
Chapter 4

Bases

4.1 The Basis Concept: Independence and Span

Let’s look again at the crucial drawing from Sec. 1.1:
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~A = a1 ı̂ + a2 ̂

Its point is that every vector ~A in a plane can be written as a linear combi-

nation of two “basic” vectors, ı̂ and ̂:

~A = a1 ı̂ + a2 ̂,

where a1 and a2 are real numbers. (In the example, we have a1 = −8,

a2 = 3.) In this section we clarify the properties of the pair of vectors {ı̂, ̂}

that makes it possible to use them in this way. This geometrical conception

of a basis is good to keep in mind.* However, to give a broader view of

why bases are so important, we prefer to introduce the concept in a more

applied-algebraic way.

* There is one way in which this drawing may be misleading, however. The
vectors in a basis are not required to be orthogonal (mutually perpendicular), nor
to be of unit length. In fact, in an abstract vector space as defined in Sec. 3.1,
“orthogonal” and “length” have no meaning. We have been using these concepts
in the familiar way in the context of R

2 and R
3, but their formal definition will

not show up until Chapter 6. At that point it will transpire that bases composed
of orthogonal unit vectors are indeed especially nice, but they are not the only
bases that are useful and necessary.
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One of the principal skills and habits acquired early on by a student of

mathematics is simplifying expressions. In elementary algebra you acquired

the reflex, when confronted with an expression like

t + 3t2 − (t− 1)(t + 2) + 3(t + 1)2 − 4t + 6,

of expanding products and combining terms so that there is (at most) one

term for each power of t:

5t2 + 2t + 11.

Similarly, in a calculus or differential-equations course, you probably came

to regard the expressions

2et + 3e−t and 5 cosh t− sinh t

as satisfactory answers, but realized that

et + 2 sinh t + 4e−t

is somehow half-baked. In fact, all three of these functions are equal; the

last one can be converted to either of the other two by means of the formulas

relating hyperbolic functions to exponential functions:

cosh t ≡
et + e−t

2
,

sinh t ≡
et − e−t

2
,

et = cosh t + sinh t,

e−t = cosh t− sinh t.

Ordinarily we use only one of these function sets or the other, not both at

once. (Hyperbolic functions will be further reviewed later in this section.)

The purpose of simplifying an expression is far more than to save ink

when it is recopied. The expression is more meaningful and useful to us when

it has been worked into some kind of standard form. In particular, if you

are presented with two different expressions, you frequently need to know

whether they are actually equal (i.e., represent the same function (or other

mathematical object)) or are genuinely different. (Every student has faced

this problem with “answers in the back of the book”.) The most effective

method to resolve that question is to have an agreed-upon normal form for

expressions of the type concerned, and to convert each expression to that

normal form. The normal form of an expression is, by definition, unique,
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and mathematically equivalent to the original expression. Therefore, the

two starting expressions are mathematically equal if and only if their normal

forms are identical.

Perhaps the most frequently occurring situation of this nature is that

where the mathematical objects involved are vectors of some kind, and the

expressions are, or can be simplified into, linear combinations of such vectors.

The normal-form problem, then, is to find a list of vectors such that every

vector in the space can be written as a linear combination of the vectors in

the list in exactly one way. We could take this requirement as the definition

of a basis. However, we shall follow tradition by giving a definition of basis

that is easier to verify in concrete cases, and then proving the normal-form

property as a theorem.

We wish to construct a definition of “basis”, to be imposed on a list

of vectors, that guarantees that every vector can be expressed in terms of

those in the list in at least one way and in at most one way. These are

separate problems, and so we need to define a separate concept to handle

each. (It will turn out in the end, however, that there is an unexpected

relation between them — see the summary theorem in Sec. 4.3.)

Span

The problem of “at least one way” can be handled for now just by a

definition. (We will need to study later how to determine in practice whether

the definition is satisfied by a given list of vectors.)

Definition 1a: If ~v1, ~v2, . . . , ~vn are vectors in V, then the [linear] span

of S = {~v1, ~v2, . . . , ~vn} is the set of all linear combinations

c1~v1 + c2~v2 + · · · =
n

∑

j=1

cj~vj .

Example: Recall the parametric formula for a plane through the origin,

~x = s~u + t~v. This reveals the plane as the span of the two vectors ~u and ~v.

Remark: The span of any set of vectors is itself a vector space. It is

an example of a subspace of V — see Sec. 5.1.

The definition of a span continues to make sense for an infinite set

of vectors, S. The span of S (abbreviated spanS) is the set of all linear

combinations of vectors from S. For example, the space of all harmonic
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polynomials (polynomials that satisfy Laplace’s equation, ∇2p = 0) is the

span of the set of all homogeneous harmonic polynomials of all degrees (see

Sec. 5.1). Note that although we’re now talking about infinite sets of vectors,

we are still considering only finite sums in defining “linear combination”,

“span”, and (later) “subspace”. In many applications one really does want

to consider infinite sums, but to do so one needs to study convergence of

infinite series of vectors, and that is out of bounds for this course.

The word “span” can be a verb as well as a noun:

Definition 1b: A set T in V (i.e., T ⊆ V) is spanned by ~v1, . . . , ~vn

(which are vectors in T ) if every ~x ∈ T is a linear combination of those

vectors:

~x =
n

∑

j=1

cj~vj .

(One also turns this sentence around and says that the n vectors span the

set, or that the list of vectors spans the set.)

The most important situation for the employment of this definition is

that where T is V itself. We restate the definition:

Corollary: The set of vectors S ≡ {~v1, . . . , ~vk} in V spans V if and only

if every ~y in V can be expressed in at least one way as a linear combination

of the vectors ~vj .

Examples. Let us find some sets that span P2 (the space of quadratic

polynomials introduced in Sec. 3.1).

1. The obvious choice is {t2, t, 1}. By definition, P2 is the linear combi-

nations of these three functions.

2. A less obvious choice is {t, t − 5, 2t + 1, (t + 1)2}. With a little bit

of algebra you can verify that every quadratic polynomial p(t) ≡

at2 + bt + c can be written as

p(t) = a(t + 1)2 − (10b + 2c)t + b(t− 5) + (5b + c− a)(2t + 1).

Incidentally, it could also be written as

p(t) = a(t + 1)2 − (b + 2c)t + (c− a)(2t + 1) [+ 0(t− 5)],

so the coefficients in a linear combination need not be uniquely de-

termined. This is a spanning set but not a basis.
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3. The set {t2−2, t2 +2, 2} does not span P2 , because there is no way to

get terms linear in t in linear combinations of these three polynomials.

Remark: Some books use “generate” to mean “span” in the sense of

Definition 1b.

This subsection has been a bare introduction to the span concept. We’ll

return to it in more depth in the next chapter, as a special case of the concept

of “subspace”.

Linear independence

It is necessary to approach the issue of “at most one way” by a more

indirect route.

Definition 2a: A set of vectors {~v1, . . . , ~vk} is linearly dependent if

there is some nontrivial linear combination of them that vanishes:

r1~v1 + · · ·+ rk~vk = ~0,

where not all of the scalars rj are 0.

Examples. These two sets are each dependent, with the coefficients

r1 = −2, r2 = 1:

..............................................................................................................
..................

.
..............................................................................................................

..................
.• ~x1 ~x2

(

1
2

)

,

(

2
4

)

In contrast, here are two sets that are linearly independent:
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1
2

)

,

(

1
0

)

The definition can be restated in the negative this way:

Definition 2b: A set of vectors is linearly independent if: Whenever

r1~v1 + · · ·+ rk~vk = ~0,

it follows that r1 = 0, r2 = 0, . . ., rk = 0.

Linear independence is one of the most useful and important concepts

in linear algebra. From now on we’ll usually omit the word “linearly” when
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there is no danger of confusion with some other kind of independence. Let’s

explore the definition:

1. A set of two vectors, {~x, ~y}, is dependent if and only if one of them

is a multiple of the other: We have r~x + s~y = 0 and either r 6= 0 or

s 6= 0 (or both). Therefore either ~x = − s
r

~y or ~y = − r
s
~x (or both).

(This proves “only if”. The converse (“if”) is even easier, since we

don’t have to divide by anything.) Remark: If one of the scalars is

0, then the other vector must be ~0. Example: If 0~x + 5~y = 0, then

~y = 0. The latter is indeed a multiple of ~x: ~y = 0~x.

2. A set consisting of a single nonzero vector, {~v}, is independent: r~v 6= 0

unless r = 0.

3. The set {~0} is dependent: 5 ·~0 = ~0 but 5 6= 0.

4. Any set containing ~0 is dependent. [Why?]

5. How do we generalize (1) to more than two vectors? One’s first guess

might be that in a dependent set, some vector is a multiple of one of

the others, but that is wrong:

Theorem 1: A set containing more than one vector is dependent if

and only if one vector in the set is a linear combination of the others.

Proof: Let r1~v1 + r2~v2 + · · · + rk~vk = 0 and at least one rj 6= 0, say

r2 . Then we can solve for ~v2 :

~v2 = −
1

r2
(r1~v1 + r3~v3 + · · · ).

(Clearly, we could solve for the vector multiplied by any of the nonzero

coefficients.) Conversely, if ~y =
∑n

j=1 rj~vj , then
∑n

j=1 rj~vj + (−1)~y = 0,

and so {~v1, . . . , ~vn, ~y} is dependent.

Note that in this theorem the qualification “more than one vector” is

needed because of the case (3).

A familiar example of an independent set in a function space is provided

by the power functions:

Proposition: In the vector space C[a, b] of continuous functions on

[a, b], or the space P of polynomials, for any n the set {1, t, . . . , tn} is linearly

independent.
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Proof: Suppose the contrary; then c0 1+c1t+c2t
2 + . . .+cntn = 0, for

some numbers c with c2
0 + c2

1 + . . . + c2
n 6= 0 (a quick way of saying that the

coefficients are not all zero). Thus we have a polynomial p(n)(t) of degree n,

p(n)(t) = c0 + c1t + c2t
2 + . . . + cntn,

that has every t ∈ [a, b] as a solution. But according to the fundamental

theorem of algebra p(n)(t) has no more than n real solutions (roots). (See

Sec. 8.1 for a complete statement of this theorem.) Thus we arrive at a

contradiction.

Alternative version of the last step of the proof: For sim-

plicity of notation consider the case n = 2; other cases obviously work out

the same way. We have a polynomial p(t) = c0 + c1t+ c2t
2 that is equal to 0

for all t ∈ [a, b]. But then

p′(t) = c1 + 2c2t and p′′(t) = 2c2

must also be identically 0 in the interval. Thus c2 = 0; but then cascading

back up the equations we see that c1 = 0 and c0 = 0.

Remark: In dealing with linear combinations of the power functions tj

(alias polynomials), one usually starts numbering the coefficients at 0 instead

of at 1. Clearly this makes no difference, except in counting the number of

terms.

The next theorem shows that independence is exactly the property we’re

looking for.

Theorem 2: The vectors ~v1, . . . , ~vk are (i.e., the set S ≡ {~v1, . . . , ~vk}

is) independent if and only if every ~y in the vector space can be expressed

in at most one way as a linear combination of the vectors ~vj .

Proof: Suppose ~y =
∑k

j=1 cj~vj and also ~y =
∑k

j=1 dj~vj . Then

0 = ~y − ~y =
k

∑

j=1

(cj − dj)~vj .

Thus independence implies that

cj − dj = 0 for all j.
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That is, cj = dj — the two linear combinations are the same. Conversely, if

the ~v s are dependent, then one of them, say ~v1 , is a linear combination of

the others:

1~v1 = ~v1 =

k
∑

j=2

cj~vj .

Here are two ways of representing ~v1 as a linear combination of vectors in

the set S!

Remark: Although we stated the theorem for a finite set S, there is

nothing in the proof that is invalid for an infinite set. (Recall that linear

combinations are finite sums, so the two sums at the beginning of the proof

are finite. We regard two such sums as the same if they differ only by the

omission of terms with coefficient 0.) See also Exercise 4.1.7.

In this theorem, the qualification “at most” is needed because if S

doesn’t span the vector space, some vectors will have no expression as a

linear combination of the ~v s. To get rid of the “at most” we put indepen-

dence and spanning together in the definition of a basis.

Bases

Definition 3: A set (or a list)† of vectors, S = {~v1, . . . , ~vn}, is a basis‡

for a vector space V if (1) they are linearly independent, and (2) their span

is V.

Theorem 3: S (a subset of V, where V 6= {0}) is a basis for V if and

only if every vector in V can be expressed in precisely one way as a linear

combination of the vectors in S.

