(∆x)2
)

”. It is the thing previously called

|x− x0|ǫ.) Note that all we really do by introducing the ∆–d notation is to

perform a coordinate transformation which moves the origin from (0, 0) to

(x0, y0).
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To understand the notation that is about to be introduced to handle

the multivariable case, it is important to appreciate three things about the

differential notation in single-variable calculus:

• ∆y and dy are functions of dx, although that argument variable is

almost never indicated explicitly in the notation. (The differential,

or Leibnitz, notation is part of that long and pragmatically expedient

tradition in which the logical distinction between a function and the

variable that is the value of that function is swept under the rug.)

• The function dy depends on the base point x0 as a parameter. (Each

x0 has its own tangent line.) Again, one usually doesn’t indicate x0

in the notation, but sometimes clarity calls for writing something like

dx0
y or dx0

f (which, we reiterate, is a function of another variable,

dx).

• The differential dy or df is not the same thing as the derivative, dy
dx

or f ′. Nevertheless, the latter is the numerical coefficient, or 1 × 1

matrix, that specifies the former as a linear function from R to R.

So, the two are so closely related, in a one-to-one fashion, that they

are “effectively” the same. Nevertheless, dy as a physical quantity

has the same units or dimensions as y (length, for example), while

the units of dy
dx are those of y divided by those of x (for example,

length over time, or velocity, if x is a time).

Our task is to generalize this framework of thought to multivariable

functions,* ~f :Rn → Rp. We seek an affine function

(1′) f̂(~x) = ~y0 + L(~x− ~x0)

that is the best approximation to ~f(~x) near ~x0 . Here L ≡ d~x0

~f is a linear

function from Rn to Rp, called the differential of ~f at ~x0 . The condition

for the best approximation is that

(2′) ~f(~x)− f̂(~x) = ‖~x− ~x0‖~ǫ,
where ~ǫ is a function of ~x and ‖~ǫ ‖ → 0 as ~x → ~x0 . As before, ~y0 must be
~f(~x0) if this is to hold. Then (2′) can be rewritten as

(3′) lim
~x→~x0

~f(~x)− ~f(~x0)− L(~x− ~x0)

‖~x− ~x0‖
= ~0.

* This discussion also applies to functions ~f :Rn →֒ R
p that are not everywhere

defined, so long as ~x0 is in the interior of the domain of ~f (that is, for some δ > 0,

‖~x − ~x0‖ < δ implies that ~f(~x) is defined).
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If such an L exists, it is unique. If it exists, ~f is called differentiable at ~x0 .

Special case 1: f :R → Rp. As x varies, ~f(x) traces a curve in

p-dimensional space. The derivative vector ~f ′(x0) is the p × 1 matrix of

L. Recall (Sec. 1.4) that this vector is tangent to the curve, with length

proportional to the speed of the parametrization, and that when multiplied

by a number dx ≡ x − x0 , it yields a vector d~y which tells approximately

how ~f(x) is displaced from ~y0 .

Special case 2: f :Rn → R. The graph of f is an n-dimensional

“surface” in (n+ 1)-dimensional space. The graph of f̂ is the n-dimensional

hyperplane tangent to the surface at (~x0, y0). (See Sec. 2.4.) For a given

vector d~x ≡ ~x− ~x0 , the number dy ≡ L(d~x) tells approximately how much

f(~x) differs from y0 ≡ f(~x0), the graph being approximated by its tangent

plane. Recall that this number dy is also called the directional derivative of

f along d~x at ~x0 . When d~x points along a coordinate axis and ‖d~x‖ = 1,

then L(d~x) is a partial derivative. (To see this, think of what (3′) becomes

when ~x− ~x0 = h~ej .) Thus the gradient ∇f(x0, y0) is the 1×n matrix of L.

Writing out L(d~x) as a matrix product, we have [equivalent to (1′)]

dy =

n
∑

j=1

∂y

∂xj
dxj ≡ ∇y · d~x,

the classical expression for the differential of a function of several variables.

General case: f :Rn → Rp. The matrix of L is called the Jacobian

matrix or derivative matrix:

(4′)1







∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fp

∂x1

. . .
∂fp

∂xn






≡ ~f ′(~x0) ≡

d~y

d~x

∣

∣

∣

∣

~x0

≡ J~x0

~f.

Here all the partial derivatives are evaluated at ~x0 . (As indicated, a variety

of notations for this matrix are in use. The notation d~y
d~x

is nonstandard but

sems to be the best analogue of the single-variable derivative notation. To

make matters worse, some notations and terms that we prefer to reserve for

the determinant of the Jacobian matrix (see Sec. 7.3) are sometimes used

for the matrix itself; be alert when reading other authors.)

One can define the partial derivatives as the elements of the Jacobian

matrix (it being defined as the matrix which represents the linear piece in
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the best affine approximation to ~f), then prove that they are given by the

classical formula

(4′)2
∂fj
∂xk

∣

∣

∣

∣

~x

= lim
h→0

1

h

[

fj(x1, . . . , xk + h, . . . )− fj(x1, . . . , xk, . . . )
]

.

To review,

f̂(~x) ≡ ~f(~x0) + L(~x− ~x0)

is the best affine approximation to ~f(~x) for ~x in the neighborhood of ~x0 .

The condition of giving the best approximation uniquely defines the linear

function L, and its matrix can be calculated by (4′).

Important remark: In applied work, the best affine approximation is

usually called the first-order approximation. It is thought of as comprising

the first two terms in a Taylor series approximation to the function (cf.

Sec. 8.2).

If ~u is a vector in Rn, then L(~u) is a vector in Rp. It is the directional

derivative of the vector-valued function f along ~u at ~x0 . It tells how f

changes as one moves away from ~x0 in the direction of ~u at a “speed” equal

to the length of ~u. (As in the scalar case, nothing is really lost by considering

only vectors ~u of unit length.)

Application:

Intrepid Roger Rapidrudder measured the velocity vector of

the air at his plane to be ~v = (200, 300,−500) feet per second, and

the partial derivatives of the velocity to be (in (feet/second)/foot)

∇v1 = (2, 3, 5), ∇v2 = (−5, 3, 2), ∇v3 = (10,−1, 0);

that is, d~v has the matrix





2 3 5
−5 3 2
10 −1 0



 .

