
Chapter 5

Subspaces and Linear Equations

5.1 Subspaces

Lurking inside many of our examples and discussions in the previous

chapters, sometimes awkwardly bubbling to the surface unnamed, has been

a fundamental concept that now needs to be formulated explicitly.

Definition: A nonempty subset W of a vector space V is a subspace

of V if W is closed under addition and scalar multiplication:

If ~x, ~y ∈ W, then ~x + ~y ∈ W and r~x ∈ W for all real r.

Theorem 1: A subspace of V is itself a vector space with the same

addition and multiplication operations as V.

This is a corollary of:

Lemma: Every subspace of V contains the 0 vector of V.

Proof of Lemma: ~x + (−1)~x = 0 for any ~x ∈ W. Since W, by

assumption, is nonempty and is closed under the vector operations, this

shows that 0 ∈ W.

All the other parts of the definition of a vector space are identities such

as ~x + ~y = ~y + ~x. Since they were true before, they are still true now, so the

subspace is a vector space. (This proves the theorem.)

Examples

1. Physical 3-dimensional space has the following subspaces:

a) any line through the origin

b) any plane through the origin

c) the set consisting of the origin alone: {0}

d) the whole space

2. Subspaces of R3: These are the same as the things in the previous

list, but now regarded numerically.
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a) Examples of “lines” (one-dimensional subspaces) are:

[the set of] all vectors of form (0, y, 0);

all vectors of form (t, 2t, 0) = t(1, 2, 0).

b) Examples of “planes” (two-dimensional subspaces) are:

all vectors of form (x, y, 0);

all vectors of form (2s + 3t, 7t, s − t) = s(2, 0, 1) + t(3, 7,−1).

c–d) {(0, 0, 0)} and R3 itself also count as subspaces of R3.

Remark: To show that a (nonempty) subset of a vector space is a

subspace, all we need to do is to check that it is closed under the two vector

operations. We don’t need to verify the 8 axioms, because we already know

they are true (the big space is a vector space!). Let’s write out such a check

for one of the examples above:

(t1, 2t1, 0) + (t2, 2t2, 0) = (t1 + t2, 2(t1 + t2), 0)

= (t, 2t, 0) with t = t1 + t2 ;

r(t, 2t, 0) = (rt, 2rt, 0)

= (t′, 2t′, 0) with t′ = rt .

Since we have already verified the eight axioms for addition and scalar mul-

tiplication of numerical triples, this shows that the set in question is a vector

space.

3. P2 is a subspace of the vector space of all polynomials. The polyno-

mials of the form at2 + c form a subspace of P2 . Those of the form

at2 + bt + c with a 6= 0 don’t ; we saw earlier (Sec. 3.1) that this set is

not closed under addition.

4. An example of importance in electrostatics (in solving Laplace’s equa-

tion, ∇2φ = 0): Consider the space of all polynomials in two variables,

x and y. Let us call this space Z. (All the vector-space names in this

example are temporary conveniences, not standard notations.) A typ-

ical element of Z is x4y + y2x + 3y2 − 1. Let Y be the subspace of Z
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consisting of all quadratic polynomials — that is, those of degree up

to 2, counting the total contribution of both x and y to a term:

Ax2 + Bxy + Cy2 + Dx + Ey + F.

(This should stir memories of “conic sections”.) Now consider three

subspaces of Y:

Y2 ≡ the homogeneous quadratic polynomials:

Ax2 + Bxy + Cy2.

Y1 ≡ the homogeneous linear polynomials: Dx + Ey.

Y0 ≡ the constant polynomials: F .

Notice that:

(1) Every element of Y is a sum of 3 elements, one from each Yi

(i = 0, 1, 2).

(2) Nothing except ~0 belongs to more than one Yi .

In such a situation one says that Y is the direct sum of the subspaces

Yi and writes

Y = Y2 ⊕ Y1 ⊕ Y0 .

Finally, an important subspace of Y2 is the space H2 of harmonic

homogeneous quadratic polynomials — those satisfying the partial

differential equation

∂2p

∂x2
+

∂2p

∂y2
≡ ∇2p = 0.

These are of the form A(x2 − y2) + Bxy. Similarly, the harmonic

homogeneous polynomials of any degree n can be identified; call the

space of them Hn . Now, the payoff: It can be shown that any solution

of Laplace’s equation can be approximated by an element of the space

H0 ⊕H1 ⊕H2 ⊕H3 ⊕H4 ⊕ · · · .

In more classical terms, every solution is a convergent series of har-

monic homogeneous polynomials. (When rewritten in polar coordi-

nates, a function in Hn will be of the form

C1r
n cos nθ + C2r

n sin nθ,

and it is in this form that students usually first encounter them. The

convergent series then becomes a Fourier series.)
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5. An old example revisited: The solutions of

d2y

dt2
+ ω2y = 0

(for some nonzero constant ω), which are the functions

A cos ωt + B sin ωt,

form a subspace of the space of all continuous functions, C(−∞,∞).

A similar statement is true for any homogeneous linear differential

equation.

Remark: You may have a feeling that the definition of a subspace

is strangely similar to the definition of a linear function. Furthermore, in

many examples the calculations that need to be performed to show that a

certain set is a subspace may seem to be identical to those that show that

a certain function is linear. These similarities cause many students to get

the concepts of “linear function” and “subspace” somehow confused. Please

keep in mind that a subspace is a set (a collection of vectors) but a function

is a mapping from one set into another (taking vectors as input and emitting

new vectors as output). In the next section we’ll see that if L is a linear

function, then the set of vectors satisfying L~x = 0 is always a subspace (of

the domain space of L). It turns out that the most obvious subspaces to

use as elementary examples in textbooks, homework exercises, and tests are

subspaces of precisely this type, and therefore the verification that the set is

a subspace is indeed very closely related to the proof that the linear function

involved is linear. The difference is that in proving linearity we show that

the vectorial expressions

L(r~x + ~y) and rL(~x) + L(~y)

are equivalent, whereas in proving that the solutions of L~x = 0 form a

subspace we show that the equations

L(r~x + ~y) = 0 and rL(~x) + L(~y) = 0

are equivalent. With this in mind, let’s look at four more examples.
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Example 1: Show that the matrices of the form
(

a −b
b a

)

(where a and b are real numbers) make up a subspace of the vector space of

real 2 × 2 matrices.

Solution: We have already observed in an earlier section that the n×m

matrices do form a vector space. The subset of matrices under consideration

is nonempty (for example, it contains the 2 × 2 zero matrix), so all that

must be done is to show that it is closed under the vector operations. Form

a linear combination of two arbitrary members of the set:

r

(

a1 −b1

b1 a1

)

+

(

a2 −b2

b2 a2

)

,

where r stands for an arbitrary real number. By definition of scalar multi-

plication and addition of matrices, this is
(

ra1 + a2 −(rb1 + b2)
rb1 + b2 ra1 + a2

)

,

which is of the desired general form (with a = ra1 + a2 and b = rb1 + b2 ).

Example 2: Show that the set of all 3×3 matrices X satisfying XA = 0,

where A is a fixed 3 × 3 matrix, is a vector space.

Solution: Again, we know that the set of all 3×3 matrices is a vector

space, so what needs to be proved is just that the set in question is a subspace

of that space. And again, the zero matrix satisfies the condition, so the set

is not empty. Assume that X1A = 0 and X2A = 0. We need to prove

that (rX1 + X2)A = 0 also. Well, it follows from the algebraic properties of

matrix multiplication that

(rX1 + X2)A = r X1A + X2A, (∗)

and this is 0 by the assumptions. Note that the calculation (∗) is nothing

but the proof that the function

L(X) ≡ XA

is linear. (Note also that writing out matrices as actual 3 × 3 arrays of

numbers or variables would be more of a hindrance than a help in discovering

and (especially) explaining this proof.)
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Example 3: Show that C2(a, b) is a subspace of C(a, b). (Here (a, b)

is some interval (possibly infinite) in the real line, C(a, b) is the space of

all continuous functions with that interval as domain, and C2(a, b) is the

set of all functions on that domain whose second derivatives exist and are

continuous.)

Solution: If a function is differentiable, then it certainly is continuous.

(This is a familiar theorem of calculus.) This shows that C2 is a subset of

C (and we know that twice differentiable functions exist, so the set is not

empty). Since the addition and scalar multiplication operations on functions

satisfy the eight vectorial conditions, all we need to show is that sums and

scalar multiples of twice differentiable functions are twice differentiable. But

this follows from standard theorems of calculus (the derivative of a sum is

the sum of the derivatives, etc.).

Example 4: Let M be the set of all even continuous functions on the

domain [−1, 1]. Is M a subspace of C[−1, 1]?

Solution: “Even” means that p(−t) = p(t). Let p and q be any even

functions from C[−1, 1]. Then we will have

(rp + q)(−t) = rp(−t) + q(−t) = rp(t) + q(t) = (rp + q)(t).

So the set is closed under the vector operations.

Example 5: Show that the solutions of the differential equation y′′ =

9y are a subspace of C2(−∞,∞).

Solution: Obviously any solution must be twice differentiable, so the

solutions are a subset of C2. If y1 and y2 are solutions, then so is ry1 + y2 ,

as we can quickly verify:

(ry1 + y2)
′′ = ry′′

1 + y′′

2 = r(9y1) + 9y2 = 9(ry1 + y2) .

Equivalently, we rewrite the equation as

L(y) ≡ y′′ − 9y = 0

and verify that L is linear (by essentially the same calculation as just given).

A more concrete proof is also possible, of course: We know that the

solutions are the linear combinations of the functions e3t and e−3t. These

functions are twice differentiable. Also, almost by the very definition of
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“linear combination”, this set of functions is closed under addition and scalar

multiplication. This last observation is a special case of our next theorem.