Proof: Independence is equivalent to “at most one way” (by Theo-

rem 2). Spanning is equivalent to “at least one way” (by the corollary to

Definition 1).

Examples I. Here are some bases for P2 and some sets that fail to be

bases for P2 . In each case we sketch a set in R2 that is analogous. (The

analogies are not exact, because the spaces have different dimensions. If

anything in this list is mysterious now, come back and read it again after

reading Sec. 4.3.)

† See the Remark at the end of this section.
‡ The plural is “bases”, with a long E.
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1) {1, t, t2} is a basis — in fact, a “natural”

or obvious one. ............................................................................................ ..................
.
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• ı̂

̂

2) {t, t+1, (t−3)2} is a basis — a randomly

chosen one. (We shall not stop now to

verify that this is a basis. Some methods

for deciding such questions will come very

soon.)

.................................................................................................................................................................... ..................
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3) {1, t, t + 1, t2} is not a basis — it is not

independent.
..........................................................................
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•

4) {t, t2} is not a basis — it doesn’t span. ............................................................................................ ..................
.•

Each of the next three examples is not independent and does not span:

5) {t, 2t} is not a basis. (The closest ana-

logue in R2 is the set consisting solely of

the zero vector.)

•~0

6) {t, t− 1, t + 1} is not a basis. ........................................................ ..................
.

.......................................................................... ..................
.•

7) {t, t− 1, t + 1, 1} is not a basis. .............................................
..................

.
..................................................................

..................
.

..........................................................................
..................

.•

Finally,

8) {1, t, t2, t3} is not a basis for P2 , because

its span is too big — t3 is not in the space

P2 .
............................................................................................
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Examples II. Here are some bases for the space of solutions of the

differential equation
d2y

dt2
− 9y = 0.

1) y+ = e3t, y− = e−3t.

2) y1 = cosh(3t), y2 = 1
3 sinh(3t).

The basis {y1, y2} has an advantage over the basis {y+, y−}. These basis

functions are chosen because they satisfy

y1(0) = 1, y′

1(0) = 0, y2(0) = 0, y′

2(0) = 1.

Suppose that we need to solve the initial-value problem

d2y

dt2
− 9y = 0, y(0) = x, y′(0) = v.
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Then we can immediately write the answer down as

y(t) = x y1(t) + v y2(t)

without any further algebra. This is why hyperbolic functions were invented!

Review of hyperbolic functions

We can define cosh and sinh as the solutions of y′′ = y satisfying

cosh(0) = 1,
d

dt
cosh(0) = 0, sinh(0) = 0,

d

dt
sinh(0) = 1.

It follows that they are related to the exponential function by

cosh t ≡
et + e−t

2
,

sinh t ≡
et − e−t

2
,

et = cosh t + sinh t,

e−t = cosh t− sinh t

(the equations on the left usually being taken as the definitions of cosh and

sinh). Their derivatives are

d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t.

Thus these functions play exactly the same role relative to y′′ = y that cos

and sin play relative to the equation y′′ = −y, and their relationship to the

exponential is essentially the same as that of the trigonometric functions but

without the imaginary numbers (see Example 4, Sec. 1.1).

In fact, every trigonometric identity has a corresponding hyperbolic

identity that looks the same except for a few sign changes. Examples are

cosh2 t− sinh2 t = 1,

cosh(−t) = cosh t, sinh(−t) = − sinh t,

sinh(x + y) = sinh x cosh y + cosh x sinh y,

cosh(x + y) = cosh x cosh y + sinhx sinh y.

It is not necessary to memorize all such formulas. The important thing is

to recall that they exist and to have some memory of their structure, so that
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you know what to expect when rederiving them. Then, for example, the

formula for sinh(x + y) can easily be recovered by writing out

sinh(x + y) =
ex+y − e−x−y

2
,

substituting ex = cosh x+ sinhx etc., and simplifying, using the well known

algebraic properties of the exponential function. (In fact, the basic exponen-

tial identities are so much simpler than the basic trig identities that often

the best way to prove or recall a trigonometric identity is to reexpress it in

terms of exponentials via eiθ = cos θ + i sin θ, etc.)

On the other hand, the qualitative behavior of the hyperbolic functions

is very different from the trig functions. The latter oscillate and never have

values greater than 1 in absolute value. But cosh t is never less than 1, and

cosh t→ +∞ as t→ ±∞, sinh t→ ±∞ as t→ ±∞,

exponentially fast. The function

tanh t ≡
sinh t

cosh t

has the same qualitative behavior as tan−1 (not tan): a smooth rise between

horizontal asymptotes at infinity,

tanh t→ ±1 as t→ ±∞.

In European books cosh t and sinh t are often written ch t and sh t.

(Also, sinh may be informally pronounced “shine” as well as “sinch”.)

Testing a set for linear independence

The following methods are helpful in deciding whether a given finite set

of vectors is independent, so we present them now, although they would more

logically come after the discussions of dimension, coordinates, subspaces,

rank, and determinants that are soon to come.

(A) A set of n vectors in Rn (same n!) is a basis for Rn if and if only

the matrix formed from them is nonsingular. (Since the matrix is

square, its singularity may be tested by calculating the determinant.)

Similarly, if we know that a vector space V has a basis of n vectors,
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then another set of n vectors in V is a basis if and only if the matrix

formed from their coordinates with respect to the known basis is

nonsingular.

Example: y1 = et−3e−t and y2 = et +2e−t form a basis for the

space of solutions of
d2y

dt2
= y, because the determinant

∣

∣

∣

∣

1 −3
1 2

∣

∣

∣

∣

= 5

is not zero.

(B) Suppose a set S of vectors are presented to us as linear combinations

of a known basis for V. We can use row reduction to test whether

S is linearly independent, and, if it isn’t, to find an independent set

with the same span. (In particular, if S spans V, then this new set

will be a basis for V.)

Example: Let V = P2, and let the set S be {~vj}
3
j=1, where

~v1 = −6t2 + 9t− 3, ~v2 = t2 + 5t− 6, ~v3 = t2 − 8t + 7.

(Thus the “known basis” is {t2, t, 1}.) We demonstrate the method:

Algorithm:

1. Form a matrix whose rows are the coordinates (with respect to the

given basis) of the vectors in S.

In the example:





−6 9 −3
1 5 −6
1 −8 7





2. Reduce the matrix by row operations. (It is not necessary here to

clear out nonzero entries above the leading 1s.)

In the example:





1 − 3
2

1
2

0 1 −1
0 0 0





(If we decided to reduce all the way, we would get





1 0 −1
0 1 −1
0 0 0



.)

3. If the reduced matrix has no identically zero rows, the original vectors

S were independent.

(Does not apply to the example.)
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4. The nonzero rows of the reduced matrix are coordinates of indepen-

dent vectors whose span is the same as spanS.

In the example: {~w1 = t2 − 3
2 t + 1

2 , ~w2 = t− 1}

is a basis for the span of {~v1, ~v2, ~v3}. This choice of basis

comes from the first row-echelon matrix given under step

(2). If, instead, we use the fully reduced matrix given there,

we get the equally good basis

{~u1 = t2 − 1, ~u2 = t− 1}.

Note that these sets are bases for span S, but not bases for

P2 !

Example 1. Test for linear independence the vectors

~x1 =







−1
−1
1
1






, ~x2 =







8
7
6
5






, ~x3 =







1
2
3
4






, ~x4 =







0
2
8
10






.

Solution: The matrix formed from the vectors (as rows) is

X =







~x1

~x2

~x3

~x4






=







−1 −1 1 1
8 7 6 5
1 2 3 4
0 2 8 10






.

Reduce X:






−1 −1 1 1
8 7 6 5
1 2 3 4
0 2 8 10







8(1) + (2)→ (2)
(1) + (3)→ (3)
−−−−−−−−−−−→







−1 −1 1 1
0 −1 14 13
0 1 4 5
0 2 8 10







(2) + (3)→ (3)
(4)− 2(3)→ (4)
−−−−−−−−−−−→







−1 −1 1 1
0 −1 14 13
0 0 18 18
0 0 0 0






.
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This shows that only 3 of the original 4 vectors were independent. A basis

for the span of these vectors can be read off as

~v1 =







1
1
−1
−1






, ~v2 =







0
−1
14
13






, ~v3 =







0
0
1
1






.

Example 2. Determine whether each set is linearly independent. If it

is not, find an independent set with the same span.

(a)











1
2
1



 ,





2
−1
4











Solution: YES — obviously these two vectors are not multiples

of each other. More formally,
(

1 2 1
2 −1 4

)

→

(

1 2 1
0 −5 2

)

→

(

1 0 9
5

0 1 − 2
5

)

,

and we see that the number of nonzero rows has not decreased as we

put the matrix into row echelon form.

(b)











1
2
3



 ,





2
−1
4



 ,





1
7
5











Solution: Let’s put the vectors into a matrix as rows and re-

duce:




1 2 3
2 −1 4
1 7 5



→





1 2 3
0 −5 −2
0 5 2





→





1 2 3
0 1 2

5
0 0 0



→





1 0 11
5

0 1 2
5

0 0 0



 .

So the answer is NO. A basis for the span is










1
2
3



 ,





0
1
2
5











, or











1
0
11
5



 ,





0
1
2
5











,

or any two of the original three vectors (since in this case none of the

vectors is a multiple of any of the others).
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Example 3. For which values α and β will the vectors ~x = (1, 2, β),

~y = (1, 1, 0), and ~z = (α, 1, 1) in R3 be linearly dependent?

Solution: Suppose that c1~x + c2~y + c3~z = 0, with c2
1 + c2

2 + c2
3 6= 0. In

coordinate form this is equivalent to the homogeneous system of equations

c1 1 + c2 1 + c3 α = 0,

c1 2 + c2 1 + c3 1 = 0,

c1 β + c2 0 + c3 1 = 0.

A condition for it to have only the zero solution is that the determinant

det(A) of its coefficient matrix A be different from 0. We have (by cofactors

of the middle column)

det(A) =

∣

∣

∣

∣

∣

∣

1 1 α
2 1 1
β 0 1

∣

∣

∣

∣

∣

∣

= −(2− β) + (1− αβ) = β − αβ − 1.

Therefore, we have —

Dependence condition: β − αβ − 1 = 0.

Independence condition: β − αβ − 1 6= 0.

We could also find this result by row reduction, without using determinants.

The row operations (2) → (2) − 2(1), (3) → (3) − β(1), (3) → (3) − β(2)

reduce the matrix A to




1 1 α
0 −1 1− 2α
0 0 1 + αβ − β



 .

The system will have nontrivial solutions (that is, the vectors will be depen-

dent) exactly when the element in the lower right corner is zero.

Remark: A basis is sometimes thought of as a set and sometimes as a

list of vectors. There are two differences between a set and a list: (1) A list

has a definite order; a list of the same vectors in a different order therefore

counts as a different basis, even though the set of vectors is the same. In the

second half of this chapter, when we study the representation of vectors by

their coefficients with respect to a basis, the ordering of the vectors in the

basis will be significant. (2) A list may contain two elements that are equal.

For instance, the row-reduction algorithm above can be applied to find the

span of the rows of a matrix even if some of the rows are the same. In that

case the number of elements in the set of rows is smaller than the number

of rows! The set of rows in that case might be linearly independent, but the

list of rows obviously is not.
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Exercises

4.1.1 Prove that any set containing the zero vector is dependent.

4.1.2 Tell whether each of these sets is linearly dependent or linearly inde-

pendent.

(a) {(1, 0, 1), (2, 3, 5), (1, 1, 2)}

(b) { (1, 2), (1,−1), (0, 3) }

4.1.3 Tell whether each of these sets is linearly dependent or linearly inde-

pendent.

(a) {cosh(x), 2 sinh(x), 5ex − 2e−x}

(b) {t, (t − 5)2, t2}.

4.1.4 Show that







~v1 =





1
1
2



 , ~v2 =





1
2
3



 , ~v3 =





0
1
2











is a basis for R3.

4.1.5 Which sets are bases for the span of the functions

{sin x, sin x cos x, sin(2x)} ?

Explain.

(A) all 3 functions given (B) {sin x, sin(2x)}

(C) {sin x, sin(2x), sin(3x)} (D) {sin x, cos x}

4.1.6 Let L:D → W be a linear function. Let ~v1 and ~v2 be vectors in D.

One of the following “theorems” is true and one is false. Prove the

true statement and disprove the false one.

(a) If ~v1 and ~v2 are linearly independent, then L(~v1) and L(~v2) must

be linearly independent.

(b) If L(~v1) and L(~v2) are linearly independent, then ~v1 and ~v2 must

be linearly independent.