(The x1 axis points east, x2 axis points north, x3 axis points up.)

“Gee,” Roger said, “I’d be a lot less likely to crash if I were 200 feet

east of here, where, according to my best affine approximation, the

velocity vector is approximately . . . ” [Let’s finish the sentence.]
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The displacement to the new point is

∆~x ≡ ~x− ~x0 =





200
0
0



 .

Therefore, the air velocity at the new point is

~v(~x) ≈ ~v(~x0) + d~x0
~v = ~v(~x0) +

d~v

d~x
(∆~x)

=





200
300
−500



+





2 3 5
−5 3 2
10 −1 0









200
0
0



 =





600
−700
+1500



 .

The positive sign on the vertical component indicates that the dangerous

downdraft has indeed been eliminated. (One might remark, however, that

the air must not be very turbulent if Roger trusts an affine (first-order)

approximation over a distance of 200 feet! Such are the hazards of dressing

up simple numerical exercises as serious applications. A more realistic, if

more abstract, application will be presented very soon.)

In science and engineering the generic mathematical notations d~x~v, J~x~v,

and d~v
d~x

are not usually used in connection with vector fields like the one in

the foregoing example. Instead, the notation ∇~v and the term gradient of

the vector field are used. In numerical terms the gradient ∇~v is a matrix (the

same thing as J~x~v), whose rows are the gradients of the scalar functions∇v1 ,

etc. It is, therefore, a “two-index” object in the sense that a vector is a one-

index object. One index (the column index of the matrix, the index attached

to “∇”) labels the coordinate with respect to which one is differentiating,

while the other (the row index, the index attached to “~v”) labels the vector

component that is being differentiated. Of special importance is the fact

that a quantity of the form ~u ·∇~v is again a vector, the directional derivative

of ~v along ~u. In this dot product it is the ∇ index, not the ~v index, that

participates:

[~u · ∇~v]j =
3
∑

k=1

uk
∂vj
∂xk

6=
3
∑

k=1

uk
∂vk
∂xj

.

Back to the general theory: Although it is hard to visualize the graphs

of functions when there are several independent and dependent variables,

it is worth pausing to consider how the present situation generalizes the
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previously discussed low-dimensional cases, which we can visualize. (Low-

dimensional analogies are helpful in understanding high-dimensional prob-

lems.) Note first that the graph of L is an n-dimensional subspace of Rn+p.

(“Above” each point ~x ∈ Rn sits the point
(

~x,L(~x)
)

on the graph.) There-

fore, the graph of f̂ is an n-dimensional affine subspace of Rn+p. It is tangent

at the point
(

~x0, f(~x0)
)

to the graph of f , which is an n-dimensional curved

hypersurface in Rn+p.

Thus, of the three things mentioned in the first paragraph of this section,

the analogue of the tangent plane is the graph of the affine approximation f̂ ;

the analogue of the gradient vector is the differential (linear approxima-

tion) df , or the Jacobian matrix Jf that represents it; and the analogue

of the directional derivative is the result of applying df to a vector. For

physical vector fields ~f :R3 →֒ R3, the last two are often actually called

“gradient” and “directional derivative” and given corresponding notations,

∇~f and ~u · ∇~f .

The notation of increments and differentials can be used in the multi-

dimensional theory, too. Define

∆~y ≡ ~f(~x)− ~y0 , d~y ≡ f̂(~x)− ~y0 , ∆~x = d~x ≡ ~x− ~x0 .

Then (1′) becomes

d~y = L(d~x) ≡ d~x0
f(5′)

≡ d~y

d~x
d~x (a matrix product),

or, in coordinates,

(5′′) dyj =

n
∑

k=1

∂yj
∂xk

dxk (j = 1, . . . , p).

And (2′) becomes

∆~y = d~y + ‖∆~x‖ ǫ

=
d~y

d~x
d~x+ o(∆~x).(6′)

Here “o(∆~x)” stands for an error term or remainder which vanishes faster

than ∆~x itself does as ∆~x approaches 0. (The precise statement of this

condition is (3′); o(∆~x) is the numerator of that expression.) For most
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functions (more precisely, those whose second-order derivatives exist), the

error term is of the type “O
(

‖∆~x ‖2
)

”; that is, it vanishes so fast that its

norm is bounded by some constant times the quadratic quantity ‖∆~x ‖2
when ∆~x is in a neighborhood of ~0.

Suggestion: On one piece of paper, write out the six fundamental

formulas (1)–(6) of single-variable calculus, and next to each write the anal-

ogous (primed) formula of multivariable calculus. If you understand all those

formulas, then you understand this part of the course.

Remark: Hoping not to be too fussy about it, we point out that there

are good reasons to maintain the distinction between a differential, d~xf , and

the matrix of the differential, J~xf = df
dx . Not only is there the ever-present

distinction between a linear function and the matrix that represents it (a

distinction which will become much more important in the next chapter when

we consider changing coordinate systems). In the context of an application

there is also a difference in physical units (dimensions). The value of df at

a point is a physical quantity of the same type as the values of f itself. But

the physical dimensions of Jf are those of f divided by those of ~x, because

it is only after Jf is multiplied by the column vector ∆~x that it becomes a

quantity of the type of f . [Example: If f(t) is a velocity function (with units

of meters per second), then f ′(t0) is an acceleration (with units of meters

per second per second), but df ≡ f ′(t0) dt is a velocity again (albeit an

“infinitesimally small” one). This point of physical bookkeeping underlines

the metaphysical distinction between the slope of a tangent line and the

tangent line itself.] In other words, when the differential of a function is

written in conventional matrix notation, the word “differential” and the d

notation should not be applied to the matrix of the differential, but only to

the whole combination of the matrix and its argument vector; in contrast,

for the differential itself, as a function, when there is no danger of confusion

we are free (as usual in applied calculus) to blur the distinction between the

function and the value of the function, and to either express or suppress the

argument variable according to the convenience of the moment.

An understanding of the foregoing remark should make the following

theorem appear less paradoxical. We leave the proof of the theorem to the

exercises.