Theorem 2: If S = {~x1, . . . , ~xn, . . . } is a subset (finite or infinite) of

a vector space V, then the span of S is a subspace of V. In fact, it is the

smallest subspace that contains all of the ~xj themselves.

We leave the proof of this theorem and the next (and an explanation of

what’s meant by “smallest”) for the exercises. (See Sec. 4.1 for the definition

of a span.)

Theorem 3: If S is a subspace already, then spanS = S; and con-

versely.

Theorem 4: If U is a subspace of V, then dimU ≤ dimV. In fact,

dimU < dimV, unless either U = V or dimU = ∞.

Proof: Use the theorems in Sec. 4.3: If U is finite-dimensional, then

U has a basis B = {~v1, ~v2, . . . , ~vk}, where k = dimU . Since B is a basis, it is

linearly independent. Similarly, if U is infinite-dimensional, then it includes

an infinite independent set B. By adding vectors to B, one can construct a

basis for V. Obviously, the number of vectors in this basis is greater than

dimU .

Affine subspaces

Definition: If W is a subspace of V and ~p is a vector in V, then the

set A of all vectors of the form ~x + ~p with ~x ∈ W is an affine subspace of V.

If ~p ∈ W, then A = W. If ~p /∈ W, then A is not a subspace (of V),

despite the name (just as a vice president is not a president).

Examples:

1. The affine subspaces of 3-space that are not subspaces are the lines

and planes that do not pass through the origin, and the points that

are not the origin. (Compare the parametric expression for a plane

(Sec. 1.2), ~x = ~v+s~u1+t~u2 . Here W = span{~u1, ~u2} and ~p = ~v.) The

fact that these are geometrically equivalent to lines, planes, and points

that do pass through the origin is a reflection of the arbitrariness of

the location of the origin. (That is, physical space is not a vector

space a priori ; it becomes one only when an origin of coordinates is

chosen. Cf. Sec. 1.3.)
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2. The space of all solutions of the nonhomogeneous linear differential

equation
d2y

dt2
+ ω2y = − cos 2ωt

is an affine subspace of C(−∞,∞). They are the solutions of the form

y = A cos ωt + B sin ωt +
1

3ω2
cos 2ωt

≡ ~x + ~p,

where ~x is the general solution of the corresponding homogeneous

equation (the general element of a true subspace), and ~p is a partic-

ular solution of the nonhomogeneous equation. (Note that the ~p in

the definition of an affine subspace is itself a member of the affine

subspace, since the zero vector is a permissible choice of ~x.) In gen-

eral, the space of solutions of an nonhomogeneous linear differential

equation is an affine subspace of the vector space of all functions of

the proper type to be considered as possible solutions.

Note that both subspaces and affine subspaces are “flat”. A more general

type of subset of R3 is a submanifold (for instance, a curved surface), but

those are beyond the scope of this course.

Intersections, unions, and sums

If S and T are any sets, their intersection, S∩T , is the set of all objects

that belong to both S and T , and their union, S ∪T , is the set of all objects

that belong to either S or T . Our interest here is in the situation where the

objects in question all belong to some vector space V, and the sets S and T

either are subspaces of V or are linearly independent sets that serve as bases

for subspaces.

Theorem 5: If S and T are subspaces, then so is S ∩ T .

We leave the proof as an exercise. The most important point is that

the analogue of this theorem for unions is false. Except in the special case

where one of the subspaces lies entirely inside the other, the union of two

subspaces is not closed under addition. This is obvious from the sketches

below, one showing the union of two planes in R3, the other that of a plane

and a line. (The latter sketch shows a vector sum that leads outside the

union.)
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The subspace naturally associated with the union of two subspaces is

the span of their union, also called the sum of the subspaces:

S + T ≡ {~x ∈ V: ~x = ~s + ~t for some ~s ∈ S and some ~t ∈ T }.

In both cases shown in the two sketches, the sum is the entire vector space

R3. As previously remarked, if the intersection of the subspaces consists of

the zero vector alone, then the sum is called direct and written S ⊕ T . The

uniqueness theorem for the expansion of a vector with respect to a basis

has a counterpart for direct sums: Every element of a direct sum can be

decomposed in exactly one way into a piece from S and a piece from T . It

is clear from the sketches that the sum of the line and the plane is direct,

but the sum of the two planes is not. (The vectors in the left sketch show

the nonuniqueness of the decomposition.)
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The next theorem implies that the sum of two planes in 3-dimensional

space is never direct, but that the sum of a plane and a line is always direct

unless the line lies in the plane. (Since we are discussing vector subspaces,

we must consider only lines and planes that pass through the origin.)

Theorem 6: If S and T are subspaces of a finite-dimensional vector

space V, then

dim(S + T ) = dimS + dimT − dim(S ∩ T ).

In particular, if the sum is direct, one has

dim(S ⊕ T ) = dimS + dim T .



5.1. Subspaces 219

Remark: To gain some appreciation for the proof of this theorem, let’s

first contemplate the problem of finding bases for S ∩T and S + T if we are

given bases for S and T . Assume that

S = span{s1, . . . , sk} ≡ spanS and T = span{t1, . . . , tl} ≡ span T

and that k = dimS, l = dim T (which is equivalent to the condition that

each list, S and T , be linearly independent). To get a basis for S ∩ T ,

one’s first thought might be to look at the intersection of the bases, S ∩ T .

Unfortunately, that set is likely to be empty, even if S ∩T is nontrivial. For

example, consider the intersecting* planes

S = span{(1, 2, 3), (1, 0, 0)}, T = span{(0, 1, 0), (2, 2, 2)}.

The situation with respect to the sum is slightly better, but not ideal: The

union of the bases, S ∪ T , is certainly a spanning set for S + T , but it is

not necessarily an independent set. In this case we have an algorithm from

Chapter 4 for replacing it by an independent set, which will be the desired

basis for S + T .

Proof: The trick is to be more careful in our choice of bases. Let

U ≡ {~u1, . . . , ~uj} be a basis for S ∩ T . Then (see below) we can extend U

to get a basis for S,

S ≡ {~u1, . . . , ~uj , ~sj+1, . . . , ~sk}

(in other words, take ~si ≡ ~ui for i ≤ j). Similarly, we can extend U to get a

basis for T ,

T ≡ {~u1, . . . , ~uj ,~tj+1, . . . ,~tl}.

By definition of “dimension”, the numbers that arose here are

j = dim(S ∩ T ), k = dimS, l = dim T .

Now throw together all three categories of basis vectors (~u s, ~s s, and ~t s) into

one big list, S ∪ T . (Do not count the ~u s twice!) The number of vectors in

S ∪ T is k + l − j (right?). Therefore, the theorem will be proved if we can

* The normal vectors to S and T , computed from the cross product, are
(0, 3,−2) and (2, 0,−2) respectively. Since these are not parallel, the two planes
intersect in a line (rather than coinciding).
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establish that S ∪ T is a basis for S + T . It is obviously a spanning set (see

remark above), so we just need to check that it is independent. Suppose

that†

0 =

j
∑

i=1

ci~ui +

k
∑

i=j+1

ci~si +

k+l−j
∑

i=k+1

ci
~ti+j−k

≡ ~u + ~s + ~t.

Then

−~t = ~u + ~s,

and this is a vector that lies in both T and S (because ~t ∈ T , ~s ∈ S,

~u ∈ S ∩ T ⊆ S). Therefore, −~t belongs to S ∩ T . Therefore, −~t is a

linear combination of the vectors ~ui . But since the expansion of −~t (as an

element of S) as a linear combination of the basis S is unique, this means

that the coefficients ci for j < i ≤ k (i.e., the vector ~s) must actually be

zero. In exactly the same way we could have shown that ~t is zero. Therefore,

~u = −(~s + ~t) is zero. That is, all the coefficients ci are zero, which proves

independence of the basis and finishes the proof of the theorem.

In proving Theorems 4 and 6 we have used a fairly obvious fact that is

important enough to be stated separately:

Lemma: If S is a subspace of V, then any basis for S can be made into

a basis for V by adding vectors.

Proof: This is an immediate corollary of Proposition 2(b) in Sec. 4.3.

Exercises

5.1.1 Show that the span of a set of vectors is a subspace. (You may assume

that the original set is not empty.)

5.1.2 Justify the statement that the span of a set of vectors is the smallest

subspace that contains all of those vectors. (This means that any

other subspace that contains all the original vectors also includes the

entire span.)

5.1.3 Prove that if S is a subspace, then its span is itself. Also prove the

converse: If spanS = S, then S is a subspace.

† This is merely the most general linear combination of the vectors in S∪T ; the
notation looks complicated because we had to change the indexing of T to avoid
a conflict.
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5.1.4 The set of all real 2 × 2 matrices is a vector space; let’s call it M.

(a) What is the dimension of M? (Note: This is not the same as

the dimension of the space of vectors that the matrices act upon!)

(b) Let D be the subset of M consisting of all matrices with deter-

minant 0. Is D a subspace of M ?

5.1.5 Let M be the vector space of 3 × 3 matrices.

(a) What is the dimension of M?

(b) Show that the set of all symmetric 3 × 3 matrices (satisfying

Akj = Ajk) is a subspace of M.

(c) What is the dimension of that subspace?

5.1.6 Answer (a) and (c) of the preceding exercise for the case of n × n

matrices.

5.1.7 Prove that the n × n antisymmetric matrices form a subspace in the

space of all square matrices of the same size. Find a basis for this

space and the dimension of it.