4.1.7 Does the proof of Theorem 2 provided in this section apply to the set

S = {~0} ? Is the theorem true for that set?

4.1.8 Prove that the functions {et, e2t, e3t} are independent (as elements

of C2(−∞,∞), or of C2(a, b) over any interval (a, b) ⊆ R). Possible

alternative strategies:

(A) Set z = et and use the corresponding fact for polynomials.
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(B) Prove it directly: Evaluate ekt for three different values of t and

the three relevant values of k, getting a 3×3 matrix. Show that if

the three functions are linerly dependent, then the determinant

of this matrix must be zero. But then use properties of the

exponential function to show that the determinant is not zero.

In the next four exercises, test the given set of vectors for linear

independence.

4.1.9 ~v1 = (5, 7, 3, 5), ~v2 = (2, 3, 1, 4), ~v3 = (3, 4, 2, 1)

4.1.10 ~v1 = (4, 1,−3, 1), ~v2 = (2, 1, 4, 1), ~v3 = (−3, 1,−2, 1)

4.1.11 ~v1 = (11, 9, 7, 5, 3), ~v2 = (7, 2, 1, 0, 0), ~v3 = (5, 3, 0, 1, 0), ~v4 =

(6, 0, 2, 0, 1)

4.1.12 ~v1 = (1, 2, 4, 3), ~v2 = (2, 1, 3, 4), ~v3 = (1, 2, 3, 4), ~v4 = (4, 3, 2, 1)

In the remaining exercises, determine whether the given set is

linearly independent; if it is not, find a set of vectors with the

same span that is independent.

4.1.13 ~v1 = (1, 1, 1), ~v2 = (2, 3, 5), ~v3 = (3, 5, 9)

4.1.14 ~v1 = (1, 1, 2), ~v2 = (1, 2, 3), ~v3 = (0, 2, 4)

4.1.15 f1 = 1, f2 = t + 1, f3 = (t− 2)2, f4 = t3 − 5t

4.1.16 f1 = e2t, f2 = cosh(2t), f3 = 3 sinh(2t), f4 = e−3t, f5 = cosh(3t)

4.2 Local Bases Associated with a Coordinate System

The familiar polar coordinate transformation in R2,

x = r cos θ, y = r sin θ,

is an instance of a common situation: In order to adapt our mathematics

to the geometry of a particular physical problem, we find it convenient to

label the points in space by strings of numbers that are not the components

of vectors. The polar coordinates (r, θ) do not constitute a vector in the

usual sense — for example, it makes no physical sense to add two such

number pairs, getting (r1 + r2, θ1 + θ2); this has nothing to do with the

true vector sum of the two vectors with those pairs as polar coordinates.
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Nevertheless, (r, θ) does range over some region in R2, so it makes sense

(and is sometimes useful) to represent it by a R2-valued variable, say ~u.

Then we can summarize the coordinate transformation formulas above in

the symbolic form ~x = T (~u), where T :R2 →֒ R2 is a certain nonlinear

function.

More generally, in Rn (or a part of it) a curvilinear coordinate system

is defined by a nonlinear function of the type

~x ≡







x
y
...






= T





u
v
...



 ≡ T (~u).

From one point of view T is a mapping of one region of Rn onto another;

from another (more pertinent) point of view, however, it simply describes

two assignments of strings of numbers to the same fixed point in an n-

dimensional space. The coordinates ~u are called curvilinear because the

axes in the space of the coordinates (u, v, . . .) ≡ (u1, u2, . . .) and the grid

of lines parallel to those axes correspond to curved lines in the space of

the (rectilinear, or Cartesian) coordinates (x, y, . . .) ≡ (x1, x2, . . .), which we

think of as the “physical” space.

It might seem more natural to specify a coordinate transformation by

giving the “new” curvilinear coordinates as functions of the “old” rectilinear

coordinates, but in most cases in practice it turns out to be more convenient

to work in the reverse direction, as we do here.

Let’s look closely at the Jacobian matrix

T ′ =

{

∂xj

∂uk

}

=

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=

(

cos θ −r sin θ
sin θ r cos θ

)

.

(Here we have specialized successively to two dimensions and to the polar ex-

ample.) Remember the “row before column” rule. Here the dependent (“nu-

merator”) variables label the rows, while the independent variables change

as one moves from column to column. To get a numerical matrix one must

evaluate the partial derivatives at some point ~u0 ; this will correspond to

some definite point ~x0 ≡ T (~u0) in the Cartesian coordinates.

The kth column is a vector, ~ck , tangent to the kth coordinate curve.

By this we mean the curve through ~x0 along which uk varies while all the

other ul (l 6= k) are held fixed.
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In the polar example, we have

~c1 =

( ∂x
∂r
∂y
∂r

)

=

(

cos θ
sin θ

)

≡ r̂,

which points along the radial line from the origin to ~x0 . It happens to be a

unit vector. In contrast,

~c2 =

(

−r sin θ
r cos θ

)

is not a unit vector: ‖~c2‖ = r. The corresponding unit vector is

θ̂ ≡
~c2

‖~c2‖
.
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• ••~0 r̂ ~c1 = r̂ = ~d1

~d2 = ∇θ

θ̂

~c2 = d~x
dθ

~c2 = θ̂ = ~d2

r = 2

There is another way to associate a vector with each coordinate in a

curvilinear coordinate system: Take its gradient.* Let

~dk ≡ ∇uk =

( ∂uk

∂x
∂uk

∂y

)

.

From the general properties of the gradient, we know that this vector is

normal to the surface uk = constant. (The “surface” terminology derives

from coordinate systems in three-dimensional space. In two dimensions these

coordinate “surfaces” are simply curves.) A bit of calculation shows that in

polar coordinates

~d1 =

(

x
r
y
r

)

=

(

cos θ
sin θ

)

= r̂, ~d2 =

(

− y
r2

x
r2

)

=

(

− sin θ
r

cos θ
r

)

=
θ̂

r
.

* A gradient vector is more properly written as a row vector, but in this
section we think of the gradients as columns so that we can look at them in the
same space as the tangent vectors. The possibility of doing this meaningfully
depends on regarding the geometry of ~x-space (in particular, its dot product —
see Chapter 6) as having a direct physical significance.
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The drawing shows this entire assemblage of vectors at two points, one

of which has r = 1 so that all three θ-related vectors are the same.

Most of the coordinate systems commonly used are orthogonal — mean-

ing that the coordinate curves (uk varying, all other us constant) are perpen-

dicular to the coordinate surfaces (uk constant, all other us varying). Thus
~dk and ~ck are parallel in such a case. In fact, we see in the polar example

that their lengths are reciprocal. (This makes sense: If a unit change in θ

produces a large change in ~x, then a unit change in a component of ~x ought

to produce a small change in θ; and this scaling factor clearly is controlled by

r.) The inverse function theorem treated in Sec. 5.5 shows that this property

holds for all orthogonal coordinate systems.

For a nonorthogonal coordinate system, however, the two associated

sets of basis vectors at each point won’t be parallel. For example, let

x = u + v, y = v.

The inverse transformation is

u = x− y, v = y.

We easily calculate, for instance,

~c2 =

( ∂x
∂v
∂y
∂v

)

=

(

1
1

)

, ~d2 =

( ∂v
∂x
∂v
∂y

)

=

(

0
1

)

.

We note (see drawing) that ~d2 is perpendicular to ~c1 and that ~d1 is perpen-

dicular to ~c2 , but that none of the vectors are parallel and that ~d1 and ~d2

are not perpendicular to each other.
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The importance of these local bases is that often it is convenient to

express a vectorial physical quantity, such as a velocity or an electric field, in

terms of basis vectors that have a special geometrical meaning at a particular

point in the physical space of the problem. For example, in studying the

motion of a satellite around the earth, the most important direction in space

is the direction away from the earth (the radial direction), not one of the

Cartesian directions. The unit vector in this direction is r̂ (or its analogue in

3-dimensional spherical coordinates). The algebra or calculus of a calculation

is likely to be easier, and the physical interpretation more transparent, if one

works in polar coordinates instead of Cartesian ones.

Vector-valued functions in curvilinear coordinates

(an example)

Let ~g(~y) be a vector field in two dimensions. Let ~y = T (~u) be the

expression for Cartesian coordinates in terms of polar coordinates — that

is,

~y =

(

x
y

)

, ~u =

(

r
θ

)

.

To study ~g from a truly polar point of view, it is not sufficient to express

its Cartesian components as functions of r and θ — that is, to study the

composition g◦T . One will want to decompose ~g(~y) at each point ~y in terms

of its components along the polar unit vectors, r̂ and θ̂, introduced above.

These polar components are obtained from the Cartesian components by a

linear transformation (a rotation), which depends on ~y (in particular, on θ,

as is clear from the sketch).

y

x0

• x̂

ŷ
r̂

θ̂
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Thus the function of interest is

F ≡ U~y(~u) ◦ g ◦ T,

where U acts linearly on the coordinates of ~g(~y) but also depends nonlinearly

on ~y (and hence ~u). That is, the elements of the matrix of U are nonlinear
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functions of the coordinates. That matrix is related to, but not identical to,

T ′(~y), the Jacobian of the coordinate transformation. As a matter of fact,

U =

(

cos θ sin θ
− sin θ cos θ

)

.

How this matrix can be deduced from the formulas earlier in this section

will become clear later (after Secs. 4.5, 5.5, 6.2). Here we merely want to

point out that to compute the derivatives of the polar components with

respect to the polar coordinates, one needs to apply the chain rule to all the

~u-dependence of F ; this means replacing g and T by their differentials and

also calculating an additional term by differentiating U with respect to ~u.

Exercises

4.2.1 The formulas
x = cosh u cos v,

y = sinhu sin v

define elliptic coordinates (u, v) in the x–y plane, with the ranges

u ≥ 0, 0 ≤ v < 2π. The curves u = constant > 0 are ellipses; u = 0

is a line segment joining the foci at (−1, 0) and (1, 0). The curves

v = constant are hyperbolas with those same foci, except for the

cases v = 0, π
2
, π, 3π

2
, which are parts of the x and y axes.

(a) Find the tangent vectors to the coordinate lines u = constant

and v = constant (at each point (u, v)).

(b) Verify that these tangent vectors are orthogonal to each other.

(c) Sketch two coordinate lines of each type, and sketch the two

tangent vectors at two of the resulting intersection points.

4.2.2 Parabolic coordinates (u, v) in R2 are defined by

x =
1

2
(u2 − v2), y = uv.

(a) Find (as functions of u and v) the Cartesian components of the

tangent vectors to the coordinate curves (the curves v = constant

and the curves u = constant).

(b) Illustrate the situation with a sketch. (See part (c) of the previous

problem.)
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4.2.3 Find the tangent vectors to the coordinate curves for spherical coor-

dinates in R3, defined by†

x = r sin θ cos φ,

y = r sin θ sin φ,

z = r cos θ.

The remaining exercises deal with the coordinates (u, v) defined by

x = u2, y = u + v, u > 0

in the region of R2 where x > 0.

4.2.4 Find the tangent vectors to the coordinate curves. Note that the

vectors become linearly dependent when u = 0.

4.2.5 The coordinate “surfaces” are actually curves in this case, since the

space is two-dimensional. Find the normal vectors to these curves.

(Solve the equations for u and v and take gradients.) Note that the

vectors “blow up” where x = 0.

4.2.6 Sketch a few of the coordinate curves in the (x, y) plane. Sketch the

two sets of vectors at two points, one near the line x = 0 and one

farther away. Comment on what happens as x approaches 0 and as

x approaches infinity.

4.3 Dimension

We have frequently had to use the term “dimension” without defining it,

relying instead on your intuition built on the elementary geometry of lines,

planes, and three-dimensional space. Roughly speaking, the dimension of a

space is the number of parameters or coordinates needed to specify a point

in the space. We are now able to give a precise definition.

† This definition is the one used in most physics textbooks (but not in most
calculus textbooks, where θ and φ are interchanged): θ is the polar angle (colati-
tude) coming down from the north pole, and φ is the azimuthal angle (longitude).
It is the definition of spherical coordinates that is used throughout this book.
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All the proofs in this section will be delayed to the end, to avoid inter-

fering with the main ideas.

Theorem and Definition: All bases for a given vector space consist

of the same number of vectors. This number (which may be “infinity”*) is

called the dimension of the space. The dimension of V is abbreviated dimV.

Remark: {0} is a zero-dimensional vector space. (The null set, ∅,

qualifies as a basis for it.)