Theorem: The differential of a linear function L:Rn → Rp at any

point is the function L itself:

d~x0
L [evaluated at ~x− ~x0] = L(~x− ~x0).
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A better example

The true utility of the notion of best linear approximation comes not

in numerical approximations of the Roger Rapidrudder variety, but in more

theoretical contexts. Here is a rather concrete situation where thinking in

those terms produces a major simplification in comparison to a traditional

calculation in terms of partial derivatives.

Let M = {mjk} be an n × n matrix, and Mp = Q = {qjk} one of

its powers. (Here p is some fixed positive integer, such as 3.) We can

write Q = f(M); f is a matrix-valued function of a matrix variable, or,

equivalently, a function from Rn2 → Rn2

. Each of the n2 matrix elements

of Q is a function of all the n2 matrix elements of M . We may set ourselves

the project of calculating all the partial derivatives, such as ∂q12/∂m11 .

Let us see how we would do that by elementary methods, then see

whether our more sophisticated new understanding suggests a better way of

proceeding. To take a simple case, let p = 2 and n = 2. Then we can assign

the matrix elements individual letters:

M =

(

a b
c d

)

, M2 = Q =

(

A B
C D

)

.

A short calculation gives
(

A B
C D

)

=

(

a2 + bc ab+ bd
ac+ cd bc+ d2

)

.

We therefore have

∂A

∂a
= 2a,

∂B

∂a
= b,

∂C

∂a
= c,

∂D

∂a
= 0,

and 12 other equally unilluminating formulas. Clearly, the calculation would

be much messier if either p or n were greater.

Now let’s consider the best linear approximation to the function Q =

f(M) = M2 as a whole. Look at

f(M + ∆M) = (M + ∆M)(M + ∆M)

= M2 + (∆M)M +M(∆M) + (∆M)2

= f(M) + (∆M)M +M(∆M) +O
(

(∆M)2
)

.

The differential of f is the linear (first-degree) part of this expression:

dMf = (∆M)M +M(∆M) ≡ (dM)M +M(dM).
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To see the significance of this result, consider the special case

dM =

(

h 0
0 0

)

,

for which

dMf = h

(

a b
0 0

)

+ h

(

a 0
c 0

)

= h

(

2a b
c 0

)

.

In the language of directional derivatives, this is the directional derivative

of M2 along dM . In the language of partial derivatives, it is h times the

matrix of partial derivatives of M2 with respect to a. Comparing, we see

that these are indeed the same 4 partial derivatives we found earlier, but

calculated now in a simpler, more systematic, and more instructive way.

In particular, it is easy to generalize this calculation to higher dimen-

sions (n × n matrices instead of 2 × 2), without getting into a notational

morass. The generalization to higher powers p is slightly less trivial, but

still quite tractable: For f(M) = M3, for example, we have

dMf = (dM)M2 +M(dM)M +M2(dM),

into which a simple special case for dM can be inserted easily.

Applications and examples

We repeat that any first-order approximation in science or engineering

is an application of the theory of this section.

Example 1. Electric field of a point charge. A charged particle in three-

dimensional space produces an electrical field that points directly away from

the charge with magnitude proportional to the inverse square of the distance

from the charge. Thus, if the origin of Cartesian coordinates is placed at

the charge, and units are chosen so that the overall constant factor equals 1,

then the electric field is

~E(~r) =
r̂

r2
,
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where r = ‖~r‖ =
√

x2 + y2 + z2 is the distance and r̂ = ~r/‖~r‖ is the unit

vector pointing radially outward. Thus

~E(~r) =





Ex
Ey
Ez



 =





x
(x2+y2+z2)3/2

y
(x2+y2+z2)3/2

z
(x2+y2+z2)3/2



 .

For most purposes it is easier to deal with this function in spherical coordi-

nates (r, θ, φ) (which we will see frequently in the future). Today, however,

for the sake of an example we will work directly in Cartesian coordinates.

Let us find the best linear (more properly, affine) approximation to
~E(~r) at a point ~r0 (not ~0, since ~E is obviously not differentiable there). For

concreteness, consider

~r0 = ı̂+ .2 ̂ =





1
0.2
0



 .

According to the general formalism,

~E(~r0 + ∆~r) ≈ ~E(~r0) + d~r0
~E,

where d~r0
~E is evaluated at

∆~r ≡ ~r − ~r0 =





x− 1
y − 0.2
z



 .

The matrix of d~r0
~E (alias ∇ ~E(~r0)) is

J~r0
~E =





∂Ex

∂x
∂Ex

∂y . . .
∂Ey

∂x
∂Ey

∂y . . .
. . .



 .

The partial differentiations look rather tedious, but they can be greatly

shortened by noting the symmetry of the problem. We calculate

∂Ex
∂x

= (x2 + y2 + z2)−3/2 − 3

2
(2x2)(x2 + y2 + z2)−5/2

= (−2x2 + y2 + z2)(x2 + y2 + z2)−5/2.

The other diagonal elements,
∂Ey

∂y
and ∂Ez

∂z
, can be obtained immediately

by interchanging the role of x in this equation with that of y or z. The

off-diagonal elements are easier:

∂Ex
∂y

= −3xy(x2 + y2 + z2)−5/2,

and the other 5 formulas are obvious by symmetry.
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We note in passing that this Jacobian matrix is symmetric (∂Ex

∂y =
∂Ey

∂x ,

etc.) and that the sum of the three diagonal elements is zero. Both of these

are well known properties of the electric field at a point where no charge

is located. Mathematically they arise because ~E is the gradient of a scalar

function that satisfies Laplace’s equation; see Chapter 7.

We can now evaluate ~E and its Jacobian matrix at ~r0 :

r =
√

12 + .22 ≈ 1.02,

~E(~r0) ≈





.94

.19

.00



 ,

J~r0
~E ≈





−1.78 −.54 .00
−.54 .83 .00
.00 .00 .94



 .

The approximate-equality signs so far merely indicate that we have gone to

low-precision floating-point arithmetic. Now we construct the linear approx-

imation:

~E(~r) ≈





.94

.19

.00



+





−1.78 −.54 .00
−.54 .83 .00
.00 .00 .94









x− 1
y − 0.2
z



 .

We could, of course, work out the matrix multiplication and algebraically

simplify the expression; but for many purposes it is best to leave the formula

in a form that exhibits explicitly its structure as a relation between small

quantities (increments), ∆ ~E ≈ d~E and ∆~r.