5.1.8 Show that the solution space of x + 2y2 = 0 is not a subspace of R2.

5.1.9 Which of these subsets of R3 is a subspace? Explain.

(A) The set of all vectors (x, y, z) such that x + 2y + 3z = 0 and

x − y = 0.

(B) The set of all vectors (x, y, z) such that x + 2y + 3z = 0 or

x − y = 0.

5.1.10 Let S be the set of all twice-differentiable functions y on (−∞,∞)

such that either y′′ + 4y = 0 or y′′ − 4y = 0. Show that S is not a

subspace of C(2)(−∞,∞).

5.1.11 Which of these is not a subspace of the function space C(0, 1)? (C(0, 1)

is the space of continuous real-valued functions on the interval 0 <

t < 1.)

(A) the set of differentiable functions, C1(0, 1)

(B) the set of (continuous) functions satisfying f(0.5) = 0

(C) the solutions of d
dt

f = −5f on that interval

(D) the set of (continuous) nonnegative functions (that is, f(t) ≥ 0

for all t in the interval)
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5.1.12 Decide whether each of these is a “true” subspace of R3, an affine

subspace of R3, or neither.

(a) the solutions of 5x + 5y − 2z = 10

(b) the vectors (x, y, z) with y = 3

(c) the plane defined by x = −y, with z arbitrary

(d) the solutions of x + y3 = − sin(2πz)

5.1.13 C ≡ C0(−∞,∞) is the space of continuous, real-valued functions of a

real variable. Tell which of the following subsets of C are subspaces.

(a) the positive functions (f(t) > 0 for all t)

(b) the functions satisfying f(2) = 0

(c) the solutions of the differential equation f ′(t) + 5f(t) = 0

(d) the span of the set {sin t, cos t}

5.1.14 Let N be the set of all odd continuous functions on [−1, 1]. Is N

a subspace of C[−1, 1]? (An odd function is one satisfying p(−t) =

−p(t) for all t in the domain.)

5.1.15 Which of these sets of functions with domain [−1, 1] are subspaces of

C[−1, 1]?

(a) the decreasing functions

(b) the functions satisfying the condition p(0) = 1

(c) the functions satisfying the condition
∫ 1

−1
p(t) dt = 0.

5.1.16 Which of the following sets are real vector spaces? Justify your an-

swer. (When the answer is “yes”, the proper justification usually is to

show that the set is a subspace of an already familiar vector space.)

(a) the set of all polynomials with rational coefficients

(b) all vectors (x1, x2, . . . , xn) ∈ Rn whose coordinates satisfy the

equation x1 + x2 + . . . + xn = 2

(c) the set of all functions in C[0, 3] satisfying p(1) = 0

(d) all vectors (points) in the first quadrant of the plane R2.

(e) All vectors (x1, x2, . . . , xn) ∈ Rn whose coordinates satisfy the

equation x1 + x2 + . . . + xn = 0.

5.1.17 Prove Theorem 5 (“The intersection of subspaces is a subspace.”).
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5.1.18 Consider affine subspaces in R3 (lines and planes that do not neces-

sarily pass through the origin). Use Theorem 6 to classify the possible

intersections and unions of

(a) a plane and a line;

(b) two planes.

Hint: If the sets intersect at all, you can choose the origin of coordi-

nates to be a point in the intersection.

5.1.19 Let R∞ denote the space of all infinite sequences of real numbers,

~x = (x1, x2, . . . ). (Any of the xj are allowed to be zero.) Define the

operations of addition and scalar multiplication by

(x1, x2, . . . , xn, . . . ) + (y1, y2, . . . , yn, . . . )

= (x1 + y1, x2 + y2, . . . , xn + yn, . . . ),

r(x1, x2, . . . , xn, . . . ) = (rx1, rx2, . . . , rxn, . . . ).

Show that R∞ is a vector space (i.e., the 8 axioms are satisfied).

In the remaining exercises, prove that each of these subsets of R∞

(defined in the preceding exercise) is a subspace of R∞. (See the

examples at the end to clarify the definitions.)

5.1.20 U1 = the set of bounded sequences: There is a number M (< ∞)

such that xn < M for all n.

5.1.21 U2 = the set of sequences that converge: limn→∞ xn ≡ L exists (and

is not ∞). Hint: Use the theorem from calculus that

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn

if the two limits on the right exist.

5.1.22 U3 = the set of sequences that converge to 0.

5.1.23 U4 = the set of sequences that are eventually zero: There is an index

N such that xn = 0 for all n > N .

Examples:

(1, 2, 4, 8, . . . ) (with the obvious infinite continuation) is an element of R∞

that is not in U1 .

(1, 0, 1, 0, 1, . . . ) is an element of U1 that is not in U2 .
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(1.1, 1.01, 1.001, 1.0001, . . . ) is an element of U2 that is not in U3 .

(1, 1
2 , 1

3 , 1
4 , . . . ) is an element of U3 that is not in U4 .

(2, 1, 0, 0, 0, . . . ) is an element of U4 .

5.2 Subspaces Associated with a Linear Function:

Kernel and Range

Earlier (Sec. 3.2) it was pointed out that every linear function is asso-

ciated with two vector spaces, its domain and codomain. The domain and

codomain logically exist prior to the function and form an inert arena where

the function acts. More significant are two subspaces of these spaces, the

kernel and range, which are determined by the linear function and give us

profound information about the linear function itself. In this section and

the next, we not only define these subspaces and develop some related the-

ory, but also stress why they are so important in applications (to differential

equations, for example). The main point we wish to emphasize is that these

“abstract” concepts and theorems are important practical tools, which tell

you how to solve problems.

Be warned that the terminology used here, though fairly standard, is not

universal. In particular, the word “range” is ambiguous in the mathemat-

ical literature. The alternative terminology below is used in, for example,

Multivariable Mathematics by Williamson and Trotter.

standard alternative

kernel null-space

range image

codomain range

As before, we consider a function L:D → W. (That is, D is the domain

and W is the codomain.) We’ll use the notation appropriate to the case that

D and W are vector spaces and L is linear — although the definitions of

“range”, “onto”, and “one-to-one” also apply in more general contexts.
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Range

Definition: The set of all values which L(~x) actually attains as ~x

varies through all of D is the range of L. It is abbreviated ran L, and also is

sometimes symbolized by L(D) or L[D] (see the definition of “image” below).

Examples:

1. If D = R2, W = R2, and

L

(

x
y

)

≡

(

y
x

)

,

then ranL is all of W, since every
(

y
x

)

can be reached by choosing

the right input,
(

x
y

)

.

2. If D = R2, W = R2, and

L

(

x
y

)

≡

(

y
−y

)

,

then ranL is the subspace of vectors of the form
(

t
−t

)

(which is not

all of W).

Important remark: The range of L is the set of ~y ∈ W such that the

equation

L(~x) = ~y

has a solution ~x ∈ D.

As appliers of mathematics, this is why we are interested in the range

of a function! It gives a new way of thinking and talking about the very

practical question of solving equations. We cannot overemphasize that the

idea of range is not something new and strange, but rather a formalization

or codification of something very familiar, the question of whether a given

equation is solvable. The advantage of using the new abstract terminology

is at least twofold: (1) It gives access to the theorems and discussions in

the mathematical literature which are written in this language. (2) More

fundamentally, it concentrates the mind on the function as a real object, a

mapping from one set into another, as opposed to the equation as a string

of marks on paper. This is a major step on the path to mathematical wis-

dom. This enlightened point of view is essential for solving problems that

don’t yield to the routine application of memorized rules for manipulation

of symbols.



226 5. Subspaces and Linear Equations

Example: Consider the differential equation

dy

dt
= f(t) with the boundary conditions y(0) = 0 = y(1).

We can think of the operator L = d/dt as acting on the domain D consisting

of all differentiable functions on the interval (0, 1) that vanish at both end-

points; L takes its values in the codomain W = C(0, 1). The only solution

satisfying the left-end boundary condition is

y(t) =

∫ t

0

f(t̃) dt̃.

It will satisfy the right-end boundary condition if and only if

∫ 1

0

f(t) dt = 0. (#)

The range of L (with the restricted domain discussed here!) consists of just

those special elements of W that satisfy (#).

Theorem 1: If L is linear, then its range is a subspace (not just a

subset) of the codomain W.

Proof: If ~y1 = L(~x1) and ~y2 = L(~x2) for two elements ~x1 and ~x2 in D,

then for any r ∈ R,

r~y1 + ~y2 = rL(~x1) + L(~x2) = L(r~x1 + ~x2).

Therefore, r~y1 + ~y2 is in the range of L, so the range is algebraically closed

(is a subspace).

Important remark: This theorem and its proof are a generalization of

something you learn in your first course on differential equations. Namely,

if you know how to solve an nonhomogeneous linear differential equation,

L[y] = g, for two choices of the “right-hand side”, g1 and g2 , then you can

solve the equation when g equals any linear combination of g1 and g2 — you

just add the known solutions together with the same numerical coefficients:

L[yi] = gi ⇒ L[c1y1 + c2y2] = c1g1 + c2g2 .

Our theorem is the same thing, except for differences in notation (~x instead of

y, etc.) and for the fact that we discard the completely irrelevant assumption
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that the linear operator is differential. At root, then, the “superposition

principle” for solving nonhomogeneous differential equations is a fact about

vector spaces, not about differential equations! Once again, theorems like

this tell you how to solve problems, however remote from “the real world”

they may appear at first glance.

Theorem 2: If L:Rn → Rp is linear with matrix A, then the range of

L is the span of the columns of A.

Proof: This is almost obvious from the definition of the matrix product

A~x. (Look at how you would calculate a 2 × 2 numerical example.) If

~y = L(~x) = A~x, then

yi =
n
∑

j=1

xjAij =
n
∑

j=1

xj [L(~ej)]i .