Examples:

1. dim Rn = n. A natural basis is {~ej}
n
j=1 . A general element of the

space has the expansion

~x ≡ (x1, . . . , xn) =

n
∑

j=1

xj~ej

in terms of this basis.

2. dim Pn = n + 1. A natural basis is {1, t, . . . , tn}. (For historical

reasons, the basis elements are usually written in the opposite order.)

3. The dimension of the space of solutions of an nth-order homogeneous

linear ordinary differential equation is n. (One needs n initial condi-

tions to fix a solution.) A convenient basis is {y0, . . . , yn−1}, where

y0(0) = 1, y′

0(0) = 0, . . . , y
(n−1)
0 (0) = 0;

y1(0) = 0, y′

1(0) = 1, . . . , y
(n−1)
1 (0) = 0;

. . .

yn−1(0) = 0, y′

n−1(0) = 0, . . . , y
(n−1)
n−1 (0) = 1.

Example of the example: For
d2y

dt2
− ω2y = 0 this basis is

y0(t) = cosh ωt, y1(t) =
1

ω
sinhωt.

The reason why this basis is convenient is that the initial data of a

solution y are the coefficients in the linear combination

y(t) =
n−1
∑

j=0

cjyj(t).

* Readers who know about transfinite numbers are warned not to interpret any
statements in this book in those terms. We do not distinguish between different
sizes of infinite sets.
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That is, c0 = y(0), c1 = y′(0), etc. (This is why the functions cosh

and sinh were invented!) Of course, in some application one may

want to prescribe initial data at some t other than 0; then a different

basis will be used.

4. In ordinary geometry, points have dimension 0, lines have dimension

1, planes have dimension 2, and physical space as a whole has dimen-

sion 3. (See Sec. 5.1.)

5. P, C(−∞,∞), and C1(−∞,∞) are infinite-dimensional since no finite

set spans one of them.

A decent treatment of bases in infinite-dimensional spaces requires a

distinction between finite linear combinations and infinite sums. Also, there

may be several different definitions of convergence for infinite sums, result-

ing in different definitions of what constitutes a basis. The power functions,

{tn}∞n=0 , form a basis for P in the sense of finite linear combinations. In-

teresting bases for most function spaces, however, require infinite sums. For

example, as already hinted in an earlier discussion of the heat equation, the

simplest partial differential equations have solutions that are Fourier series

of various types. A typical category of Fourier series comprises the sums of

the form
∞
∑

n=1

cn sin(nx). (∗)

It turns out that every differentiable function on the interval 0 ≤ x ≤ π has

a Fourier series (∗) that converges pointwise — that is, for each fixed x the

series of numbers (∗) converges to f(x). In a certain sense, therefore, the

sine functions {sin nx} form a basis for the space C1[0, π] of differentiable

functions on that interval. On the other hand, the space C[0, π], consisting

of functions that are (perhaps) merely continuous, contains functions whose

Fourier series do not converge pointwise; they nevertheless converge in a

weaker sense (“in the mean”), which we don’t have time to explain here.

“Weaker” means that more series qualify as convergent, hence more func-

tions are in the span of the sines; this allows the sines to be regarded as a

basis for the space C.

Summary theorem on dimension, independence, and spanning

Theorem: Let S be a set of k vectors in an n-dimensional vector

space V.
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(1) If k < n, then S can’t span V; S may or may not be independent.

(2) If k > n, then S can’t be independent; S may or may not span V.

(3) If k = n and n <∞, then either

(A) S is a basis for V (i.e., S is independent and spans),

or

(B) S neither spans nor is independent.

To show that a set with the right number of elements is a basis for a

finite-dimensional space, therefore, it is enough to check one of the two prop-

erties, independence or spanning. Usually independence is easier to show,

since it reduces to an algebraic condition on the basis vectors themselves

rather than a relationship to all the other vectors in the space.

Lemmas and proofs

In this subsection we shall prove the basic dimension theorems stated

earlier in the section. Along the way we state and prove some other theorems

that are important in their own right.

We begin with a consequence of the row-reduction algorithm of Sec. 2.1.

Recall that a linear equation is called homogeneous if the “constant term”

is zero, as in

3x− y + z = 0.

Lemma 1: If a system of homogeneous linear algebraic equations con-

tains fewer equations than unknowns, then it has (many) solutions in which

the unknowns are not all equal to zero. (Such solutions are called “nontriv-

ial”.)

Proof: The reduction of the augmented matrix of any system leads to

a matrix with these properties (“row echelon form”): (1) The first nonzero

element in any row is a 1. (There may also be rows at the bottom that

consist entirely of zeros.) (2) The number of leading zeros in the row is

strictly increasing as one moves down the matrix; in particular, no two rows

have their leading 1s in the same column. If the system is homogeneous,

then all the numbers in the last column are 0 throughout the reduction, so

a leading 1 is never in the last column. Therefore, each row of the reduced

matrix represents an equation that can be solved for a different one of the

unknowns. If there are more unknowns than equations, at least one of the
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unknowns is not determined by this procedure and enters the general solution

as an arbitrary parameter — certainly not always 0.

Lemma 2: If V has a basis consisting of n vectors (n < ∞), then any

subset of V with more than n elements is dependent.

Proof: Let {~v1, . . . , ~vn} be the basis and {~x1, . . . , ~xp} (p > n) be the

larger set. The ~x s have expansions

~xj =

n
∑

k=1

ckj~vk .

We must investigate the equation

p
∑

j=1

rj~xj = 0.

It implies

0 =

p
∑

j=1

n
∑

k=1

rjckj~vk

=

n
∑

k=1

( p
∑

j=1

ckjrj

)

~vk .

Since the ~v s are independent, it follows that

p
∑

j=1

ckjrj = 0 for k = 1, . . . , n.

This is a linear system of the type described in Lemma 1, so it has nontrivial

solutions {rj}. This proves that the ~x s are dependent, by definition.

We are now ready to prove the theorem that made the definition of

“dimension” possible.

Proof that all bases have the same size: If V has two bases, one

with n vectors and one with p vectors, where n < p < ∞, then we get an

immediate contradiction with Lemma 2. If the larger basis is infinite, apply

Lemma 2 to a large finite subset of that basis and get the same contradiction.

At the last step of the proof we tacitly used one of these obvious conse-

quences of the definitions in Sec. 4.1:
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Proposition 1:

(a) If a set S is independent, then any subset of S is also independent.

(b) If a set S spans V, then any superset of S (i.e., a set of which S

is a subset) also spans V.

The picture we have built up is not quite complete: We have not yet

proved that every vector space actually has a basis. Nor have we proved

that existence of a finite spanning set implies existence of a finite basis. But

these facts follow from the first half of the following theorem.

Proposition 2:

(a) Any set of vectors can be made independent (if it isn’t already)

by throwing away vectors — without changing the span of the

set. In particular, any spanning set can be made into a basis by

discarding vectors from it.

(b) Any independent set can be made into a basis (if it isn’t one

already) by adding vectors.

Examples of (a): Consider three vectors in a plane:

........................................................................................................................................................................................................ ..................
.
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...............

................
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...............
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.......................
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.........
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.........
........................

...................

...................................................................................................................................................................................... ..................
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..........
.....................

................... ..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.....................

...................

• •

or

In the first case, any one of the three can be discarded, leaving an indepen-

dent set that spans the plane. In the second case, either of the two parallel

vectors can be discarded; in this case, however, the third vector is essen-

tial — omitting it would leave a set that does not span the plane (and is

dependent, as well).

Partial proof of (a): We confine attention to the case that the set

is finite:

S = {~x1, ~x2, . . . , ~xk}.

(To avoid fussing over a trivial special case, we also assume that S contains

more than just the zero vector.) If S is not already independent, then (by

Theorem 1 of Sec. 4.1) one of its elements is a linear combination of the

others, say

~x3 = r1~x1 + r2~x2 + r4~x4 + · · · .

This formula can be used to replace ~x3 in any linear combination of the

vectors in S so as to get a linear combination of the remaining vectors.
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Therefore, the span of S does not decrease when the redundant vector is

discarded. Repeating this process as many times as necessary, we must

eventually reach an independent set.

Partial proof of (b): We shall treat only the case of a finite-

dimensional vector space. If the set S = {~x1, . . . ~xk} is not a basis (doesn’t

span the vector space V), then there is a vector ~v ∈ V that is not a linear

combination of the vectors in S. Therefore, if we add ~v to S in the role of

~xk+1 , the extended set remains independent (see Theorem 1 of Sec. 4.1 and

its proof). If the new set is not yet a basis, add another vector, and so on.

When the number of vectors reaches the dimension of V, the set must be a

basis.

With the aid of Proposition 2 (even in its restricted form, referring to

finite sets in finite-dimensional spaces), it should be easy to fill in the details

of the proof of the summary theorem.

Exercises

4.3.1 Write out a proof of Proposition 1.

4.3.2 Prove the “summary theorem”.

4.3.3 Find the dimension of the span of each of these sets. (Review Sec. 4.1

for the techniques.)

(a)

(

1
−2

)

,

(

−2
4

)

(b)

(

3
5

)

,

(

2
α

)

(for a real parameter α)

(c) (1, 1, 1), (1, 2, 3), (4, 5, 6)

(d) (4, 5, 9), (2, 3, 4), (0, 1,−1)

4.3.4 Find the dimension of the span of each of these sets.

(a)

(

1
3

)

,

(

3
5

)

,

(

4
−2

)

(b) (1, 2, 3), (4, 5, 9)

(c) (1, 1, 1), (2, 3, 1), (4, 5, 3), (−1, 0,−2)

(d) (5, 6,−2), (α,−3, 1) (for a real parameter α)
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4.3.5 What is the dimension of the subset of R3 consisting of solutions of

the equation

x + y + z = 0?

4.3.6 Consider a system of 2 homogeneous equations in 3 unknowns.

(a) Suppose that the row echelon form of the augmented matrix is

of the type
(

1 0 ∗ 0
0 1 ∗ 0

)

.

(The asterisks represent numbers whose values are irrelevant.)

What is the dimension of the subset of R3 consisting of solutions

of the system?

(b) Give an example of a row echelon form that would yield a differ-

ent dimension.

4.3.7 Consider a system of 3 homogeneous equations in 3 unknowns.

(a) Suppose that the row echelon form of the augmented matrix is

of the type




1 ∗ 0 0
0 0 1 0
0 0 0 0



 .

What is the dimension of the subset of R3 consisting of solutions

of the system?

(b) Give an example of a row echelon form that would yield a larger

dimension.

4.3.8 In a plane, sketch examples of the six situations allowed by the sum-

mary theorem on dimension:

(a) two vectors that are linearly independent and span the plane

(b) two vectors that are not independent and don’t span the plane

(c) three vectors that are not independent and do span the plane

(d) three vectors that are not independent and don’t span the plane

(e) one vector that constitutes an independent set and does not span

the plane

(f) one vector that constitutes a dependent set and does not span

the plane
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In the remaining exercises, find the dimension of the span of the

given list of vectors, and construct a basis for that span. (Elec-

tronic assistance is permitted.)

4.3.9 (−1, 1,−3, 0), (2, 1, 3, 1), (1, 2, 0, 1)

4.3.10 (1,−3, 2, 9,−5), (0,−2, 1, 5,−3), (1, 1, 0,−1, 1), (2, 0, 1, 3,−1)

4.3.11 (1, 5,−3, 1), (4, 5, 3,−1), (−1, 1,−3, 1), (2, 1, 3,−1)

4.3.12 (1, 2,−1, 1), (1, 1, 3, 1), (1, 2, 1, 0), (1, 1, 1, 1)

4.3.13 (1, 1, 1, 0), (1,−1, 0, 1), (2, 0, 1, 1), (1, 0,−1, 0)

4.3.14











−1
1
1
2
2











,











−1
−2
−2
−1
−1











,











−1
0
0
1
1











,











0
1
1
1
1











,











−1
−1
−1
0
0











4.4 Coordinates with Respect to a Basis

If {~b1, . . . ,~bn} is a basis for V, then we know that every ~x in V has a

unique expansion

~x =
n

∑

j=1

rj
~bj .

The numbers rj are the coordinates of ~x with respect to that basis. This

generalizes the usual notion of the (rectilinear) coordinates of a vector in

space with respect to a coordinate system (a grid defined by basis vectors).
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........................................................................................................

0
~b1

~b2
~x

r2

r1

Coordinates are also called (expansion) coefficients or components, al-

though it is more correct to reserve the word “component” for a correspond-

ing vectorial piece of ~x, one of the terms rj
~bj .