Warning: The most frequent student mistakes in calculating con-

crete linear approximations are the same as in their freshman analogue,

the tangent-line problem. First, remember that in the formula

~f(~x) ≈ ~f(~x0) + d~x0

~f ≡ ~f(~x0) +
d~f

d~x

∣

∣

∣

∣

∣

~x0

(~x− ~x0),

the ~x variable in the Jacobian matrix d~f
d~x must be replaced by the particular

numerical vector ~x0 , whereas in the vector (~x − ~x0) that the matrix acts

upon, the ~x remains a variable. Second, remember that in the latter case

the components of ~x0 must be subtracted.
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Example 2. Polar coordinates. The standard polar coordinate trans-

formation in R2,
x = r cos θ,

y = r sin θ,

has the structure†

~x = f(~u), ~x =

(

x
y

)

, ~u =

(

r
θ

)

.

We can ask how x and y change as r and θ change slightly. Mathematically

this is a problem of the sort we have been studying, although the physical

interpretation of the function is quite different from the previous examples

involving velocity and electric fields.

Let us find the best affine approximation to ~x when ~u varies in the

neighborhood of the point

r0 =
√

2, θ0 =
π

4
; ~x0 =

(

1
1

)

.

Since we did not give a complete proof of the connection between affine

approximations and partial derivatives [i.e., formulas (4′)], let us rederive

that connection in this special case. As usual, we shift the origin of our

coordinates to make the affine function truly linear:

∆~u = d~u = ~u− ~u0 , ∆~x = ~x− ~x0 .

Then the “best” linear function must have the form

∆~x ≈ d~x = ~a+B∆~u

for some vector ~a and matrix B. Our claim is that

~a = 0, B =

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)∣

∣

∣

∣

~u0

=

(

cos θ −r sin θ
sin θ r cos θ

)∣

∣

∣

∣

r=
√

2,

θ=
π
4

=

(

1√
2
−1

1√
2

1

)

.

The criterion for choosing ~a and B is that as ∆~u goes to 0, ∆~x− d~x should

go to 0 “even faster”.

† In this context the notation ~r for the Cartesian coordinate vector would
probably cause more confusion than it cures, so we won’t use it.
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Continuity of f shows immediately that ~a must be 0. It remains to

compare

d~x = B d~u =

(

B11 dr +B12 dθ
B21 dr +B22 dθ

)

with

∆~x =

(

(r0 + dr) cos(θ0 + dθ)
(r0 + dr) sin(θ0 + dθ)

)

−
(

r0 cos θ0
r0 sin θ0

)

.

Knowing about derivatives and Taylor approximations for single-variable

functions, you could now complete this calculation quickly; but you were

promised a rederivation from first principles, so let’s go all the way. Note

that

|dr|, |dθ| ≤
√

(dr)2 + (dθ)2 = ‖∆~u‖.
Thus

∆~x− d~x
‖∆~u‖ =

1

‖∆~u‖

(

(r0 + dr) cos(θ0 + dθ)− r0 cos θ0 −B11 dr −B12 dθ
(r0 + dr) sin(θ0 + dθ)− r0 sin θ0 −B21 dr −B22 dθ

)

=
dr

‖∆~u‖

( (r0+dr) cos(θ0+dθ)−r cos(θ+dθ)
dr −B11

(r0+dr) sin(θ0+dθ)−r sin(θ+dθ)
dr −B21

)

+
dθ

‖∆~u‖

( r cos(θ+dθ)−r cos θ
dθ −B12

r sin(θ+dθ)−r sin θ
dθ

−B22

)

(with appropriate modification if dr or dθ equals 0). As dr and dθ approach 0,

the large fractions approach the expected partial derivatives by their classi-

cal definition (4′)2 . Meanwhile, the factors dr/‖∆~u‖ and dθ/‖∆~u‖ remain

smaller than 1 (but don’t approach 0). Therefore, if we choose the elements

of B to be those partial derivatives,

B11 =
∂x

∂r

∣

∣

∣

∣

~u0

, etc.,

and only in that case, we get

∆~x− d~x
‖∆~u‖ → 0.

That is,

∆~x− d~x = ‖∆~u‖~ǫ where ‖~ǫ‖ → 0 as d~u→ 0.

In the particular numerical case at hand, we get
(

∆x
∆y

)

≈
(

1√
2
−1

1√
2

1

)

(

∆r
∆θ

)

.

(Draw a sketch in the x–y plane to see that this is exactly right.)
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Example 3. Lagrangian mechanics. Affine approximations and differ-

entials can be constructed in infinite-dimensional spaces, although there are

massive technical complications there that we shall need to sweep under the

rug.

If a particle is subject to a force derived from a potential-energy function

V (x), then its position x(t) satisfies the equation of motion (Newton’s second

law)

m
d2x

dt2
+
dV

dx
= 0.

(For notational simplicity we consider motion in only one dimension; m is

the mass of the particle.) The Lagrangian function of the particle is defined

as the difference of the kinetic and potential energies, and its action over a

time interval (t1, t2) is the time integral of the Lagrangian over the course

of the motion:

S(x; t1, t2) ≡
∫ t2

t1

L
(

x(t), dxdt
)

dt ≡
∫ t2

t1

[

m

2

(

dx

dt

)2

− V (x(t))

]

dt.

Thus x as a function belongs to the space C2(t1, t2) of twice-differentiable

functions on the interval t1 ≤ t ≤ t2 , and S is a nonlinear function of the

type S: C2(t1, t2) → R. We can ask how S changes when x is replaced by

a “nearby” function x(t) + ∆x(t) that agrees with x at the initial and final

times (hence ∆x(t1) = 0 = ∆x(t2)).

As in the calculation with a function on matrices earlier in this section,

we can substitute x + ∆x into the formula for S and discard all the terms

that are of higher than linear order. We get

S(x+ ∆x) =

∫ t2

t1

[

m

2

(

dx

dt

)2

+m
dx

dt

d∆x

dt
+ . . .

− V (x(t)) − dV (x(t))

dx
∆x(t) + . . .