That is,

~y =

n
∑

j=1

xjL(~ej),

a linear combination of the columns of A.

Definitions: If ~x ∈ D, then L(~x) (∈ W) is the image of ~x under L; and

if S is a subset of D, then the set of all vectors L(~x) for ~x s in S is the image

of S under L, denoted L(S) or L[S]. (For this reason, ranL is sometimes

called the image of L and denoted by L(D), as previously mentioned.)

For example, if L
(

x
y

)

=
(

y
x

)

and S is the line
(

t
0

)

, then L[S] is the line
(

0
t

)

.

Theorem 1 generalizes to show that the image under L of any subspace

S of the domain D is a subspace of W.

One-to-one and onto

Definition: If the range of L:D → W is all of W, then L is said to

be a function from D onto W. That is, the following type of situation is

forbidden:
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For short, when there is no doubt as to what space is playing the role

of W, one just says “L is onto”. If you don’t like turning prepositions into

adjectives, an alternative term is surjective.

Important remark: L is onto if and only if the equation L(~x) = ~y

can be solved for every ~y ∈ W (the solution being in D). (Here, “can be

solved” means that a solution exists, not that anybody necessarily knows

how to find it or write it down.)

There is a companion notion:

Definition: L:D → W is not one-to-one if there are two (or more)

distinct points, ~x and ~y, in D such that L(~x) = L(~y). That is, L is one-to-

one (or injective) if

L(~x) = L(~y) implies ~x = ~y,

or, equivalently,

~x 6= ~y implies L(~x) 6= L(~y).

In other words, the following type of situation is forbidden:
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Important remark: L is one-to-one if and only if the equation L(~x) =

~y never has more than one solution ~x in D for a given ~y ∈ W. That is, the

solution is unique.
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Kernel

Definition: If L is a function on D into W, then the kernel of L is the

set of ~x s in D such that L(~x) = ~0. (Note that this ~0 is the zero vector of

W.)

Arguably even this definition makes sense for any function, not neces-

sarily a linear one. For example, if L were a polynomial, the elements of

its kernel (more often called null set in this context) would be just what

we usually call the roots of the polynomial. For a linear function, however,

the kernel has a special significance, as we’ll see; furthermore, whenever the

kernel of a linear function has more than one member, it has infinitely many,

making up a subspace (rather than a discrete set of roots).

The kernel is denoted by ker L (also by N [L], especially when the al-

ternative term “null-space” is used).

Examples:

1. Let L
(

x
y

)

=
(

y
x

)

. Then ker L = {~0} ≡
{(

0
0

)}

, since no vector other

than ~0 is mapped into ~0 by L. In fact, this L is one-to-one; the output,
(

y
x

)

, uniquely determines the input,
(

x
y

)

.

2. Let L
(

x
y

)

=
(

y
−y

)

. Then its kernel consists of all vectors of the form
(

x
0

)

. Clearly, this function is not one-to-one.

The connection between injectivity and the kernel, observed in this ex-

ample, is actually universal (for linear functions):

Theorem 3: If L is linear, then L is one-to-one if and only if its kernel

is {~0}. (This ~0 is the zero vector of D. Notice that ker L always contains ~0.

The point of the theorem is that it contains nothing else if L is one-to-one.)

Proof: If ker L contains more than one vector, then L is not one-to-

one, by definition. The converse is less immediate, but easy: If L is not

one-to-one, we have L(~x) = L(~y) but ~x 6= ~y, for some ~x and ~y. By linearity,

L(~x − ~y) = L(~x) − L(~y) = 0 [∈ W].

Thus x − y is a nonzero element of ker L.

The trick used in this proof is worth remembering, because it is also

useful in applications. We convert a question about an nonhomogeneous

equation, L(~x) = ~y, into a question about the corresponding homogeneous

equation, L(~x) = 0, which is usually easier to analyze. (In the proof, the

“question” was about uniqueness of solutions.)
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Theorem 4: If L is linear, then ker L is a subspace of D.

Proof: If L(~x) = 0 and L(~y) = 0, then L(r~x + ~y) = rL(~x) + L(~y) = 0.

Important remark: ker L is the space of solutions (in D) of the ho-

mogeneous equation, L(~x) = 0.

Examples of homogeneous equations:

1. An algebraic equation (D = W = R2):

{

2x + 3y = 0

x − y = 0

This system is nonsingular, so ker L = {0}.

2. An ordinary differential equation:
d2f

dt2
+ 4f = 0.

This equation has many solutions, so ker L 6= {0}. (Note, inciden-

tally, that the f in this example is playing the role of the ~x in our

general discussion. The linear function (L in the general discussion)

here is the linear operator (d/dt)2 + 4, which maps functions (the

vectors of this example) into functions.)

3. A partial differential equation: ∇2f ≡
∂2f

∂x2
+

∂2f

∂y2
= 0.

(Again, the vectors are the functions f ; here x and y play the role of

t in the previous example.) This also has many solutions (ker L 6= 0).

However, we could impose the additional boundary condition that

f(x, y) = 0 for x and y on the boundary of a bounded region in R2

(and consider the functions f to be defined only inside that region).

The boundary condition is also a homogeneous linear equation; it goes

together with the PDE (Laplace’s equation) to make a homogeneous

linear “system” like the two algebraic equations in the first example.

It can be shown that the only solution of this system or problem as

a whole is f ≡ 0. Thus ker L = {0} for Laplace’s equation with the

boundary condition included.

Important remark: The solutions of an nonhomogeneous linear equa-

tion, L(~x) = ~y, form an affine subspace — namely, ker L+ ~p, where ~p is any

“particular solution” (i.e., L(~p) = ~y). (Of course, ~y must be in the range of

L in order for any solutions to exist.)

The proof of the principle expressed in this remark is the same as that

for the special case taught in ODE courses: Given a particular solution ~p,

we have L(~x + ~p) = L(~x) + L(~p) = L(~x) + ~y. Therefore, L(~x + ~p) = ~y if and

only if L(~x) = 0 — i.e., ~x ∈ ker L.
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Examples of nonhomogeneous equations:

1. An algebraic equation:

{

2x + 3y = 2

x − y = −3

2. An ordinary differential equation:
d2f

dt2
+ 4f = et.

3. Some partial differential equations with boundary conditions:

(a) ∇2f = ρ(x, y) (known, nonzero); f(x, y) = 0 on the boundary.

(b) ∇2g = 0; g(x, y) = γ(x, y) (a known, nonzero function) on

the boundary.

In both cases the solution of the nonhomogeneous problem is unique

because ker L = {0} for the corresponding homogeneous problem

(which was the third in our previous list of examples). Notice that

h = f + g solves the problem with both nonhomogeneities,

∇2h = ρ, h = γ on the boundary.

Summary examples

Example 1. Let D = W = P3 , the vector space of polynomials of

degree 3 or less:

p(t) = at3 + bt2 + ct + d.

Define L:P3 → P3 by

L(p) ≡ p′ (i.e., L ≡ d/dt).

Calculate:

[L(p)](t) = 3at2 + 2bt + c. (†)

The kernel of L is the set of ps that get mapped into the zero polynomial;

these are just the constant polynomials, so

ker L = P0 ≡ {d}.

Please don’t confuse ker L with the set of roots of the polynomial 3at2 +

2bt + c for fixed values of a, b, c! Remember that the vectors in this problem

are polynomials, so the kernel must be a set of polynomials, not a set of

numbers. The range of L is P2 , since every possible quadratic polynomial
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is obtained for some choice of the constants in (†). [In more detail: If L(p)

is At2 + Bt + C, then we can solve for the coefficients of a corresponding p:

a = 1
3
A, b = 1

2
B, c = C, d arbitrary.] This linear function is not one-to-one,

since ker L 6= {0}. Neither is it onto, since ran L 6= W. Note, however, that

we could have studied the same function with P2 as codomain instead of P3 ;

in that case, L would be onto.

Example 2. We return to Example 6 in Sec. 4.4. The linear operator

L:P2 → P2 is defined by

[L(p)](t) = (t2 − 4)p′′(t) + tp′(t) − 4p(t).

Is L surjective (onto P2)? If not,* what is its range? Is L injective? If not,

what is its kernel?

Solution: The function is not surjective; the range is P1 , the first-

degree polynomials. This is clear either from the matrix found in Sec. 4.4

— the span of the columns being the same as the span of











0
1
0



 ,





0
0
1











— or from the action of L on the basis polynomials, which yields the con-

stants and the multiples of t but no t2 terms. Neither is it injective: To see

what the kernel is, reduce the matrix:





0 0 0 0
0 −3 0 0
−8 0 −4 0



→





1 0 1
2

0
0 1 0 0
0 0 0 0



 .

Thus p(t) = at2 + bt + c is in the kernel if

a + 1
2c = 0, b = 0.

That is, the kernel consists of the multiples of the polynomial

− 1
2 t2 + 1.

We’ll have still more to say about this example in Secs. 5.3 and 5.4.

* If L is surjective, then its range is P2 and there is nothing left to ask about
the range. Similarly, if L is injective, then its kernel is {~0} and there is nothing
more to say.
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Isomorphisms

Definition: L:D → W is bijective (or is a one-to-one correspondence

between D and W) if L is both injective and surjective (i.e., both one-to-one

and onto).

Definition: L is an isomorphism if it is both linear and bijective. (That

is, L is linear, ran L equals all of W, and ker L = {0}.)

If L:D → W is an isomorphism, one says that D and W are isomorphic.