From now on we shall think of the vectors in a basis as having a definite

order. (The basis is a list, not just a set.) Then the coordinates rj have a

definite order, and constitute a vector in Rn.
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Notational remark: When we are doing all our calculations with

respect to one fixed basis, it is natural and helpful to call the coordinates xj

instead of rj , so that the notation always shows which vector ~x we’re talking

about. However, in the near future we’ll be considering the coordinates of

the same vector with respect to more than one basis. If we were to use the

letter x for all of its coordinates, we would have to resort to notations like x′

j

or xj′ to distinguish the coordinates belonging to different bases. For now,

we prefer to use different letters, say rj and sj , for coordinates relative to

different bases.

If the basis is the natural basis in Rn, then the coordinates of a vector

(which is a sequence of numbers in this case) are the numbers in the sequence

itself:

(x, y) = x~e1 + y~e2 ≡ xı̂ + y̂.

For a different basis in Rn, the coordinates will be different numbers.

Example. Consider the basis {~b1 = (1, 2), ~b2 = (1, 1)}. Each (x, y)

has the form c~b1 + d~b2 . What are c and d? [Example of the example:

(5,−1) = −6(1, 2) + 11(1, 1).]

Solution, Method 1: Write out

(x, y) = c(1, 2) + d(1, 1)

= (c + d, 2c + d).

This gives two equations to be solved for the two unknowns, c and d:

x = c + d,

y = 2c + d.

This can be solved once and for all — for all (x, y)— by inverting
(

1 1
2 1

)

.

The inverse matrix is
(

−1 1
2 −1

)

≡ C. That is,

c = −x + y,

d = 2x− y.

Solution, Method 2: We know that (x, y) = x~e1 + y~e2 . If we had

expressions for the ~e s in terms of the ~b s, we could plug them into this,

combine terms, and be done. What we actually have are the expressions

going in the reverse direction:

~b1 = ~e1 + 2~e2 ,

~b2 = ~e1 + ~e2 .
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We can solve these for ~e1 and ~e2 . The unknowns here are vectors, not

numbers, but the algebra of solving the linear system is the same as always.

Note, incidentally, that the linear system involved is the transpose of the

one in Method 1 — that is, its matrix is
(

1 2
1 1

)

. Therefore, the inverse

matrix,
(

−1 2
1 −1

)

, is the transpose of the inverse we found in the other method.

That is,

~e1 = −~b1 + 2~b2,

~e2 = ~b1 − ~b2 .

Plugging into ~x = x~e1 + y~e2 as planned, we get

~x = (y − x)~b1 + (2x− y)~b2 .

This equation is equivalent to the formulas for c and d that we found by the

other method.

Continuation of example: In order to pass from this example to

a general theorem, it is necessary to restate the results in a form that is

cluttered with more subscripts. Let ~x = x1~e1 + x2~e2 be the expression of a

generic vector ~x as a linear combination of the natural basis vectors, and let

~x = r1
~b1 + r2

~b2 be the expansion in terms of the new ~b basis (that is, r1 ≡ c,

r2 ≡ d). Our problem was to find formulas for the rs in terms of the xs.

Our result was that

rj = Cj1x1 + Cj2x2 for j = 1 and 2,

for a certain matrix C,

(

C11 C12

C21 C22

)

=

(

−1 1
2 −1

)

.

Along the way we found that

~ek = C1k
~b1 + C2k

~b2 for k = 1 and 2. (∗)

(There were also two other pairs of linear formulas that are the inverses of

these two.) The critical thing to notice is that the subscripts in (∗) are

“twisted” relative to the format for linear formulas that we have regarded

as standard since the beginning of Chapter 2. If we are to regard (∗) as a

linear system in the usual sense, we must identify the matrix appearing in

it as Ct rather than C.
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By calculations just like those in the example, but stated in full gener-

ality, one can prove the master theorem on change of basis:

Theorem 1: Given two bases, {~vj} and {~wj}, if

~x =

n
∑

k=1

rk~vk and ~x =

n
∑

j=1

sj ~wj

(the rs and ss being defined by these equations), and if

~vk =
n

∑

j=1

Cjk ~wj , (†)

then

sj =
n

∑

k=1

Cjkrk . (‡)

(Note that the subscripts in (†) are “twisted” in the sense that the summed

index on the matrix elements is not the one adjacent to the vector’s coordi-

nates, while the subscripts in (‡) are untwisted!) In other words, if we call

the ~v s the “old basis” and the ~w s the “new basis”, then the relation among

the four matrices in the problem is:

C expresses new coordinates in terms of old coordinates;

C−1 expresses old coordinates in terms of new coordinates;

Ct expresses old basis in terms of new basis;

(C−1)t = (Ct)−1 expresses new basis in terms of old basis.

Remark 1: The statement “C expresses new coordinates in terms of

old coordinates” is shorthand for the more accurate statement, “The linear

formula whose coefficient matrix is C (namely, (‡)) expresses the new coor-

dinates as functions of the old coordinates.” Another way of saying the same

thing is “C maps the old coordinates to the new coordinates.” Notice that

“new” and “old” have changed places here, since the domain and codomain

have exchanged roles relative to the mathematical verb of the sentence. Of

course, exactly analogous remarks apply to the other three statements in the

theorem.

Remark 2: The matrix (C−1)t = (Ct)−1 is sometimes called the con-

tragredient of C. Note that the operation of taking the contragredient com-

mutes with matrix multiplication, since the reversal of factor order associated

with inversion cancels that due to transposition.
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Remark 3: Another way of looking at the relationships in Theorem 1

is to regard each basis as a row vector whose elements are vectors. (Thus

this is a monstrosity like the top row of the determinant defining a cross

product.) When a row vector is multiplied on the right by a square matrix,

the result is a new row vector of the same size. The formula (†) is of that

form:

(~v1, . . . , ~vn) = (~w1, . . . , ~wn)C. (†′)

This new form of the basis transformation formula does not overtly involve

any twist or transpose. The corresponding coordinate transformation in the

opposite direction is, of course,





s1
...

sn



 = C





r1
...

rn



 or ~s = C~r. (‡′)

Theorem 1 should be studied until you are sure you understand why it

is true. However, memorizing the statements at the end is not necessarily

recommended!. It is safer to approach each concrete problem with care and

common sense. Usually you are given one of the four relations and you need

to find one of the other three. You figure out (by a calculation like those in

the example) what matrix does what you want to do, and then you test that

it does indeed do so. (If you feel more comfortable with partial derivatives

than with indexed symbols, you may find the following remark useful.)

Remark (Linear algebra as multivariable calculus): If we regard

the ss as functions of the rs, then (from (‡) and its inverse)

Cjk =
∂sj

∂rk

and (C−1)kj =
∂rk

∂sj

.

(This was the essence of Exercise 3.4.10.) Thus (†) can be rewritten

~vk =
n

∑

j=1

∂sj

∂rk

~wj . (†′′)

Now recall that the multivariable chain rule tells us that partial derivatives

transform this way under a change of coordinate system:

∂

∂rk

=
n

∑

j=1

∂sj

∂rk

∂

∂sj

.
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Thus (†′′) says that basis vectors “behave like” partial-derivative operators

when coordinates are changed. (Indeed, many mathematicians nowadays

insist that the basis vectors are partial-derivative operators, but that is a

piece of metaphysics that you are not obligated to accept at the moment.)

The point is that if you have thoroughly absorbed the multivariable chain

rule from third-semester calculus, but you feel bewildered by the matrix C

and its three cousins, then writing formulas in terms of partial derivatives

may help you get them right!
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r2
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s2

~v1

~v2

~w1

~w2

To get a geometrical interpretation of (†′′), suppose that {~wj} is the

natural basis for Rn, so that each sj is simply a standard Cartesian coordi-

nate in Rn. Then the rk s are a set of “oblique” coordinates. The numbers
∂sj

∂rk
are the Cartesian coordinates of the basis vector along the rk axis, ~vk .

Therefore, they tell how much each quantity sj changes when rk increases

by one unit, all the other rk′ s being held fixed. Of course, that is exactly

what a partial derivative ought to do!

Example. As discussed in Sec. 4.1, two standard bases for the solution

space of y′′ = 9y are

A = {~a1 = e3t, ~a2 = e−3t} and B = {~b1 = cosh(3t), ~b2 = 1
3 sinh(3t)}.

Find the matrix that expresses the coordinates of an arbitrary vector (solu-

tion) with respect to the A basis in terms of its coordinates with respect to

the B basis.

Solution: From the definition of the hyperbolic functions, we have

~b1 = 1
2
~a1 + 1

2
~a2 ,

~b2 = 1
6
~a1 −

1
6
~a2 .
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From here there are many equivalent ways to proceed:

Method 1: Therefore, by Theorem 1,

(

1
2

1
2

1
6
− 1

6

)t

=

(

1
2

1
6

1
2
− 1

6

)

maps the B-coordinates into the A-coordinates, as demanded.

Method 2: Therefore (see Remark 3),

(~b1,~b2) = (~a1,~a2)

(

1
2

1
6

1
2 − 1

6

)

,

and the matrix appearing in this equation is the desired one.

Method 3: Therefore, if y = x1~a1 +x2~a2 and also y = y1
~b1 + y2

~b2 , then

y = y1

(

1
2
~a1 + 1

2
~a2

)

+ y2

(

1
6
~a1 −

1
6
~a2

)

=
(

1
2
y1 + 1

6
y2

)

~a1 +
(

1
2
y1 −

1
6
y2

)

~a2 .

Therefore,
(

x1

x2

)

=

(

1
2

1
6

1
2 − 1

6

)(

y1

y2

)

.

(This method amounts to reproving Theorem 1 in this particular case.)

Theorem 2: Given a basis, the resulting correspondence between vec-

tors and their coordinates is an isomorphism (that is, it’s linear, one-to-one,

and onto; see Sec. 5.2 for definitions). Thus every n-dimensional vector space

is isomorphic to Rn.

Example. Let (−4, 3, 2,−1, 1) and (−1,−2, 2, 1,−3) be the coordinates

of two vectors, ~x and ~y, with respect to a basis {~v1, . . . , ~v5} of a 5-dimensional

vector space, V. Find the coordinates of the vector 3~x−5~y in the same basis.

Solution: The talk about an abstract basis is just a smokescreen.

You can do the arithmetic on the coordinate vectors as usual. Since 3~x =

(−12, 9, 6,−3, 3) and −5~y = (5, 10,−10,−5, 15), the vector 3~x − 5~y = 3~x +

(−5)~y has the coordinates (−7, 19,−4,−8, 18).

The matrix of a linear function with respect to a basis

Theorem 2 has tremendous practical significance. It allows one to carry

out many calculations involving vectors in an abstract space V in terms of

ordinary numbers. (We’ve been doing this tacitly all along in our examples

involving the polynomial spaces, Pn−1 .) In particular, every linear function
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from one finite-dimensional vector space into another can be represented by

a matrix :

Theorem 3 (kth-Column Rule): Let D be an n-dimensional space,

and W a p-dimensional space. Choose a basis {~v1, . . . , ~vn} for D and a basis

{~w1, . . . ~wp} for W. Let L be a linear function on D into W. Then there is

a p × n matrix AL such that for each ~x ∈ D the coordinates of L(~x) with

respect to the ~w-basis are obtained from the coordinates of ~x with respect

to the ~v-basis by multiplication by AL :

~x ≡
n

∑

k=1

xk~vk , ~L(~x) ≡

p
∑

j=1

L(~x)j ~wj ,

L(~x)j =
n

∑

k=1

Ajkxk

where AL = {Ajk} (1 ≤ j ≤ p, 1 ≤ k ≤ n). Furthermore, the elements

of the kth column of AL are the coordinates of ~L(~vk) with respect to the

~w-basis:

Ajk = L(~vk)j .

Here’s the picture.
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D

W

Rn

Rp

L L

Cv

Cw

AL

The matrix AL represents a linear function from Rn to Rp; let’s denote that

function also by AL . Then L itself equals C−1
w ◦AL ◦Cv , where Cv :D → Rn

and Cw:W → Rp are the coordinate isomorphisms. Those isomorphisms

“translate” everything about the spaces D and W into numerical terms; in

particular, they translate L into a matrix.

Proof of theorem: The mapping AL = Cw ◦ L ◦ C−1
v of the {xk}

onto the {L(~x)j} is linear, because it is a composition of linear maps. Apply

the elementary kth-column rule (Theorem 2 in Sec. 3.2) to get its matrix.
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The basic theorems about matrix representations of linear functions

from Rn to Rp now carry over to arbitrary finite-dimensional vector spaces.

In particular,

AL◦K = ALAK ;

AL−1 = (AL)−1 when they exist;

ArL+K = rAL + AK .