]

dt

=

∫ t2

t1

{[

m

2

(

dx

dt

)2

− V (x(t))

]

+

[

m
dx(t)

dt

]

d∆x(t)

dt

−
[

dV

dx

]

∆x+O
(

(∆x)2
)

}

dt.
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To see exactly how the d∆x
dt term depends on ∆x, we need to integrate that

term by parts, getting

S(x+ ∆x) = S(x)−
∫ t2

t1

[

m
d2x(t)

dt2
+
dV (x(t))

dx

]

∆x(t) dt +O
(

(∆x)2
)

.

(The condition ∆x(t1) = 0 = ∆x(t2) is used to get rid of the endpoint terms

in the integration by parts.)

In particular, S(x; t1, t2) will be stationary under infinitesimal variations

of the path x(t) (i.e., dxS = 0 for all functions ∆x) provided that the quantity

in the square brackets vanishes for that particular path:

m
d2x(t)

dt2
+
dV (x(t))

dx
= 0.

But this is precisely the equation of motion that we began from! Stationarity

of the action can be taken as the fundamental axiom of mechanics, in place

of Newton’s law of motion, to which it is equivalent.

More generally, the vanishing of dS is a criterion for a possible maximum

or minimum of S as a functional of the path x, just as vanishing of∇f signals

a possible extremum of a function f :Rn → R. The formulation of mechanics

in terms of stationarity of the action is historically called the principle of least

action, because in most physical theories the stationary points do turn out

to be minima.

Exercises

3.4.1 The function f :R3 → R2 is defined by

(

u
v

)

= f





x
y
z



 =

(

x2 − y2

2xy + z

)

. Let ~x0 =





1
0
−1



 .

(a) Find the matrix (J~x0
f or df

d~x
) representing the differential of this

function, d~x0
f .

(b) Use the result of (a) to find an approximate value for f





1.1
−.2
−.9



.
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3.4.2 Consider the function h:R2 → R2 defined by

{

u = cos x+ sin y,

v = sinx− cos(2y).

(a) Find the best affine approximation to h for (x, y) near (π, π).

(b) Use (a) to approximate u and v for x = 1.1π, y = 0.8π.

(c) Find a vector that points in the direction of fastest increase of u

at (π, π).

3.4.3 This problem centers upon the formulas

{

x = coshu cos v,

y = sinhu sin v.
Consider

the function F :R2 → R2,

(

x

y

)

= F (u, v), defined by these formulas.

(a) Let ~u0 =

(

1

0

)

. Calculate the differential, d~u0
F (represented by

the Jacobian matrix, dF
du

∣

∣

u=~u0

).

(b) Find the best affine approximation to F at ~u0 .

3.4.4 Roger Rapidrudder measured the gradient vector of the air pressure

at his cockpit to be ∇p = (2, 1,−1).

(a) Find the directional derivative of the pressure in the direction

û = 1√
2
(1, 1, 0).

(b) A more pedantic author would write one of these two vectors

(∇p and û) as a column vector, not a row. Which one, and why?

3.4.5 An atom near the point ~r = ~r0 ≡ (1, 2, 3) is subject to an electric

field ~E =





x2 − y2

x2 + y2

z



. Find the best affine approximation to ~E(~r)

for ~r near ~r0 .

3.4.6 Roger Rapidrudder’s altimeter measured the elevation z of the ground

beneath him to be

z = f(x, y) = 6− x2 − y2

(where x and y are the coordinates in the east and north directions.)

(a) Find the affine function that best approximates f near (2, 0).

(b) Use your answer in (a) to approximate the elevation at (2.1,−.2).
(c) Sketch the graphs of the true elevation and the affine approxi-

mation.
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3.4.7 Roger Rapidrudder’s microelectronic satellite navigation system gave

his position as





1
−1
1



, and his velocity meter read





200
40
−1



, at the

moment when he entered the powerful magnetic field of the Iraqi

anti-aircraft defense system. The CIA has determined that this field

is

~B(~r) =





e−z cos(πy)
e−z sin(πx)
x2 + y2



 ,

so Roger knew that the directional derivative of the field at his plane,

in the direction of his motion, was . . . what?

3.4.8 A solenoid in Roger’s left engine creates a magnetic field

~B(~r) =





y2 − z2

z2 − x2

x2 − y2



 .

(From now on in this problem column vectors are written as rows to

save space.)

(a) Find the best affine approximation to ~B in the vicinity of the

point ~r0 = (1, 0, 1).

(b) Find the directional derivative of ~B at ~r0 in the direction of the

unit vector ~v ≡ 1√
10

(1,−3, 0).

(c) Use your answer to (a) or (b) to estimate ~B(~r) at ~r = (2,−3, 1),

after noting that ~B(~r0) = (−1, 0, 1). (Don’t calculate the exact

value!)

3.4.9 At a certain point in a gas, the pressure is measured as 760 torr, and

the pressure gradient as (−2, 2, 1) torr/cm.

(a) What is the directional derivative of the pressure in the direction

of the vector ~w = (1, 0, 1)?

(b) What is the best affine approximation to the pressure at a point

0.03 centimeters away along the direction of ~w?

(c) Estimate (using the affine approximation) how far away from

the point of measurement we can go along ~w before the pressure

changes by 2%.
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(d) Answer part (c) with “along ~w ” omitted. (I.e., give the answer

for the direction in which the pressure is expected to change most

rapidly.)

3.4.10 (a) Prove the theorem that d~x0
L = L if L is linear. What does this

say about the relation between the matrix representing L and

the partial derivatives of L ?

(b) Formulate and prove the corresponding theorem about affine

functions.

3.5 The Chain Rule

In Chapter 2 we looked at the chain rule for composite functions of the

type g ◦ f :R
f→ Rm g→ R. The formula for (g ◦ f)′ contains one term for

each component of the intermediate vector variable. If one or both of the

other two variables is also multidimensional, the principle is the same; we

get formulas like

∂zj
∂xl

=
m
∑

k=1

∂zj
∂yk

∂yk
∂xl

.

This looks suspiciously like matrix multiplication. Our task now is to un-

derstand these formulas from a geometrical or linear-algebraic point of view,

using the concept of a differential.

We shall need to appeal to the fact that the value of a linear function

(when it isn’t zero) is of roughly the same size as its argument, as the

argument gets very small or very large:

Lemma: If L:Rn → Rp is linear, then ‖L(~x)‖ ≤ C ‖~x‖, where C is a

constant (which can depend on L but not on ~x). In other words, L(~x) =

O(~x).