The important point is that for many purposes we may then think of D and

W as being the same space, since their internal algebraic structure is the

same.
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Example: P2 , R3, and 3-dimensional physical space are all isomorphic:

at2 + bt + c ↔





a
b
c



 ↔ ...........................................
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b
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Remark: A function is bijective if and only if it has an inverse function

(see end of Sec. 3.2). Therefore, a linear function between finite-dimensional

vector spaces is an isomorphism if and only if its matrix† is nonsingular

(see Chapter 2). (This implies, in particular, that D and W have the same

dimension. That is no surprise, since we already remarked that they are

practically the same space in this situation. There will be more on this in

Sec. 5.4, along with discussion of what can happen when the two dimensions

are not equal.)

† The matrix of L depends on the bases chosen for D and W. The statement,
however, is true for any of these matrices.
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Exercises

5.2.1 Consider the linear system

x + 2y + 2z + 2w = 3,

2x + 4y + 5z + 3w = 8.

(a) Find all solutions of the system.

(b) The coefficient matrix of the system, M =

(

1 2 2 2
2 4 5 3

)

, de-

fines a linear function from R4 into R2. Describe the kernel and

the range of this function.

(c) Explain how part (a) provides an example of the concept of

“affine subspace”.

5.2.2 A linear function F is defined in the usual way by the matrix A =
(

1 1 1
1 0 0

)

.

(a) Find a basis for the range of F .

(b) Find a basis for the kernel of F .

(c) What are the dimensions of the subspaces associated with F —

its domain, codomain, range, and kernel?

5.2.3 The equations











u = x − 2y

v = x + 3y

w = x − 6y











define a linear function L:R2 → R3.

(a) Find the kernel and range of L.

(b) Is L injective (one-to-one)? Explain.

5.2.4 The matrix A =

(

2 3 2
−1 1 1

)

defines a linear function L:R3 → R2.

(a) Find the kernel of L.

(b) Is L “onto” (surjective)? Explain.

5.2.5 The function

F

(

x1

x2

)

=

(

x1 − 3x2

x1 + x2

)

is a linear mapping from R2 to R2. Find its kernel and its range.
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5.2.6 Find the kernel and the range of the linear operator L:R4 → R4

whose matrix is

A =







1 2 0 3
0 0 1 0
−2 −4 0 −6
10 20 0 30






.

5.2.7 Consider the linear function L:P2 → P2 defined by [L(p)](t) = p′(t)+

tp′′(t).

(a) What is the matrix representing L with respect to the traditional

basis for P2, {t
2, t, 1}?

(b) Is L surjective? If not, what is its range, and what is the dimen-

sion of the range?

(c) Is L injective? If not, what is its kernel, and what is the dimen-

sion of the kernel?

5.2.8 Find the range and the kernel of each of these operators.

(a) L:P2 → P3 , L(p)(t) ≡ t p(t)

(b) L:P2 → P2 , L(p)(t) ≡ t p′′(t)

5.2.9 Define K: C[0, 1] → C[0, 1] by K(f)(t) = t2f(t) +
∫ t

0
f(t̃) dt̃. This

function is linear (Exercise 3.2.11). Is K surjective (onto)? Hint:

What is K(f)(0)?

5.2.10 Define L:P2 → P2 by [L(p)](t) = p′′(t) + (t + 1)p′(t) − p(t).

(a) Find the matrix representing L with respect to the basis {t2, t, 1}.

(b) Find the kernel of L.

(c) Find the range of L.

5.2.11 Define K:P2 → P2 by K(p) = p′′ + (3 + t)p′ + p.

(a) Find the matrix representing K with respect to the usual basis,

{t2, t, 1}.

(b) Find the range of K.

(c) Find the kernel of K.
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5.2.12 Define a function G: C(−∞,∞) → C(−∞,∞) by

[Gf ](x) ≡

∫ x

0

t f(t) dt.

(a) Prove that G is linear.

(b) Show that G is injective.

(c) Show that G is not surjective. (In other words, find an element

of C(−∞,∞) that is not equal to Gf for any f .)

5.2.13 Consider the function L:P3 → P3 defined by L(p) ≡ p′ + p.

(a) Show that L is linear (as a mapping of polynomials into polyno-

mials).

(b) Is L surjective (onto)? If not, describe the range of L.

(c) Is L injective (one-to-one)? If not, describe the kernel of L.

5.2.14 Let M be the vector space of 2× 2 matrices (cf. Exercise 5.1.4). Let

A be a fixed element of M and X be a variable standing for elements

of M.

(a) Show that the formula G(X) ≡ AX defines a linear function

G:M → M. (Note: This is not the same thing as the linear

function from R2 to R2 represented by AX for a particular ma-

trix X.)

(b) What is the range of G, if A is nonsingular? (Again, don’t confuse

this with the range of AX.)

(c) What is the range of G if A =

(

1 2
1 2

)

?

5.2.15 What can you say about the kernel of the function G defined in the

preceding exercise? Hint: When does the range of [the linear func-

tion represented by] X match up with the kernel of [the linear function

represented by] A ?

5.2.16 Answer parts (b) and (c) of Exercise 5.2.14 for the case where the

fixed matrix is on the right: G(X) ≡ XA.
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In the remaining exercises, determine [bases for] the kernel and

the range of the indicated exercise from Sec. 4.4.

5.2.17 Exercise 4.4.3.

5.2.18 Exercise 4.4.5.

5.2.19 Exercise 4.4.8.

5.2.20 Exercise 4.4.13.

5.3 Linear Equations: The Superposition Principles

The preceding section was decorated with paragraphs labeled “Impor-

tant Remark”, which indicated why each of the abstract definitions of that

section is important for applications. Indeed, those remarks are so impor-

tant that we shall now state them again in a different way, organized from

the point of view of the applications. We have in mind primarily the so-

lution of differential equations, ordinary and partial. The techniques pre-

sented in differential-equations courses sometimes strike students as simply

a bewildering welter of magic tricks. However, many of them become well

motivated, even obvious, once they are understood as general principles of

linear algebra.

We begin by restating the obvious.

Definition: A linear equation is an equation of the form

L(~u) = ~g,

where L is a linear operator, ~g is a “given” or “known” vector, and ~u is the

unknown vector to be solved for.

Here the vectors ~g and ~u may be vectors in the elementary sense (ele-

ments of Rn spaces), numbers (elements of R), functions (elements of func-

tion spaces such as C2(0, 1)), or elements of any other vector spaces. The

two vectors do not need to be of the same type. For any linear operator

L:D → W, we can consider the equation L(~u) = ~g with ~u in the domain D

and ~g in the codomain W. Normally in an application the equation comes

first, and a formal specification of the domain and codomain comes later in

order to make the problem statement precise.
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When a particular linear equation is written down, such as

u1 + 2u2 = 0,

u1 − 3u2 = 1,

or
du

dt
+ t3 u = cos 3t,

or
∂u

∂t
=

∂2u

∂x2
,

~g or its components are recognizable as the terms that “don’t depend on ~u ”.

(The other terms make up L(~u). Since the equation is linear, they involve

components of ~u exactly to the first power.) It is customary to write the

~u-dependent terms on the left side of the equation and the ~u-independent

terms on the right, but since any term could be added to or subtracted from

both sides of the equation without changing its solutions, this convention is

arbitrary; indeed, we violated it in the last of the three examples above. That

example is a partial differential equation (PDE), the one before it was an

ordinary differential equation (ODE), and the first example was an algebraic

equation with domain and codomain R2.

Homogeneous vs. nonhomogeneous equations

Our example PDE, ∂u
∂t

= ∂2u
∂x2 (called the elementary heat equation),

does not contain any ~u-independent terms. This represents an absolutely

crucial distinction:

Definition: A linear equation, L(~u) = ~g, is homogeneous if ~g = ~0

(i.e., all terms in the equation are exactly of the first degree in ~u); it is

nonhomogeneous if ~g 6= ~0 (i.e., “constant” terms also appear).

In the second parenthetical clause, “constant” means independent of

~u. The “constant” term ~g may be a nontrivial function of the indepen-

dent variable(s) of the problem, as in our example ODE. That equation is

nonhomogeneous (because of the cos 3t), and the PDE example is homoge-

neous. The algebraic example is nonhomogeneous because of the 1. Here

we are thinking of that system of simultaneous equations as a single linear

equation in which the unknown quantity is a two-component vector,

~u ≡

(

u1

u2

)

.
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The linear operator L maps ~u onto another vector,

~g =

(

0
1

)

.

In solving a differential equation one usually needs to deal with initial

or boundary conditions in addition to the equation itself. The main reason

is that initial or boundary data need to be specified to give the problem a

unique answer. Usually these conditions are themselves linear equations —

for example, a standard initial condition for the heat equation is

u(0, x) = f(x),

where f is some given function. Often the differential equation will be homo-

geneous but at least one of the boundary conditions will be nonhomogeneous.

(The reverse situation also occurs.) We can think of the differential equa-

tion and the supplementary conditions as fitting together into a system of

“simultaneous linear equations” just like the two halves of the 2 × 2 linear

system. Therefore, let us introduce one more bit of jargon:

Definitions: A linear problem consists of one or more linear conditions

(equations) to be satisfied by the unknown, ~u. A linear problem is homo-

geneous if all of its conditions are homogeneous, nonhomogeneous if one or

more of the conditions are nonhomogeneous.

Example A: The ODE problem

u′′ + 4u = 0, u(0) = 1, u′(0) = 0

is an nonhomogeneous linear problem (but based on a homogeneous ODE).