Please note that in our recent discussions we have been considering two

different situations in each of which we’ve been dealing with two bases. First,

we considered two different bases for the same vector space, and studied how

the coordinates of a fixed vector changed when we abandoned one basis in

favor of the other. Second, we considered two vector spaces, each equipped

with its own basis, and a linear function from one space into the other; we

studied how the coordinates of the image (output) vector in the codomain

depend on the coordinates of the input vector in the domain. (Actually,

these two spaces could be the same space; the important point is that two

different vectors, the input and output, are involved.) In the next section

we will put these two ingredients together; therefore, we’ll need to deal with

as many as four bases at once.

Examples of finding the matrix of a transformation

Example 1. Let D = P3 andW = P3 . Let D = d/dt, the operation of

differentiation. Use the basis {t3, t2, t, 1} in both D and W. Then the first

column of the matrix of D is the list of coefficients of D(t3) = 3t2, namely,

(0, 3, 0, 0)t . Treating the other columns in the same way, we see that

t3 →
t2 →
t1 →
t0 →







⊤ ⊤ ⊤ ⊤
D(t3) D(t2) D(t) D(1)
| | | |
⊥ ⊥ ⊥ ⊥






=







0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0






.

(The basis functions have been written at the left here merely as a one-

time reminder of the meaning of each row: The output of the calculation

described by the first row is the coefficient of t3 in the answer, etc.) Thus,

for example, if p(t) = 3t3 − 5t + 1, then







0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0













3
0
−5
1






=







0
9
0
−5






,
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so p′(t) = [Dp](t) = 9t2 − 5 (which agrees with a direct calculation of p′).

Example 2. Let D = P3 and W = P2 . Let D = d/dt again. Use the

basis {t3, t2, t, 1} for D and {t2, t, 1} for W. Then the matrix for D is easily

seen to be




3 0 0 0
0 2 0 0
0 0 1 0





— just the matrix from the previous example without its top row. Note that

the matrix corresponding to a given linear function can depend upon which

vector space is regarded as its codomain!

An alternative way of solving problems like these is simply to calculate

L(~x) for an arbitrary ~x ∈ D and read off the coefficients. (In the present

case, L = D and D = P3 .) Adopting a notation suggested by our general

discussion of bases, we calculate

D(r1t
3 + r2t

2 + r3t + r4) = 3r1t
2 + 2r2 + r3

≡ s1t
2 + s2t + s3 .

Thus s1 = coefficient of t2 = 3r1 , etc. From the three equations for the ss

we can read off the matrix.

Example 3. Let D be the vector space spanned by the functions

U1 = 1, U2 = cos t, U3 = cos 2t, U4 = cos 3t.

Let L be the differential operator d2/dt2, which is a linear function on D

into D. What is the matrix of L, with respect to the basis {U1, U2, U3, U4}

at both ends of the transformation? Answer:







0 0 0 0
0 −1 0 0
0 0 −4 0
0 0 0 −9






.

Example 4. Let D and L be as above. Let us find the matrix of L

with respect to the basis

V1 = 1, V2 = cos t, V3 = cos2 t, V4 = cos3 t
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(used at both ends of the transformation L). We note first of all that

U3 ≡ cos 2t = 2V3 − V1 ,

U4 ≡ cos 3t = 4V4 − 3V2 ,

U1 = V1 , U2 = V2 ,

and hence

V3 = 1
2U3 + 1

2U1 = 1
2 cos 2t + 1

2 ,

V4 = 1
4U4 + 3

4U2 = 1
4 cos 3t + 3

4 cos t.

This verifies that the new set is indeed a basis for the same space, D. It also

enables us to calculate easily

d2V1

dt2
= 0,

d2V2

dt2
= −V2 ,

d2V3

dt2
= −2 cos 2t = −4V3 + 2V1 ,

d2V4

dt2
= −

9

4
cos 3t−

3

4
cos t = −9V4 + 6V2 .

Therefore, the matrix is







0 0 2 0
0 −1 0 6
0 0 −4 0
0 0 0 −9






.

Of course, we could also use the U basis for D in its role as domain

while using the V basis for D in its role as codomain (or vice versa), if we

had a reason for doing so. This would give still a different matrix for L.

Example 5 (an inverse problem). Let

A =





1 −2 1
1 1 −2
−2 1 1



 , ~b1 = et, ~b2 = e2t, ~b3 = e3t.

Construct the linear operator L whose matrix in the basis B = {~b1,~b2,~b3} is

equal to A.
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Solution: Your first reaction should be to demand a clarification of

the problem: B is a basis for what? According to Exercise 4.1.8, the set B

is linearly independent. It is therefore a basis for the vector space that it

spans — that is, the space S of all functions of the form

f(t) = r1
~b1 + r2

~b2 + r3
~b3

= r1e
t + r2e

2t + r3e
3t.

Let ~f = (r1, r2, r3)
t ∈ R3 be the coordinate vector corresponding to a func-

tion f . Then

A~f =





1 −2 1
1 1 −2
−2 1 1









r1

r2

r3



 =





r1 − 2r2 + r3

r1 + r2 − 2r3

−2r1 + r2 + r3



 .

So

L(f)(t) = (r1 − 2r2 + r3)~b1 + (r1 + r2 − 2r3)~b2 + (−2r1 + r2 + r3)~b3

= (r1 − 2r2 + r3)e
t + (r1 + r2 − 2r3)e

2t + (−2r1 + r2 + r3)e
3t .

This formula completely describes a linear operator L:S → S.

Example 6. A linear mapping L:P2 → P2 is defined by

[L(p)](t) = (t2 − 4)p′′(t) + tp′(t)− 4p(t).

Find the matrix that represents L with respect to the standard basis {t2, t, 1}

for P2 .

Solution: Calculate

L(t2) = (t2 − 4)(2) + t(2t)− 4t2 = −8,

L(t) = 0 + t− 4t = −3t,

L(1) = −4.

Therefore, the matrix is





0 0 0
0 −3 0
−8 0 −4



 .
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Leaving or returning to the natural basis

Very frequently (for example, in the matrix diagonalization problems of

Chapter 8) one needs to find a change-of-basis matrix when one of the bases

is the natural basis in Rn and the other basis vectors are given to us by their

natural representations in Rn. In these problems there is a shortcut around

the general theory embodied in Theorem 1:

Theorem 4: Let {~v1, . . . , ~vn} be n independent column vectors in Rn.

Form a matrix M by stacking these vectors together:*

M ≡





⊤ ⊤ ⊤
~v1 ~v2 · · · ~vn

⊥ ⊥ ⊥



 .

Then M is the matrix that maps coordinates with respect to the new (~v)

basis into coordinates with respect to the natural basis.

Proof: The assertion is easily seen to be true for the basis vectors

themselves, which have expansions like ~v1 = 1~v1 + 0~v2 + · · · + 0~vn . Hence

by the kth-column rule it is true of all vectors.

Exercises

4.4.1 Write out a proof of Theorem 1. (Feel free to use the notation of

Remark 3 if you prefer.)

4.4.2 Let us use the standard basis {tn, tn−1, . . . , t, 1} for each polynomial

space Pn . Find the matrix representing each of these linear functions

with respect to the standard bases.

(a) L(p) = p′′ + p′ as an operator from P2 into P1 .

(b) L(p) = p′′ − 5p′ as an operator from P2 into P2 .

4.4.3 Define the linear operator L:P4 → P4 by

Lp(t) = 3p(t)− p′(t).

(As usual, p′ is the derivative of the polynomial p.) Find the matrix

that represents L with respect to the standard basis {t4, t3, t2, t, 1}.

4.4.4 Express

(

0
1

)

as a linear combination of

(

1
1

)

and

(

2
−1

)

.

* For example, if ~v1 =

(

1
2

)

, ~v2 =

(

3
4

)

, then M =

(

1 3
2 4

)

.



4.4. Coordinates 191

4.4.5 Let D ≡ d
dt

be the operator of differentiation, acting on the space

spanned by the functions {~b1 ≡ et, ~b2 ≡ e−t}.

(a) Find the matrix representing D with respect to the basis {~b1,~b2}.

(b) Find the matrix representing D with respect to the basis

{~v1 ≡ cosh t, ~v2 ≡ sinh t}.

4.4.6 An operator L:P2 → P2 is defined by

[L(p)](t) = t2p′′(t) + p′(t) + 2p(t).

Find the matrix of L with respect to the standard basis, {t2, t, 1}, of

the polynomial space P2 .

4.4.7 Consider the vectors ~v1 =
(

1
2

)

, ~v2 =
(

−2
1

)

in R2.

(a) Show that {~v1, ~v2} is a basis for R2.

(b) Express ~v1 and ~v2 as linear combinations of the natural basis

vectors, ê1 =
(

1
0

)

and ê2 =
(

0
1

)

.

(c) Express the natural basis vectors in terms of ~v1 and ~v2 .

(d) Find the coordinates of an arbitrary vector ~x =
(

x
y

)

with respect

to the basis {~v1, ~v2}.

4.4.8 Let V1 be the vector space span{cos t, sin t}, and V2 be the space

span{1, cos t, sin t, cos(2t), sin(2t)}.

(a) Show that the linear operator L(p)(t) ≡ p′(t)+ (sin t)p(t) maps

V1 into V2 .

(b) Find the matrix representing this linear function (with respect

to the bases listed in the definitions of the two spaces).

4.4.9 Consider these two bases for P2 :

E ≡ {1, t, t2}, B ≡ {1− t, 1 + t, 2t2}.

(a) Find the change-of-basis matrix that takes coordinates relative

to B into coordinates relative to E .

(b) Find the change-of-basis matrix that takes coordinates relative

to E into coordinates relative to B.
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4.4.10 Show that {~b1,~b2,~b3} is a basis (for R3) and find the coordinates of

the vector ~x in that basis.

(a) ~b1 = (−1, 2, 1), ~b2 = (3,−2, 1), ~b3 = (2, 3, 4); ~x =

(4, 3, 6).

(b) ~b1 =





1
3
1



, ~b2 =





2
1
1



, ~b3 =





1
−1
1



; ~x =





3
−4
2



 .

4.4.11 Show that {~b1, . . . } is a basis (for R4) and find the coordinates of the

vector ~x = (−2,−3, 0, 3) in that basis.

~b1 = (1, 3, 2, 1), ~b2 = (3, 2, 1, 1), ~b3 = (1, 1, 2, 3), ~b4 = (1, 1, 1, 2).

4.4.12 Show that {~b1, . . . } is a basis (for R4) and find the coordinates of the

vector ~x =







2
4
2
4






in that basis.

~b1 =







1
1
1
−1






, ~b2 =







1
1
−1
1






, ~b3 =







1
−1
1
1






, ~b4 =







−1
1
1
1






.

4.4.13 Find the matrix (with respect to standard bases) of the linear operator

L:P1 → P2 defined by

L(p)(t) =

∫ t

0

p(τ) dτ + p′(t).

4.4.14 Find the formulas (x1 = . . . r1 . . . r2 . . . r3 . . . , x2 = . . . , x3 = . . . )

for converting the coordinates of an arbitrary vector ~x ∈ R3 with

respect to the basis in Exercise 4.4.10(a) into its coordinates with

respect to the natural basis.

4.4.15 Find the formulas (r1 = . . . x1 . . . x2 . . . x3 . . . , r2 = . . . , r3 = . . . )

for converting the coordinates of an arbitrary vector ~x ∈ R3 with

respect to the natural basis into its coordinates with respect to the

basis in Exercise 4.4.10(b).

4.4.16 Prove Theorem 2.
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In the remaining exercises, the set {~b1,~b2,~b3} is a basis (for the

appropriate Rn), and so is the set {~b′1,~b
′

2,
~b′3}. Find the formulas

(x1 = . . . x′

1 . . . x′

2 . . . , x2 = . . . , . . . ) for converting the coordinates

of an arbitrary vector with respect to the primed basis into co-

ordinates with respect to the unprimed basis. (Electronic matrix

inversion is allowed.)

4.4.17 ~b1 =





1
1
1



, ~b2 =





1
2
1



, ~b3 =





3
1
1



;

~b′1 =





1
2
1



 , ~b′2 =





3
1
2



 , ~b′3 =





1
2
3



 .

4.4.18 ~b1 =





1
1
1



, ~b2 =





2
−1
1



, ~b3 =





−1
3
1



;

~b′1 =





1
−1
1



 , ~b′2 =





1
2
5



 , ~b′3 =





−6
1
1



 .