Proof: Use the matrix representation:

|L(~x)j | =
∣

∣

∣

∣

n
∑

k=1

Ajkxk

∣

∣

∣

∣

≤
[ n
∑

k=1

(Ajk)
2

]
1

2

[ n
∑

k=1

xk
2

]
1

2

=

[ n
∑

k=1

(Ajk)
2

]
1

2

‖~x‖.

(In the second step we have used a well-known inequality for numerical sums.

It is an instance of the Cauchy–Schwarz inequality, discussed in Sec. 6.1:
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Regard the sum over k as a dot product, keeping j fixed.) Square these

components, sum, and take the square root:

‖L(~x)‖ ≤
[ p
∑

j=1

n
∑

k=1

(Ajk)
2

]
1

2

‖~x‖.

As promised, the mess inside the brackets is independent of ~x.

Corollary: For a differentiable function, ~y = f(~x), with differential

d~x0
f ≡ L, we have

∆~y = L(∆~x) + o(∆~x) = O(∆~x).

(Recall that this means that

‖∆~y‖
‖∆~x‖ ≤ C for some constant C

at least when ∆x is sufficiently small. An example of a function which fails

to be of order O(∆~x) would be ‖∆~x‖ 1

2 (times some constant vector field, if

you want to make it a vector-valued function).)

Armed with this technical tool, we can investigate the differential of a

composite function, g ◦ f , when f is a function from Rn to Rm and g is a

function from Rm to Rp. Then g ◦ f is a function from Rn to Rp, defined

by
(

g ◦ f
)

(~x) ≡ g
(

f(~x)
)

.

In other words,

~y = f(~x) and ~z = g(~y) imply ~z =
(

g ◦ f
)

(~x).

Case 1: f and g are linear and are represented by matrices Af and Ag .

Then we know that

Ag◦f = AgAf . (∗)

Also, we saw in the previous section that the differential of a linear function

is the function itself. Therefore, Af and Ag are also the Jacobian matrices

of f and g respectively, at any values of their arguments. That is,

(Af )kl =
∂yk
∂xl

, (Ag)jk =
∂zj
∂yk

.
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Thus (∗) is an instance of the chain rule:

zj =
m
∑

k=1

∂zj
∂yk

n
∑

l=1

∂yk
∂xl

xl ,

or

(Ag◦f )jl =
∂zj
∂xl

=

m
∑

k=1

∂zj
∂yk

∂yk
∂xl

.

Case 2: f and g are affine (constant + linear):

~y = f(~x) = ~y0 + Lf (~x− ~x0)
(

~y0 = f(~x0)
)

,

~z = g(~y) = ~z0 + Lg(~y − ~y0)
(

~z0 = g(~y0)
)

.

Thus

~z = g
(

f(~x)
)

= ~z0 + Lg
(

Lf (~x− ~x0)
)

=
(

g ◦ f
)

(~x0) +
(

Lg ◦ Lf
)

(~x− ~x0).

Which is to say that

∆~z =
(

Lg ◦ Lf
)

(∆~x).

Again, written out in matrix language this is a special case of the chain rule.

(The matrix elements of the Ls are partial derivatives.)

Case 3: f and g are nonlinear but differentiable:

Lf ≡ d~x0
f is represented by f ′(~x0) ≡

d~y

d~x
≡ J~x0

f,

Lg ≡ d~y0g is represented by g′(~y0) ≡
d~z

d~y
≡ J~y0g.

That is,

~y = f(~x) = ~y0 + Lf (~x− ~x0) + o(~x− ~x0)
(

~y0 ≡ f(~x0)
)

,

~z = g(~y) = ~z0 + Lg(~y − ~y0) + o(~y − ~y0)
(

~z0 ≡ g(~y0)
)

,

(We are deliberately being verbose here, writing equations over in several

equivalent forms to give experience in seeing various notations.) This time,

substitution of f into g will yield a derivation of the chain rule.

The formulas are the same as in the affine case except for the “o” terms,

since the point of differentiability is that each function is equal to an affine
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function plus something small. To simplify the calculation, let’s use the

increment notation (∆~y ≡ ~y − ~y0 , etc.). We get

~z = ~z0 + Lg
(

Lf (∆~x) + o(∆~x)
)

+ o(∆~y)

= ~z0 +
(

Lg ◦ Lf
)

(∆~x) + Lg
(

o(∆~x)
)

+ o(∆~y).

Now (by definition of “o”)

o(∆~x)

‖∆~x‖ → 0 as ~x→ ~x0 .

Therefore, by the lemma,

Lg
(

o(∆~x)
)

‖∆~x‖ → 0 as ~x→ ~x0 .

That is,

Lg
(

o(∆~x)
)

= o(∆~x). (†)

But also,
o(∆~y)

‖∆~y‖ → 0 as ~y → ~y0 ,

and (by the corollary) ∆~y = O(∆~x). So we have

o(∆~y)

‖∆~x‖ =
o(∆~y)

‖∆~y‖
‖∆~y‖
‖∆~x‖ → 0 as ~x→ ~x0 .

That is,

o(∆~y) = o(∆~x). (‡)

(Actually, we need a special argument to cover the possibility that ‖∆~y‖ = 0;

but we are not trying to give a complete proof here, just the central idea.)

Putting (†) and (‡) together, we see that

(1) ~z ≡
(

g ◦ f
)

(~x) = ~z0 +
(

Lg ◦ Lf
)

(~x− ~x0) + o(~x− ~x0),

where ~z0 =
(

g ◦ f
)

(~x0). That is, Lg◦f = Lg ◦ Lf , or

(2) d~x0
(g ◦ f) =

[

df(~x0)g
]

◦ [d~x0
f ] .

That is,

(3)
d~z

d~x
=
d~z

d~y

d~y

d~x
(a matrix product),



3.5. Chain rule 139

or
(

g ◦ f
)′

(~x) = g′
(

f(~x)
)

f ′(~x). That is,

(4)
∂zj
∂xl

=

m
∑

k=1

∂zj
∂yk

∂yk
∂xl

for all index pairs, j ∈ {1, 2, . . . , p} and l ∈ {1, 2, . . . , n}.
In summary, we have here four equivalent versions of the chain rule.

(1) is about nonlinear functions.

(2) is about linear functions.