Example B: The PDE problem

∂u

∂t
=

∂2u

∂x2
+ j(x), u(0, x) = 0, u(t, 0) = 0, u(t, 1) = 0

is an nonhomogeneous linear problem. The boundary conditions and the

initial condition are homogeneous, but the heat equation itself is nonhomo-

geneous in this case. (The function j represents generation of heat inside

the conducting body, perhaps by combustion or radioactivity.)

Remark: It is easy to see that every homogeneous linear equation has

~u = ~0 as a solution. (One proof: L(~0) = L(~u − ~u) (for any ~u) = L(~u) −

L(~u) = ~0, QED.) Therefore, any homogeneous linear problem has ~0 as a

solution. Therefore, if a linear problem has a unique solution and that

solution is nontrivial (not just the zero vector), then that linear problem must

be nonhomogeneous. That is, an interesting, well-posed problem always has

at least one nonhomogeneous condition.
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Solving linear problems

The importance of linear problems is that solving them is made easy by

the superposition principles (which don’t apply to nonlinear problems):

Principles of Superposition:

1. A linear combination of solutions of a homogeneous problem is a new

solution of that problem. That is, if L(~u1) = 0 and L(~u2) = 0, then

L(c1~u1 + c2~u2) = 0 for any numbers c1 and c2 (and similarly for

more than two solutions, and for more than one homogeneous linear

equation defining the problem).

Example: Let Problem 1 be the homogeneous ordinary differ-

ential equation u′′ + 4u = 0. Two solutions of this problem are

u1 ≡ cos 2t, u2 ≡ sin 2t.

Then u = u1 + 3u2, for example, is also a solution. (In fact, we know

that the most general solution is c1u1+c2u2 where the cs are arbitrary

constants. But for this we need a deeper existence-and-uniqueness

theorem for second-order ODEs; it doesn’t just follow from linearity.)

2. The sum of a solution of an nonhomogeneous problem and a solution

of the corresponding homogeneous problem is a new solution of

the original nonhomogeneous problem. “Corresponding homogeneous

problem” means the one with the same L (i.e, the same “left-hand

sides” in all equations) but with all ~g components replaced by 0.

Example: Let Problem 2 be the nonhomogeneous equation

u′′ + 4u = et. One solution is up ≡ 1
5
et. (This has to be found by

the method of undetermined coefficients, or by luck. Again, general

principles of linearity by themselves can’t solve the whole problem.)

Now if we add a solution of Problem 1 we get a new solution of

Problem 2: u3 ≡ 1
5et + cos 2t.

3. The difference of two solutions of an nonhomogeneous problem is a

solution of the corresponding homogeneous problem. Therefore (as

a corollary of this principle and the preceding one together), every

solution of an nonhomogeneous problem can be obtained from one

particular solution of that problem by adding some solution of the

homogeneous problem.
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Example: The general solution of Problem 2 is

u = 1
5et + c1 cos 2t + c2 sin 2t.

4. The sum of solutions to two nonhomogeneous problems with the same

L is a solution of a new nonhomogeneous problem, for which the ~g

is the sum of the ~g s of the two original problems. (This princi-

ple extends immediately to a list of more than two nonhomogeneous

problems.)

Example A: The sum of two solutions of Problem 2, up and u3 ,

is z ≡ 2
5et +cos 2t, which is a solution of z′′+4z = 2et. The important

lesson to be learned from this example is that the right-hand side of

this new equation is not et, the nonhomogeneous term of the two

old equations. Do not superpose solutions of an nonhomogeneous

problem in the hope of getting a solution of that same problem.

Example B: Note that up is the unique solution of Problem 3:

u′′ + 4u = et, u(0) = 1
5 , u′(0) = 1

5 .

Suppose that we really want to solve Problem 4:

u′′ + 4u = et, u(0) = 0, u′(0) = 0.

Recalling Principles 2 and 3 as applied to the differential equation

alone (not the initial conditions), we see that u = up + y, where y

is some solution of y′′ + 4y = 0. A moment’s further thought shows

that the correct y is the solution of Problem 5:

y′′ + 4y = 0, y(0) = − 1
5
, y′(0) = − 1

5
.

A standard calculation shows that y = − 1
5 cos 2t− 1

10 sin 2t, and from

this and up we can get the solution of Problem 4. (Of course, in

solving such problems one usually doesn’t write out Problem 5 as

an intermediate step; the standard procedure is to impose the ini-

tial data of Problem 4 on the general solution found earlier. That is

just a different way of organizing the same algebra. However, con-

sciously splitting an nonhomogeneous problem into two nonhomoge-

neous problems, as demonstrated here for an ODE, is a standard and

very important technique for solving PDEs.)
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In summary, these principles provide the basic strategies for solving

linear problems. If the problem is nonhomogeneous and complicated, you

should split it into simpler nonhomogeneous problems and add the solutions.

If the solution is not unique, the nonuniqueness resides precisely in the pos-

sibility of adding a solution of the corresponding homogeneous problem. (In

particular, if the original problem is homogeneous, then you seek the general

solution as a linear combination of some list of basic solutions.) If the prob-

lem statement contains enough initial and boundary conditions, the solution

will be unique; in that case, the only solution of the homogeneous problem

is the zero vector (of the domain).

An example of this strategy is the solution of the heat-conduction prob-

lem in a bar with fixed end temperatures. The physical process is governed

by the partial differential equation

∂u

∂t
=

∂2u

∂x2

satisfied by the temperature function u(t, x). To predict the temperature

distribution in the future, we must know what it is now; so there is an initial

condition,

u(0, x) = f(x).

Finally, to complete the physical description of the problem, one must specify

what happens to the heat when it reaches the ends of the bar; here we are

considering the case of boundary conditions

u(t, 0) = T1 , u(t, 1) = T2 .

(The end temperatures are constants, not functions of t as they could be in

principle.) Here we have a homogeneous PDE, an nonhomogeneous initial

condition (IC), and two nonhomogeneous boundary conditions (BC).

The details of how to solve this problem belong in another course. How-

ever, we can describe the basic trick. It is to treat the two types of nonho-

mogeneity separately. One writes u = v + w, where:

1. v is to be a solution of the problem that consists of the PDE and the

nonhomogeneous BC, with no particular IC assumed. It is possible

to find a solution of this problem that is independent of t (satisfies
d2v
dx2 = 0 and the BC):

v(t, x) = V (x) ≡ (T2 − T1)x + T1 .
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2. w is to be a solution of the problem that consists of the PDE, the

homogeneous boundary conditions

w(t, 0) = 0, w(t, 1) = 0,

and the initial condition that is needed to make u satisfy the original

IC — namely,

w(0, x) = f(x) − V (x) ≡ g(x).

It is very important that the only nonhomogeneity in the problem

is the IC. This makes it possible to solve for w by a method called

separation of variables or Fourier analysis. In brief summary: First

one observes that all the functions

wn(t, x) ≡ e−n2π2t sin(nπx) (n a positive integer)

satisfy both the PDE and the homogeneous BC. Then it turns out that

the arbitrary given function g, if it satisfies some reasonable technical

conditions, can be written as an infinite linear combination (Fourier

series) of the functions sin(nπx). Because the PDE and BC are both

homogeneous, it is possible to add up the solutions wn without falling

into the trap warned against in Example A under Principle 4 above;

the result satisfies the PDE, BC, and IC required of w. (Thus u ≡

v + w satisfies the original problem, and we’re done!) The important

point is that for this method to work, it is absolutely crucial to make

the boundary conditions homogeneous first.

Summary of the relations among

subspaces, linear functions, and linear equations

We have three different sets of terminology, depending upon whether

the focus is on the subspace, the linear function, or the equation. Their

correspondence is exhibited by the following table.

Property of Property of Property of

key subspace linear function linear equations

kernel = {0} one-to-one uniqueness

(not bigger) (injective) (homog. & nonhomog.)

range = codomain onto existence

(not smaller) (surjective) (nonhomogeneous)
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Nonhomogeneous equations are associated with affine subspaces and

functions:

Type of Solutions are Type of

linear equation zero set of subset

homogeneous, linear function, (“true”) subspace,

L(~x) = 0 L(~x) ker L

nonhomogeneous, affine function, affine subspace,

L(~x) = ~b L(~x) −~b ker L + ~p

More examples

Example 1. Use superposition principles to find all solutions in P2 of

the differential equation

(t2 − 4)p′′(t) + tp′(t) − 4p(t) = −16.

Solution: We have already analyzed the linear operator

L = (t2 − 4)
d2

dt2
+ t

d

dt
− 4

with domain and codomain P2 in Example 6 of Sec. 4.4 and Summary Ex-

ample 2 of Sec. 5.2. We saw that L(t2) = −8; consequently, L(2t2) = −16, so

one solution of the equation is pp(t) = 2t2. The general solution, therefore, is

p = pp+pc , where pc is the general element of the kernel (general solution of

the corresponding homogeneous equation, L(p) = 0). We already identified

the kernel in the “summary example”. So we see that all the solutions of our

equation in P2 are

p(t) = 2t2 +
(

− 1
2
t2 + 1

)

c for arbitrary numbers c.

(There are other solutions of this differential equation that are not quadratic

polynomials.)

Example 2. Recall from third-semester calculus or physics (or look

ahead to Sec. 6.4) that ∇2 stands for the Laplacian operator,

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.
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Let S be the sphere x2 +y2 + z2 = 1 and B be the ball x2 +y2 + z2 < 1. We

investigate the partial differential equation ∇2u = f when the (real-valued)

functions u and f have B as their domain (f(~r) given but arbitrary, u(~r)

unknown and to be found).