4.4.19 ~b1 =







0
0
0
1






, ~b2 =







0
0
1
0






, ~b3 =







0
1
0
0






, ~b4 =







1
0
0
0






;

~b′1 =







1
1
1
1






, ~b′2 =







1
0
0
1






, ~b′3 =







1
0
1
0






, ~b′4 =







1
1
0
0






.

4.4.20 ~b1 =







−1
−1
0
1






, ~b2 =







−1
2
1
1






, ~b3 =







1
−1
1
1






, ~b4 =







1
2
−1
0






;

~b′1 =







1
3
1
2






, ~b′2 =







−2
1
1
2






, ~b′3 =







0
1
2
2






, ~b′4 =







2
1
0
1






.
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4.5 Change of Basis

As Examples 3 and 4 of the preceding section show, the matrix repre-

sentation of a linear function depends upon the basis used for the domain

and the basis used for the codomain. Let us study the effect of changing

each of these. We must combine the two big theorems of the previous sec-

tion (one about the matrix representation of a linear function and one about

the effect of a basis change on the coordinates of vectors). As before, we’ll

discuss an example in detail and then state the corresponding result for the

most general case.

Let D = P2 be the domain and W = P1 the codomain. Let L:D → W

be the differentiation operator, d/dt. Thus

L(p) = L(r1t
2 + r2t + r3)

= 2r1t + r2

≡ b1t + b2 , (∗)

where the last line will be our notation (in this section) for a general element

of P1 in the standard form. Incidentally, please be reminded that when the

polynomial r1t
2 + r2t + r3 appears as the argument of L, it is a pattern

denoting the function p in a vector space of polynomial functions; it does

not denote a number which is the value of the polynomial for some particular

t. (It would be nonsensical, for example, to use the chain rule to calculate

something labeled “dL/dt”.)

Let us first consider the natural bases

{~vj}
3
j=1 ≡ {t

2, t, 1} for D, {~wj}
2
j=1 ≡ {t, 1} for W.

The matrix of L with respect to these bases is
(

2 0 0
0 1 0

)

≡ A

(by the kth-column rule or by inspection of (∗)). That is,

bj =

3
∑

k=1

Ajkrk , or ~b = A~r,

where ~b ∈ R2 and ~r ∈ R3.



4.5. Change of basis 195

Now let’s introduce a new basis at the domain end:

{~uj}
3
j=1 = {(t− 1)2, (t− 1), 1}.

(This sort of basis change for polynomials is likely to occur in practice, since

it just corresponds to a change of origin for the variable t.) Any element of

D can be written as

s1(t− 1)2 + s2(t− 1) + s3 .

We want the matrix (or the set of equations) that expresses b1 and b2 in

terms of s1, s2, and s3 . If we had the rs expressed in terms of the ss, we

could plug into (∗) to get our answer. What do we know that is related to

this? Well, we can quickly get the expression of the ~u s in terms of the ~v s:

~u1 = t2 − 2t + 1

= ~v1 − 2~v2 + ~v3 ,

~u2 = ~v2 − ~v3 ,

~u3 = ~v3 .

That is,

~uj =
3

∑

k=1

Mkj~vk , M ≡





1 0 0
−2 1 0
1 −1 1



 ;

that is, the new basis is given in terms of the old basis by the transpose

of M (since we deliberately put a “twist” in the order of the indices of the

formula defining M). Looking back at the theorem covering this situation,

we see that M itself gives the old coordinates in terms of the new ones:

rj =

3
∑

k=1

Mjksk , or ~r = M~s.

(We’ll rederive this from scratch in a second, so as to practice what we

preach.) Therefore,
~b = A~r = AM~s,

so the matrix of L with respect to bases {~uj} ⊂ D and {~wj} ⊂ W is

AM =

(

2 0 0
0 1 0

)





1 0 0
−2 1 0
1 −1 1



 =

(

2 0 0
−2 1 0

)

.
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That is,

L
(

s1(t− 1)2 + s2(t− 1) + s3

)

= 2s1t + (−2s1 + s2).

Let’s work through the connection between the basis change and the

coordinate change: We have two ways of expanding a general vector,

p(t) =

3
∑

j=1

rj~vj =

3
∑

k=1

sk~uk .

We rename the indices in the formula for the ~u s so that we can substitute

it into the second form:

~uk =
3

∑

j=1

Mjk~vj .

Thus

p(t) =

3
∑

k=1

sk

3
∑

j=1

Mjk~vj

=
3

∑

j=1

[

3
∑

k=1

Mjksk

]

~vj .

Comparing with the first expression for p, we see that rj equals the quantity

in square brackets. That is the formula we wanted to derive.

Now that we know how to change basis in the domain, it should be

child’s play to change basis in the codomain. Let

~t1 = t + 1 = ~w1 + ~w2 ,

~t2 = 2t− 1 = 2~w1 − ~w2 .

We want formulas for the cs, defined by

L(p) =

2
∑

j=1

cj
~tj .

By the same principle as before,

if ~wj =

2
∑

k=1

Hkj
~tk , then cj =

2
∑

k=1

Hjkbk .
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We therefore solve for the ~w s in terms of the ~t s:

~w1 = 1
3 (~t1 + ~t2),

~w2 = 1
3 (2~t1 − ~t2);

H =
1

3

(

1 2
1 −1

)

.

Then ~c = H~b and ~b = A~r, so ~c = HA~r ;

HA =
1

3

(

1 2
1 −1

)(

2 0 0
0 1 0

)

=
1

3

(

2 2 0
2 −1 0

)

.

This is the matrix of L with respect to the bases {~vj} and {~tj}.

Finally, we might want the matrix of L with respect to the bases {~uj}

and {~tj}. To get this we combine the two previous procedures: Multiply A

by M on the right to change basis in the domain, and multiply it by H on

the left to change basis in the codomain.

HAM =
1

3

(

−2 2 0
4 −1 0

)

.

That is,

L
(

s1(t− 1)2 + s2(t− 1) + s3

)

= 1
3
(−2s1 + 2s2)(t + 1) + 1

3
(4s1 − s2)(2t− 1),

which you are invited to check by direct calculation of the derivative.

General theorem on change of basis

Theorem: Let {~vj}
n
j=1 be a basis for D and {~wj}

p
j=1 a basis for W.

Let L be a linear function from D intoW whose matrix with respect to these

bases is A. Let {~uj}
n
j=1 be a new basis for D related to the old one by a

matrix G:

~vj =

n
∑

j=1

Gkj ~uk .

Let {~tj}
p
j=1 be a new basis for W related to the old one by a matrix H:

~wj =

p
∑

j=1

Hkj
~tk .

[In other words, multiplication of a column vector by the matrix G or H

changes old coordinates to new coordinates (for D orW respectively).] Then

the matrix of L with respect to the new bases is

HAG−1.
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This theorem is the distillation of what we learned in the foregoing

lengthy example. Note that M of the example is called G−1 in the theorem.

Here is a diagram of the situation:

........................................................................................................................................................................... ..................
.

..........................................................................................................................................................................
.

...................

...........................................................................................................................................................................
................... ..............................................................................................................................................................................................

.......................................................................

.....
.....
....

.....

.....

.....
....

.......................................................................

.....

.....
....

.....

.....

.....
....

.......................................................................

.....

.....
....

.....

.....

.....
....

vector spaces new coordinates old coordinates

Cu G
D Rn [~s] Rn [~r]

L HAG−1 A

W Rp [~c] Rp [~b]
Ct H

Again, we remark that it is probably less error-prone to work out the

answer from scratch in each concrete case than to memorize the theorem in

detail. (This remark does not apply when a large number of similar prob-

lems must be solved at one sitting — see below.) The formula HAG−1 is

worse than useless unless you have also memorized the precise conventions

used to define H and G! The matrix which first arises in your problem as a

representation of a basis change in the codomain may be the inverse, trans-

pose, or contragredient of H, rather than H itself. Why, then, did we bother

to write down the theorem? First, a thorough understanding of the basic

fact described in the theorem is essential: A problem of this type always

has a solution, and the solution is given by a simple matrix multiplication.

Second, independent of any conventions, the formula HAG−1 expresses cer-

tain more specific facts which are quite helpful in getting the correct answer:

Basis changes in the domain and codomain are implemented by matrix mul-

tiplication on the right and left, respectively, and one of the matrices will

carry an inverse if your conventions relate “old” and “new” coordinates con-

sistently in the two cases. Finally, if you have several problems of the same

type to do at once, then if you set up a consistent notation and carefully

express the theorem in that notation, the formula corresponding to HAG−1

will give you a powerful and efficient way to calculate all the answers! The

optimal methodology for solving practical mathematical problems is always

some intermediate mixture of the abstract and the concrete, which varies

from situation to situation (as well as from person to person).

The theorem has a very important special case:

Corollary: Suppose that W and D are the same space, and that, at

any given time, we want to use the same basis for this space in both of its

roles (domain and codomain). Then, whenever this basis is changed, in such
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a way that old coordinates are transformed into new coordinates by a matrix

H, the matrix representing a linear function L changes from A to HAH−1.

Definition: The operation of replacing A by HAH−1 is called a simi-

larity transformation of the matrix A.

Example: Recall our two recent examples of matrix representations of

a linear function in the vector space spanned by the functions {cos nt}3n=0 .

We calculated both matrices directly, by the kth-column rule. Now let’s

verify that one of those matrices can be obtained from the other by the

appropriate similarity transformation.

Previously we observed that the set

U1 = 1, U2 = cos t, U3 = cos 2t, U4 = cos 3t.

and the set

V1 = 1, V2 = cos t, V3 = cos2 t, V4 = cos3 t

are bases for the same vector space, D. We also observed that the matrix of

the operator

L ≡
d2

dt2

with respect to the U basis (used in D as both domain and codomain) is

A ≡







0 0 0 0
0 −1 0 0
0 0 −4 0
0 0 0 −9







Finally, we observed that

U1 = V1 ,

U2 = V2 ,

U3 = −V1 + 2V3 ,

U4 = −3V2 + 4V4 ,

so that, inversely,

V1 = U1 ,

V2 = U2 ,

V3 = 1
2U1 + 1

2U3 ,

V4 = 3
4U2 + 1

4U4 .



200 4. Bases

Now let’s find the matrix that represents L when we use the V basis

in the codomain, but continue to use the U basis in the domain. (There

is no law against using two different bases for the same space at the same

time for distinct purposes.) Let’s reason this out carefully. If we start with

the U -coordinates of an arbitrary vector, ~x, then applying A will give us

the U -coordinates of L(~x). What we want is the V -coordinates of L(~x).

But to express V -coordinates in terms of U -coordinates, we should use the

transpose of the matrix that expresses the U basis vectors in terms of the

V vectors. (If you prefer the other language: To map U -coordinates to V -

coordinates, we should use the transpose of the matrix that maps the V s

into the Us.) From the formulas for the change of the basis vectors, we see

that this transposed matrix is

H ≡







1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4






.

Thus the matrix we desire is

HA =







0 0 4 0
0 −1 0 27
0 0 −8 0
0 0 0 −36






.

Next, let’s suppose that we decide to use the V basis in the domain

also. Then the first step of the calculation should be to translate the V -

coordinates of the input vector ~x into U -coordinates; we can then apply to

the result the matrix HA we just found. The coordinate transformation

matrix we want is the transpose of the matrix expressing the V vectors in

terms of the U vectors; alternatively, it is the inverse of the matrix expressing

the V -coordinates in terms of the U -coordinates — that is, the inverse of

the matrix H we found before. Either way, we arrive at the matrix

H−1 =







1 0 1
2 0

0 1 0 3
4

0 0 1
2 0

0 0 0 1
4






.

Thus the matrix of L with respect to the V basis (in both domain and

codomain) is

HAH−1 =







0 0 2 0
0 −1 0 6
0 0 −4 0
0 0 0 −9






.
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This is the same result we found before by the kth-column rule.

Of course, we could use the V basis for the domain but the U basis for

the codomain; then the matrix of L would be AH−1.

More examples

Example 1. With respect to a basis {~e1 , ~e2 }, a certain linear transfor-

mation has the matrix A =

(

5 2
8 4

)

. Find the matrix of the transformation

with respect to the basis {~f1 = 6~e1 + 4~e2 , ~f2 = 2~e1 + ~e2 }.

Solution: The transposed matrix S =

(

6 2
4 1

)

expresses the old (~e)

coordinates in terms of the new (~f) cordinates (as can be easily checked by

feeding in the new coordinates
(

1
0

)

of ~f1 , etc.). Its inverse is

S−1 = −
1

2

(

1 −2
−4 6

)

.