(3) is about matrices.

(4) is about numbers.

But they all mean the same thing.

Our emphasis on the fundamental meaning of differentiation and the

chain rule in terms of affine approximations should not be misinterpreted as

a disparagement of the classical formula (4). In practice it remains very use-

ful. In a sense the Leibnitz notation in (4) (or (3)) does the correct matrix

multiplication for you automatically (just as in one dimension the Leibnitz

formula dz
dx = dz

dy
dy
dx is more transparent than (g ◦ f)′(x) = g′

(

f(x)
)

f ′(x) ).

Of course, there is a possible pitfall: the factor d~z
d~y

must be numerically

evaluated at f(~x), not ~x. Note also that careless throwing around of partial-

derivative symbols without a clear understanding of what they mean in con-

text can lead to false conclusions; see Exercises 3.5.7–8. (Traditionally, a

course in thermodynamics is the training ground for learning these things

through harsh experience.)

Example 1. Find the differential of the function

z(u, v) = cos
1

uv
+ sin

√

u

v
.

Solution: We shall do this in several seemingly different ways, which

are all really the same.

Method 1: Calculate ∂z
∂u

and ∂z
∂v

as elementary (though messy) single-

variable differentiation problems. Then the Jacobian matrix is the row vector
(

∂z
∂u ,

∂z
∂v

)

. Although this may be conceptually the most obvious method, it

is also the most inefficient. We omit the boring details.
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Method 2: Introduce auxiliary variables

x =
1

uv
, y =

√

u

v
.

Then z = cos x+ sin y, and

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
,

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
.

We calculate
∂z

∂x
= − sinx,

∂z

∂y
= cos y;

∂x

∂u
= − 1

u2v
,

∂x

∂v
= − 1

uv2
,

∂y

∂u
=

1

2
√
uv

,
∂y

∂v
= −

√
u

2v
√
v
.

Thus

dz ≡ ∂z

∂u
du+

∂z

∂v
dv

=
1√
uv

(

1

u
√
uv

sin
1

uv
+

1

2
cos

√

u

v

)

du

+
1

v
√
v

(

1

u
√
v

sin
1

uv
−
√
u

2
cos

√

u

v

)

dv.

Method 3: Introduce vector variables

~u =

(

u
v

)

, ~x =

(

x
y

)

.

Then
dz

d~u
=
dz

d~x

d~x

d~u

where

dz

d~x
= ∇z = (− sinx, cos y),

d~x

d~u
=

(

− 1
u2v

− 1
uv2

1
2
√
uv

−
√
u

2v
√
v

)

.

Perform the matrix multiplication and evaluate ~x at the point ~u:

dz

d~u
=

(

1√
uv

(

1

u
√
uv

sin
1

uv
+

1

2
cos

√

u

v

)

,

1

v
√
v

(

1

u
√
v

sin
1

uv
−
√
u

2
cos

√

u

v

))

.
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Methods 4–5: Introduce auxiliary variables

ξ = uv, η =
u

v
,

and proceed as in Method 2 or 3, respectively.

Method 6: Write the answer as a product of three matrices, correspond-

ing to the decomposition of the composite function into three steps,

(

u
v

)

→
(

ξ
η

)

→
(

x
y

)

→ z.

Example 2. Atoms near the point ~r0 ≡





3
2
1



 sit in an electric field

~E =





x2 − y
x2 + y2

z3



 .

(a) Find the first-order (best affine) approximation to ~E(~r) for ~r near ~r0 .

(b) Suppose that the index of refraction of a crystal depends on the elec-

tric field according to the law

n = 1 + 0.01Ex
2 + 0.04Ey

2 + 0.02Ez
2.

Use the multidimensional chain rule to find
∂n

∂y
at ~r0 .

Solution: The Jacobian matrix is

d~E

d~r
=





2x −1 0
2x 2y 0
0 0 3z2



 =





6 −1 0
6 4 0
0 0 3



 at ~r0 .

Therefore,

~E(~r) ≈ ~E(~r0) +
d~E

d~r
(~r − ~r0) =





7
13
1



+





6 −1 0
6 4 0
0 0 3









x− 3
y − 2
z − 1




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is the first-order approximation asked for in (a). Therefore, the matrix

solution to (b) is

∇n =
dn

d~E

d~E

d~r
= (0.02Ex, 0.08Ey , 0.04Ez)

∣

∣

~r0

d~E

d~r

= (0.14, 1.04, 0.04)





6 −1 0
6 4 0
0 0 3



 = ( ∗ , 4.02, ∗ ),

where the numbers ∗ are irrelevant to the question asked, and

4.02 =
∂n

∂y
.

Here is an alternative solution to (b), but in “classical” partial-derivative

notation instead of vectors and matrices; it is really the same method:

∂n

∂y
=

∂n

∂Ex

∂Ex
∂y

+
∂n

∂Ey

∂Ey
∂y

+
∂n

∂Ez

∂Ez
∂y

= 0.02Ex (−1) + 0.08Ey (2y) + 0.04Ez (0).

When all this is evaluated at (x, y, z) = (3, 2, 1), we again get 4.02.

Exercises

3.5.1 We have two nonlinear functions, f :R3 → R2 and g:R2 → R2.

Suppose that

f





1
2
1



 =

(

0
0

)

, f ′





1
2
1



 =

(

1 0 0
−1 0 1

)

, g′
(

0
0

)

=

(

1 1
0 2

)

.

What is the derivative (Jacobian) matrix of g◦f at the point (1, 2, 1) ?

3.5.2 Let x = u2 − cos v, y = eu + v2,

(

u(t)
v(t)

)

=

(

sin t
2 cos t

)

. Calculate
dx

dt

and
dy

dt
when t = π.



3.5. Chain rule 143

3.5.3 The velocity field in a gas is given by

~u(~r) ≡ ux ı̂+uy ̂+uz k̂ = (x2−z2) ı̂+(y2+x2) ̂+z2 k̂ ≡





x2 − z2

y2 + x2

z2



 .

(a) Calculate the matrix representing d~r0~u at ~r0 = 2 ı̂+ 3 ̂+ 4 k̂.

(b) Calculate d~u/dt as measured along the path

~r(t) = (2 + t) ı̂+ (3 − t) ̂+ (4 + t2) k̂

at t = 0. (Note that ~r(0) = ~r0 .)