(1) What are a reasonable domain* and codomain for ∇2? Because

differentiation “roughens” functions, we can’t take these two spaces to be

the same. It is reasonable to expect the equation to have a solution for

any f in C0(B) (in English: any source term that is a continuous function

inside the ball). On the other hand, ∇2u will not be defined unless the

second derivatives of u exist. So we expect the solution u to be in C2(B)

(the space of twice-differentiable functions with domain B). In summary, we

are studying the operator

∇2: C2(B) → C0(B).

(2) Next, we’ll observe that for a fixed f , the solutions of the equation

∇2u = f form an affine subspace of C2(B), which is a “true” subspace if and

only if f is the zero function. Unfortunately, abstract linear algebra by itself

can carry one only so far; we need to assume without proof some true but

harder theorems from the theory of differential equations. Namely: (1) Every

solution of ∇2u = f is indeed a member of C2(B) (if f ∈ C0(B)). (2) At least

one such solution exists. Denote such a solution by up . If u is any other

solution, then v ≡ u−up satisfies ∇2v = 0, because ∇2 is linear. Conversely,

if v solves ∇2v = 0 (called Laplace’s equation), then u = v + up solves the

original problem. (These arguments are just Superposition Principles 2 and 3

applied to this particular example.) In other words, the solution space is the

affine subpace

ker∇2 + up .

(If f = 0, then up itself lies in ker∇2 and we might as well choose it to be

the zero function.)

(3) Again stepping outside the bounds of pure linear algebra, we note

that there is a well known method for constructing a solution up . This is

most familiar in the physics terminology†: The Coulomb potential associated

* Note that the domain of u and f is a subset of R
3, and their codomain is R,

but the domain and codomain of ∇2 are sets of functions. One needs to apply the
abstract concepts at different levels in the same problem.
† But we shall ignore some subtleties about sign conventions and rival systems
of units that need to be considered in the physics and engineering books.
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with a point charge at ~r0 is −e
4πr

where e is the magnitude of the charge and

r ≡ ‖~r − ~r0‖ is the distance from the charge to the (variable) point ~r. If we

have a spread-out distribution of charge with density f , then the associated

Coulomb potential is

u(~r) =

∫∫∫

−f(~r0)

4π‖~r − ~r0‖
d3r0 .

This means that ∇2u = f . (This equation holds everywhere in R3, and

therefore certainly inside B.) In the context of our problem, this Coulomb

solution is a suitable candidate for up .

(4) Suppose that we knew how to solve the problem

∇2u(~r) = 0 for ~r ∈ B, u(~r) = g(~r) for ~r ∈ S, (#)

for any given function g(~r) = g(θ, φ) ∈ C0(S). We outline a strategy for

solving the problem

∇2u(~r) = f(~r) for ~r ∈ B, u(~r) = g(~r) for ~r ∈ S.

This is an instance of Superposition Principle 4, with one nonhomogeneity

living on the boundary sphere S and the other one inside B. From the

previous discussion, we know that u = up + v, where up is the Coulomb

solution from Part 3 and v is some solution of the homogeneous Laplace

equation. The slightly tricky part is the boundary condition satisfied by v.

For ~r ∈ S, we have

v(~r) = u(~r) − up(~r) = g(~r) − up(~r) ≡ h(~r).

Recall that the first term in h was prescribed in the statement of our problem.

The second term is also known (provided that we can evaluate the integral

defining up). Therefore, to complete the solution for u we merely need to

solve problem (#) with v in the role of u and h in the role of g.

Exercises

5.3.1 (a) Find the kernel of L: C2(−∞,∞) → C(−∞,∞) defined by L(u) =

u′′ − 4u.



5.3. Superposition 247

(b) What can you say about the range of L? Show that the range

contains (at least) all bounded‡ continuous functions. Hint:

Construct the solution by the method of variation of parameters.

The point of this problem is that almost every function is in the

range, if we put no conditions on the behavior of the solution at

infinity. We assume boundedness to guarantee that the integrals

converge.

5.3.2 Define a linear operator L:P1 → P2 by [L(p)](t) ≡ p′(t) + t p(t) .

(a) Find the kernel of L, as a finite-dimensional linear-algebra prob-

lem. (Use the power bases for the polynomial spaces.)

(b) Find the kernel of L, as a differential-equations problem. (Of

course, your answer should agree with (a).)

(c) How would your answer to (b) change if we were considering

L: C2(−∞,∞) → C(−∞,∞),

defined by the same differential expression?

(d) Find the range of L.

5.3.3 Redo Example 1 using the observation that L(1) = −4 (instead of

L(t2) = −8). Comment on the consistency of your answer with the

one in the text.

5.3.4 Consider Poisson’s equation, ∇2φ = ρ. (Physically, ρ(~r) is a given

charge distribution and φ(~r) is the electrical potential to be found.)

(a) Note that if φ is a solution, then φ + ey sinx is also a solution

(with the same ρ). Explain what this has to do with the terms

“injective” and “kernel”.

(b) Suppose that the equation holds inside a sphere with center at

the origin, and that the radial derivative ∂φ
∂r

= n̂ · ∇φ (the di-

rectional derivative perpendicular to the sphere) equals 0 every-

where on the sphere. (This means on the surface, not the whole

interior!) In Exercise 7.5.6 we shall show that the integral of ρ

over the interior of the sphere must then equal 0. (Physically,

the net charge is zero.) Explain what this phenomenon has to

‡ There is an M such that |u(x)| < M for all x.
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do with the terms “range” and “onto”. Hint: Think of ∇2 as a

linear operator on a domain consisting of functions whose normal

derivatives vanish on the sphere; see also the next exercise.

5.3.5 Here is a one-dimensional analogue of the phenomenon described in

Exercise 5.3.4(b). Consider a steady-state heat-conduction problem

similar to the one discussed in the text of this section, except that

this time there is a heat source in the interior of the bar, and the

derivatives of the temperature function at the endpoints are required

to be 0. (Physically this means that there is no heat flow into or

out of the bar at the ends; the ends are thermally insulated.) The

differential equation is then

d2u

dx2
= −j(x),

where j describes the heat source, and the boundary conditions are

du

dx
(0) = 0,

du

dx
(L) = 0.

(a) Show that the problem has no solution unless
∫ L

0
j(x) dx = 0.

(b) Explain why this result should be expected on physical grounds.

(Recall that u is a temperature function that is independent of

time.)

(c) Let L be the operator d2/dx2 with the domain D consisting of

those functions in C2(0, L) that satisfy the thermal-insulation

boundary conditions. Restate the result (a) as a description of

ranL.

(d) What is ker L?

5.3.6 Find the general solution of

d4y

dx4
− 16y = 0.

Hint: The fourth roots of 16 are ±2 and ±2i.

5.3.7 Find the general solution of

d4y

dx4
= sin(3x).
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5.4 Rank

For the past three chapters we have been suffering through a traffic jam

of new concepts. Linear functions, linearly independent sets, and subspaces

all need to be defined and explained one at a time, but it is hard to appreciate

any of them fully without already understanding the others. This section

finally pulls together all the pieces. We hope that it will make them all

clearer.

Theorem 1: For any linear function,

the dimension of the range

plus the dimension of the kernel

equals the dimension of the domain.

Proof (for the case that all the spaces are finite-dimensional): Pick a

basis {~v1, . . . , ~vp} for the kernel. Add vectors to that basis to get a basis

{~v1, . . . , ~vp, ~u1, . . . , ~uq} for the entire domain (Lemma, Sec. 5.1). The image

of this set, {L(~v1), . . . , L(~uq)}, must span the range. The images L(~vj) of

the kernel vectors are all 0. The images {L(~uj)} of the extra vectors must be

linearly independent: otherwise, some linear combination of the ~u s would be

in the kernel. (If
∑q

j=1 cjL(~uj) = 0, then L
(
∑q

j=1 cj~uj

)

= 0.) So {L(~uj)}
q
j=1

is a basis for ranL. Thus we have

q = dim ran L, p = dimker L, p + q = dim dom L,

which is the relationship to be proved.

Example: Look again at Summary Example 2 of Sec. 5.2,

L = (t2 − 4)
d2

dt2
+ t

d

dt
− 4

with domain and codomain P2 . Once we found that the range (P1) has

dimension 2, we could have concluded immediately that the kernel must

have dimension 3−2 = 1. That is the same conclusion we reached by brute-

force calculation (which, of course, gave us the additional information of
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exactly what one-dimensional subspace the kernel is). In particular, since

the operator L was defined as a mapping from P2 into itself, once we saw

that L is not surjective, we could have concluded that it is not injective

either:

Corollary: If dimD = dimW < ∞, then L:D → W is one-to-one if

and only if it is onto. (Either virtue guarantees the other.)

Notice that this theorem and corollary have a strong family resemblance

to the earlier theorem relating independence to spanning for sets of various

sizes in a space of a given dimension. The more a set fails to be indepen-

dent (by being “flattened out”), the smaller is the subspace that it spans.

Similarly, the larger the kernel of a linear function is, the smaller is its range.

In fact, Theorem 2 of Sec. 5.2 (together with the theory in Sec. 4.4)

shows that ranges and spans are essentially the same thing (see the second

definition in the next list).

Definitions:

(1) The rank of a linear function is the dimension of its range.

(2) The rank of a matrix is the rank of the linear function (Rn → Rp)

it represents. Equivalently, the rank is the dimension of the subspace

of Rp spanned by the columns of the matrix. This number is often

called “the number of linearly independent columns.”

(3) The nullity of a linear function (or of the corresponding matrix) is

the dimension of its kernel.

Example. What are the rank and the nullity of

M =

(

1 2 1
2 −1 4

)

?