Now we can find the matrix B of the transformation in the new basis {~f1, ~f2}

by the formula B = S−1AS:

B = −
1

2

(

1 −2
−4 6

) (

5 2
8 4

)(

6 2
4 1

)

= −
1

2

(

−11 −6
28 16

)(

6 2
4 1

)

= −
1

2

(

−66− 24 −22− 6
168 + 64 56 + 16

)

= −
1

2

(

−90 −28
232 72

)

=

(

45 14
−116 −36

)

.

Example of the example: A certain linear transformation maps the

space of solutions of the differential equation y′′ + 4y = 0 into itself, and its

matrix with respect to the basis
{

e2t, e−2t
}

is A. What is the matrix of this

transformation with respect to the basis
{

6e2t + 4e−2t, 2e2t + e−2t
}

?

Example 2. Let A:R3 → R3 be the linear operator given by the

matrix

A =





0 1 4
0 1 0
1 1 0





with respect to the natural basis. Find the matrix of this operator in the

basis

~f1 =





5
−3
2



 , ~f2 =





2
0
1



 , ~f3 =





2
0
−1



 .
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Solution, Method 1: Let us express ~f1, ~f2, ~f3 in terms of the natural

basis vectors ê1, ê2, ê3:

~f1 = 5ê1 − 3ê2 + 2ê3 ,

~f2 = 2ê1 + 0ê2 + ê3 ,

~f3 = 2ê1 + 0ê2 − ê3 .

(In passing we note that since

det





5 −3 2
2 0 1
2 0 −1



 = −(−3)

∣

∣

∣

∣

2 1
2 −1

∣

∣

∣

∣

= −12 6= 0,

{~f1, ~f2, ~f3} really is a basis for R3.) In order to find A~f1, A~f2, A~f3 , we apply

A to the basis column vectors:

A





5
−3
2



 =





0 1 4
0 1 0
1 1 0









5
−3
2



 =





5
−3
2



 ,

A





2
0
1



 =





4
0
2



 , A





2
0
−1



 =





−4
0
2



 .

This means that A~f1 = 1~f1 , A~f2 = 2~f2 , A~f3 = −2~f3 . Therefore, the matrix

being sought is the diagonal matrix




1 0 0
0 2 0
0 0 −2



 .

(Later (Chap. 8) we will find out that ~f1, ~f2, ~f3 are called eigenvectors of the

operator A.)

Solution, Method 2: Following the prescription at the end of the

previous section, we stack the given basis vectors together to make a matrix,

M ≡





⊤ ⊤ ⊤
~f1

~f2
~f3

⊥ ⊥ ⊥



 =





5 2 2
−3 0 0
2 1 −1



 .

A moment’s thought confirms that this is the matrix that maps coordinates

with respect to the new (~f) basis into coordinates with respect to the natural

basis (not vice versa!). Therefore, the new matrix is M−1AM , for we want

to translate an input vector into natural coordinates, calculate the opera-

tor A in those terms, and then translate the result in the reverse direction.

Evaluating the matrix inverse and product will give the same answer as the

other method.
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Example 3. The matrix

M =

(

1 2 1
2 −1 4

)

represents a linear operator L:R3 → R2 with respect to the natural bases.

What matrix represents L if we switch to the basis

{(

1
1

)

,

(

−1
1

)}

for R2? (The basis for the domain is still the natural one.)

Solution: Since the basis change is in the codomain (postprocessing

the output of the calculation), it will be implemented by multiplying M on

the left by some 2× 2 matrix. Let us call the new basis vectors

~b1 =

(

1
1

)

, ~b2 =

(

−1
1

)

.

In terms of the natural basis vectors, we have

~b1 = ê1 + ê2 ,

~b2 = −ê1 + ê2 .

Therefore (by whichever rule of thumb you prefer from Sec. 4.4),

C =

(

1 −1
1 1

)

maps ~b-coordinates into natural coordinates. (Most quickly, this matrix is

obtained simply by “stacking the new basis vectors together”.) Thus

C−1 =
1

2

(

1 1
−1 1

)

maps natural coordinates to ~b-coordinates. To solve our problem we need

to postprocess the natural-basis calculation of L with C−1. Therefore, the

desired matrix is

C−1M =
1

2

(

1 1
−1 1

)(

1 2 1
2 −1 4

)

=
1

2

(

3 1 5
1 −3 3

)

.
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Transforming row vectors

An important special case of the transformation of a matrix under

change of basis is that where the matrix A has only one row. Recall that such

a matrix represents a linear function L:D → R (also called a linear func-

tional). Let’s apply the general theorem on change of basis to this case, with

the basis change in the domain implemented by a matrix G as before, and

no basis change in the one-dimensional codomain: With respect to the new

basis, L is represented by the matrix B = AG−1. This is to be contrasted

with the transformation law for column vectors, ~s = G~r.

To check the consistency of these two formulas, consider the number

L(~x), where ~x is an abstract vector represented by the column vector ~r with

respect to the old basis and by the column vector ~s with respect to the new

basis. This number must remain unchanged, no matter what basis is used!

Sure enough,

L(~x) = A~r = AG−1G~r = B~s.

Written out in numbers, the transformation rule for column vectors is

sj =

n
∑

k=1

Gjkrk ,

and the one for row vectors is

Bj =

n
∑

k=1

AkG−1
kj =

n
∑

k=1

(Gt)−1
jkAk.

Recall (refer back to the statement of the general theorem on change of basis,

whose notation we are scrupulously observing in this discussion) that

~vj =

n
∑

j=1

Gkj ~uk ,

where the ~vs are the old basis and the ~us are the new basis. In other words,

to go from the old basis to the new we need the formula

~uj =
n

∑

k=1

(Gt)−1
jk ~vk .

We notice something rather interesting: When we consistently express the

new objects in terms of the old ones, the formula for transformation of a row



4.5. Change of basis 205

vector (the matrix of a linear functional) and the formula for the transforma-

tion of the basis vectors themselves look very much alike, and both involve

the contragredient (inverse transpose) of the matrix in the transformation

law for the column vectors. (This fact was already noted from a different

point of view in Remark 3 of the previous section.)

In older books row vectors were called “covariant vectors” because they

transform in the same way as the basis vectors, and column vectors were

called “contravariant vectors” because they transform “in the opposite direc-

tion” from the basis. From a modern point of view (although the covariant–

contravariant terminology survives) it is better to think of the transformation

rule for the column vectors as the fundamental one and the two contragre-

dient rules as derived from it. Also, please keep in mind that, no matter

how much alike the formulas look, the terms in the basis-change formula are

vectors and the terms in the row-vector transformation rule are numbers.

Finally, we point out again that the gradient of a function is most prop-

erly thought of as a row vector. Given a function f(r1, . . . , rn), its gradient

is a list of its partial derivatives with respect to the variables rj . If we now

decide to switch to the new coordinates sj related to the rs as in the discus-

sion above, then we must transform the derivatives according to the chain

rule:
∂f

∂sj

=
∑

k

∂rk

∂sj

∂f

∂rk

=
∑

k

(Gt)−1
jk

∂f

∂rk

.

This is the row-vector transformation law (see the discussion of linear algebra

as multivariable calculus in the preceding section). The components of a

tangent vector to a curve, ~r(t), in contrast, transform as a column vector.

This distinction carries over into curvilinear coordinates: A gradient vector,

or any other row vector, is most naturally expressed as a linear combination

of the basis vectors called ~dk in Sec. 4.2, which are the gradients of the

curvilinear coordinates with respect to the original Cartesian coordinates.

A tangent vector, or any other column vector, is most naturally expressed

as a linear combination of the basis vectors called ~ck in Sec. 4.2, which are

the tangent vectors to the coordinate curves. When these things are done,

the components of the vectors transform “properly” — that is, covariantly

or contravariantly, respectively, as the chain rule prescribes — when the

coordinate system is changed.
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Exercises

4.5.1 We know that {sinh t, cosh t} and ~v1 = et, ~v2 = 2et − e−t are two

bases for the same vector space of functions. If f(t) is an arbitrary

element of that space, let us define coordinates by

f = r1~v1 + r2~v2 = c1 sinh t + c2 cosh t.

(a) Find the formulas expressing r1 and r2 in terms of c1 and c2.

(b) Find the matrix representing the operator L = d
dt

with respect

to the hyperbolic basis.

(c) Find (directly) the matrix representing L with respect to the ~v

basis.

(d) Use the results of (a) and (b) to get the answer to (c) in a different

way.

4.5.2 In Exercise 4.1.4 we showed that






~v1 =





1
1
2



 , ~v2 =





1
2
3



 , ~v3 =





0
1
2











is a basis for R3. The function F :R3 → R2 is represented by the

matrix A =

(

2 0 4
1 3 0

)

with respect to the natural bases. What

matrix represents this function when the new basis is used for the

domain in place of the natural basis?

4.5.3 A linear function L:R3 → R2 is represented with respect to the

natural bases by the matrix M =

(

1 0 −1
2 1 0

)

. Find the matrix of

L with respect to the bases {ê3 , ê2 , ê1} for R3 (the natural basis in

reverse order) and
{

~v1 =
(

1
1

)

, ~v2 =
(

1
0

)}

for R2.

4.5.4 L:V → V is a certain linear operator from a two-dimensional vector

space into itself. Its matrix with respect to a basis {~v1, ~v2} is

(

2 0
0 3

)

.

If we change basis in V to {~w1 ≡ ~v1 + 2~v2, ~w2 ≡ 3~v1 + ~v2}, what is

the new matrix?

4.5.5 Let L:R2 → R3 have the matrix





3 −1
−1 2
−3 2



 with respect to the

natural basis. Find the matrix that represents L with respect to the
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new bases

{~v1, ~v2} =

{(

1
1

)

,

(

1
−1

)}

,

{~u1, ~u2, ~u3} =











0
0
1



 ,





0
1
1



 ,





1
1
1











.

4.5.6 With respect to the natural bases, the matrix A ≡

(

1 2 3
−1 0 0

)

defines a linear function f :R3 → R2.

(a) What matrix represents f when the basis for R2 (the codomain)

is changed to
{

~u1 =

(

1
1

)

, ~u2 =

(

−1
0

)}

?

(b) What matrix represents f when the basis for R3 (the domain) is

changed to






~w1 =





1
0
0



 , ~w2 =





0
2
0



 , ~w3 =





0
0
3











?

(The basis for the codomain is still the natural one.)

(c) Find the matrix when both these basis changes are made.

4.5.7 A linear function G:R2 → R2 has the matrix B =

(

−1 4
2 1

)

with

respect to the natural basis. Find the matrix of G with respect to

the basis
{

~b1 =
(

1
−1

)

, ~b2 =
(

1
1

)

}

. (Use the new basis for both domain

and codomain.)

4.5.8 Find the matrix of the linear operator A in the basis {~f1, ~f2, ~f3}, if

the matrix in the natural basis is




1 0 0
1 1 0
0 2 2





and

~f1 =





1
−1
−1



 , ~f2 =





1
1
0



 , ~f3 =





0
1
1



 .
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4.5.9 Find the matrix of the operator A in the natural basis, if the matrix

in the basis {~b1,~b2,~b3} is





1 −1 0
2 1 0
1 1 1





and

~b1 =





0
1
1



 , ~b2 =





1
1
0



 , ~b3 =





1
1
1



 .

4.5.10 Let C be the change-of-basis matrix from one basis to another.

(a) How would C change if you interchanged two vectors of the first

basis? Suggestion: Think of the change of basis as a linear

function Rn → Rn, and the interchange as a basis change in the

domain of that linear function.

(b) How would C change if you interchanged two vectors of the sec-

ond basis?

4.5.11 How would a change-of-basis matrix change if you decided to write

the vectors of both bases in reverse order? Suggestion: Think of

the change of basis as a linear function Rn → Rn, and the reversal as

a basis change in the domain and codomain of that linear function.

In the remaining exercises, computer or calculator use is expected.

4.5.12 Find the matrix of L with respect to the primed basis for R3 given

in Exercise 4.4.18 if its matrix with respect to the unprimed basis in

that exercise is




1 2 3
2 3 4
3 4 5



 .

4.5.13 Find the matrix of L with respect to the unprimed basis for R3 given

in Exercise 4.4.17 if its matrix with respect to the primed basis in

that exercise is




1 2 3
2 3 4
3 4 5



 .
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4.5.14 Find the matrix of L with respect to the primed basis for R4 given

in Exercise 4.4.20 if its matrix with respect to the unprimed basis in

that exercise is






1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1






.

4.5.15 Find the matrix of L with respect to the unprimed basis for R4 given

in Exercise 4.4.19 if its matrix with respect to the primed basis in

that exercise is






1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1






.