(c) Estimate, using the “best affine approximation” based on the

result of (a), the velocity field at the point with coordinates

(2.1, 3.2, 3.9).

(d) Find the direction of fastest increase of the x component of ~u

at ~r0 .

(e) Find the direction of fastest increase of the length of ~u at ~r0 .

Hint: Compose with f(~u) ≡ ‖~u‖ =
√

ux2 + uy2 + uz2 .

3.5.4 Continuing Exercise 3.4.6: If air pressure depends upon height as

P = 700e−z and Roger is flying east at 500 feet per second, find the

rate of change (with time) of the pressure directly below him (at the

ground) as he passes over the point (2, 0).

3.5.5 Suppose a force field in space is given by

~F (~r) = x cos
πz

4
ı̂+ y sin

πz

4
̂+ xz k̂.

(a) Calculate [the matrix representing] d~r0
~F at ~r0 = (0, 1, 1). (Think

of ~F as a column vector.)

(b) A particle follows the helical path

x = cos 2t, y = sin 2t, z =
4t

π
.

Calculate d~F/dt at t = π/4 (as measured by an observer travel-

ling with the particle).
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(c) (for students who know some advanced physics) Originally the

exercise’s author intended to call this force field an “electric field”.

Why might that have made a misleading or ambiguous question?

Hint: What does your electromagnetism textbook say about

how electric and magnetic fields change under Galilean or Lorentz

transformations?

3.5.6 After Roger measured the gradient of the pressure in Exercise 3.4.4,

his navigator needed to convert all the measurements into the para-

bolic-cylindrical coordinate system (u, v,w), where

x = 2uv, y = u2 − v2, z = w.

The plane was located at (u, v,w) = (1, 2, 0) when the pressure gra-

dient was measured. Find the partial derivatives of p with respect to

u, v, and w at that point.

3.5.7 The temperature in a square plate is given by the equation T = x+3y.

An ant crawled on the plate along the parabolic path y = x2 until

it reached the point (2, 4), whereupon it found itself fried. What is

wrong with the following argument?

∂T

∂x
=
∂T

∂x

∂x

∂x
+
∂T

∂y

∂y

∂x

=
∂T

∂x
+
∂T

∂y

∂y

∂x
.

We can cancel the two equal terms, concluding that

∂T

∂y

∂y

∂x
= 0.

Substituting the given functions and numbers, we learn that

12 = 0.

3.5.8. An ordinary differential equation
dy

dx
= g(x, y) is called exact if it can

be rewritten in the form

X(x, y) dx + Y (x, y) dy = 0

and the left-hand side can be recognized as the differential dψ of a

function ψ(x, y) (i.e., X = ∂ψ
∂x

and Y = ∂ψ
∂y

). In that case each
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level curve ψ(x, y) = C is the graph of a solution of the differential

equation. (With luck, the equation ψ(x, y) = C can be solved for y

as a function of x.)

(a) A common student error is to try to find the function ψ in this

way:

Given:
dy

dx
= − xy2 + 1

x2y
;

(xy2 + 1) dx + x2y dy = 0;
∫

(xy2 + 1) dx+

∫

x2y dy = 0;

1

2
x2y2 + x+

1

2
x2y2 = C;

therefore,

ψ(x, y) ≡ x2y2 + x = C.

This answer is wrong ; the equation is indeed exact, but the cor-

rect solution is

ψ(x, y) ≡ 1

2
x2y2 + x = C.

Verify this (by implicit differentiation), and explain where the

argument went astray.

(b) Find the correct ψ by solving the equations

∂ψ

∂x
= xy2 + 1,

∂ψ

∂y
= x2y,

recalling that the “constant” of integration in each case might be

a function of the other variable.

(c) Show that the incorrect solution method demonstrated in (a) will

give the right answer by accident, so long as the correct function

ψ does not contain any term linear in one of the variables x

and y. (This circumstance, especially together with (d), makes

this fallacy especially hard to eradicate among our youth.)

(d) There is a large class of differential equations called separable,

which are correctly solved in this way:

Given:
dy

dx
=

xy

x2 + 1
;
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dy

y
=

x dx

x2 + 1
;

∫

dy

y
=

∫

x dx

x2 + 1
;

therefore,

ln |y| = 1

2
ln(x2 + 1) + C.

Explain why integrating each term with respect to its own vari-

able is correct both here and in (b) whereas it was wrong in (a).

3.5.9 Find the differential (or the Jacobian matrix) of

w = F (u, v) ≡ cos(5x+ 3y),

where x = u3 + v3 and y = uv.

3.5.10 Find the differential (or the Jacobian matrix) of

w = F (u, v) ≡ 5x2y2 − 3y + 2x+ z,

x = u cos v, y = sin(u/v), z = u2 − v2.

3.5.11 Find the differential of w = F (x, y) if

w =
cos−1 x2−y2

x2+y2

ln 1
x+1

.

(Introduce auxiliary variables u = x2−y2

x2+y2 , v = 1
x+1 . Feel free to use

Maple or similar software, provided that your paper includes well

written English commentary with nontrivial mathematical content.)

3.5.12 Find the differential of w = f(x− y, x2− y2), where f is an arbitrary

differentiable function.

3.5.13 Let f and g be arbitrary twice-differentiable functions of the type

R→ R. Prove that

u(t, x) ≡ f(x− ct) + g(x+ ct)

is always a solution of the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
.
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3.5.14 Let G(~x, ~y) be a function of two vector variables (i.e., G:R2n →
R, where the 2n variables separate naturally into two n-dimensional

parts). The diagonal value of G is the function H:Rn → R defined

by H(~x) = G(~x, ~x). Show that

∇H(~x) = ∇~xG(~x, ~x) +∇~yG(~x, ~x),

where ∇~xG(~x, ~y) is the gradient of G with respect to its first variable

with the second held fixed, ∇~yG(~x, ~y) is the gradient with respect to

the second variable with the first fixed, and in the final formula it

is understood that ~y is set equal to ~x after these differentiations are

performed.

3.5.15 Continuing Exercise 3.4.7: What is the time derivative of the mag-

netic field, as Roger measures it in his moving plane? (Notice that

arithmetically, this is a simpler problem than the original one. Ex-

plain why.)