Solution: The rank is 2: It can’t be greater than 2, because the

dimension of the whole column space is just 2. It can’t be less than 2,

because the three columns are not all proportional. (Alternative argument:

The (column) rank is equal to the row rank, and the row rank of this matrix

is 2. A row reduction that shows this has already been done in Example 2(a)

of Sec. 4.1.) Therefore, by Theorem 1, the nullity is 3−2 = 1. This can also

be checked directly, by reducing the augmented matrix for the homogeneous

equation system,
(

1 2 1 0
2 −1 4 0

)

,
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to
(

1 0 9
5 0

0 1 − 2
5 0

)

.

From this reduced augmented matrix it is clear that the third coordinate

of the solution is arbitrary and the first and second coordinates are then

determined.

Application of the theorem to algebraic linear equations

also known as

Interpretation of the theorem

in terms of algebraic linear equations

Theorem 1, relating nullity to rank, has a lot to teach us about the

number of possible solutions of the homogeneous and nonhomogeneous sys-

tems associated with a matrix. You have probably known for a long time

that a system usually has

• many solutions if there are more unknowns than equations,

• no solutions if there are more equations than unknowns,

• a unique solution if there are the same number of equations and un-

knowns.

On the other hand, you know that there are exceptions to these rules of

thumb. With the concept of rank, we can get a much better handle on the

types of behavior that can occur.

Let A be a p × n matrix, so that

A~x = ~y

with ~y given is a system of p equations in n unknowns, representing a linear

function from Rn to Rp. Let M be the augmented matrix of the system,

which is of shape p× (n+1); let Mred be its row-reduced form. The theorem

states that the rank of A plus the nullity of A equals n:

r + q = n.
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I. Case p = n: (For illustrative purposes we take p = 3.) There are

two possibilities:

A. A is invertible; Mred =





1 0 0 | a1

0 1 0 | a2

0 0 1 | a3



. The equation has

the unique solution x1 = a1, x2 = a2, . . . . This is the case of

the theorem and corollary in which q = 0 (i.e., the solutions are

unique) and r = n = p (hence the solution exists for all ~y; the

range is the whole codomain).

B. A is singular. Then q > 0 (solutions are nonunique) and r =

n − q < p (for some ~y s, solutions don’t exist — i.e., ~y is not in

the range). If ~y is in the range, then A~x = ~y has a q-parameter

family of solutions,

~x = ~xparticular + arbitrary element of kernel.

For p = n = 3, we can easily write down all possible kinds

of results for Mred . For rank-2 matrices A, the most common

result is




1 0 α | a1

0 1 β | a2

0 0 0 | a3



 ,

where the letters stand for arbitrary numbers. Solutions exist if

and only if a3 = 0 — which in turn is determined by the original

coordinates of the nonhomogeneous term, {yj}. Indeed, a3 is

some nontrivial linear combination of the three yjs. Therefore,

two coordinates of ~y can be chosen arbitrarily, but then the third

is determined, if ~y is to be in the range. This confirms that the

dimension of the range (the rank) is 2. On the other hand, if

a3 is 0, then x3 is arbitrary but the other xjs are determined.

Thus the solution spaces are one-dimensional; the nullity is 1, in

agreement with the theorem.

The other possible results for Mred when r = 2 are





1 α 0 | a1

0 0 1 | a2

0 0 0 | a3



 and





0 1 0 | a1

0 0 1 | a2

0 0 0 | a3



 .

The foregoing remarks apply to them as well.
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If r = 1, there are three possible reduced forms:




1 α β | a1

0 0 0 | a2

0 0 0 | a3



 ,





0 1 α | a1

0 0 0 | a2

0 0 0 | a3



 ,





0 0 1 | a1

0 0 0 | a2

0 0 0 | a3



 .

Each aj is some linear function of ~y. In all these cases the range

consists of all ~y for which a2 = a3 = 0; thus only one component

of ~y is free to vary, so the range is one-dimensional. The theorem

says that the nullity must be 2; this is so, because with only

one nontrivial equation, two components of the solution may be

chosen arbitrarily.

There is one other possible reduced form:




0 0 0 | a1

0 0 0 | a2

0 0 0 | a3



 .

This can happen only if A is the 0 matrix.

II. Now consider the case p < n (fewer equations than unknowns). The

rank (being the dimension of the range) is necessarily less than or

equal to p (the dimension of the codomain). Therefore, r < n; and

hence q = n−r > 0. (In fact, q ≥ n−p.) Typically, therefore, the sys-

tem will have nonunique solutions. (In particular, the homogeneous

equation, A~x = 0, always has nontrivial solutions. By definition, q is

the dimension of the solution space of that equation.)

A. A typical Mred is
(

1 0 α | a1

0 1 β | a2

)

,

from which we see that at least one coodinate of the solution can

be chosen arbitrarily. Here r = p = 2 and q = n − p = 1.

B. It is possible, however, to have r < p; the reduced matrix in such

a case looks something like this:
(

1 α β | a1

0 0 0 | a2

)

.
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Here r = 1 and q = 2 > n − p. Thus for some ~y s there are no

solutions, while for the others there are even more solutions than

in case A. (In no case is the solution unique when there are fewer

equations than unknowns.)

III. Finally, suppose that p > n (there are too many equations). Then r =

n − q ≤ n < p, so the range can’t ever be the entire codomain. That

is, for some ~y there are no solutions. A typical reduced augmented

matrix looks like






1 0 | a1

0 1 | a2

0 0 | a3

0 0 | a4






.

If the ajs next to the zero rows at the bottom are themselves 0, then

solutions do exist. If the number of nonzero rows is n, the solution is

unique; if it is less than n, the solution is not unique.

More about rank

If you have very sharp eyes, you may have noticed that in all the cases

we analyzed in the foregoing discussion, the rank of the matrix was equal to

the number of nonzero rows in Ared , although we defined it as the number

of linearly independent columns of A. The equivalence of these two numbers

follows from the next two theorems.

Theorem 2: The rank of At equals the rank of A. In other words, the

dimension of the space spanned by the rows of A equals the dimension of

the space spanned by the columns of A.

A direct proof of this theorem is rather messy. Nicer proofs use the

concepts of inner product and orthogonality, although the theorem itself has

nothing to do with them. Accordingly, we delay our proof to Chapter 8.*

Theorem 3: Elementary row operations do not change:

(A) the rank of the matrix;

(B) the space spanned by the rows of the matrix;

(C) the space spanned by the columns of the transpose of the matrix.

* Another such proof is given by G. Mackiw, A note on the equality of the
column and row rank of a matrix, Mathematics Magazine 68 (1995), 285–286.
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Outline of proof: Obviously (B) implies (A) and (C). (B) is true be-

cause row operations replace the rows by linear combinations of themselves,

in a reversible way.

Note: Row operations do change the space spanned by the columns of

the matrix (but not the dimension of that space, which is the rank).

Corollary: The rank of a matrix in row echelon form (that is, one that

has been row-reduced) is equal to the number of nonzero rows in it.

Outline of proof: It’s easy to show that the nonzero rows are linearly

independent.

This theorem and corollary justify the row-reduction method for testing

linear independence or constructing an independent set with the same span

as a given set (method “(B)” in Sec. 4.1). You should also now be able to

justify method “(A)”.

Theorem 4: Let L:V → V be a linear function from a vector space

into itself, and let L be represented (with respect to some basis for V) by

the (square) matrix A. Then the following conditions are equivalent:

(1) L (or A) has the maximal rank possible (namely, the dimension of V).

(2) A is invertible (equivalently, bijective).

(3) The determinant of A is not zero.

Exercises

5.4.1 Find the rank of each of these matrices.

(a)





1 1 2
0 0 0
5 5 17



 (b)

(

2 2
1 6

)

5.4.2 Find the rank of each of these matrices.

(a)

(

2 −1 3
5 5 −5

)

(b)





1 −1 2
2 0 2
3 1 2





5.4.3
(a) Find all solutions of the system

{

x + 2y − 3z = 2,

x − 2y + 4z = 1.

(b) Find a basis for the range of the linear function whose matrix is
(

1 2 −3
1 −2 4

)

.
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(c) Comment on the relation between the number of parameters in

the solution to (a) and the number of vectors in the solution to

(b).

5.4.4 Let M =

(

1 2 0
2 1 0

)

.

(a) What is the rank of M?

(b) What other ranks are possible for 2 × 3 matrices? Give an ex-

ample of each.

(c) What is the dimension of the kernel of M?

5.4.5 The matrix B =





2 3
−1 1
1 1



 defines a linear function L:R2 → R3.

(a) What is the rank of this matrix?

(b) What other ranks are possible for matrices of this shape (3× 2)?

5.4.6 Define f :R3 → R2 by

{

u = x − 3y + 2z,

v = −2x + 6y − 4z.

(a) Is f one-to-one?

(b) Is f onto?

(c) Which of these two questions could have its answer changed by

changing the numbers in the formulas, but leaving the spaces R3

and R2 the same? Explain.

5.4.7 Let M be a p×n matrix. The index of M is defined as the dimension

of the kernel of M minus the dimension of the kernel of M t. Prove

that the index depends only on p and n, not on the numbers that

make up M .

5.4.8 Find the rank and nullity of the operator in Exercise 4.5.8.

5.4.9 Find the rank and nullity of the operator in Exercise 4.5.14.

5.4.10 Prove that conditions (1) and (2) of Theorem 4 are indeed equivalent.

(We postpone condition (3) to Chapter 7.)

5.4.11 Justify method “(A)” of Sec. 4.1 for testing linear independence. (You

may appeal to Theorem 4, including the third condition.)

5.4.12 Prove: If L and M are linear transformations, then the rank of their

product LM is less than or equal to the rank of either factor.
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5.4.13 Unfinished business from Sec. 2.3: Prove that if A and B are square

matrices satisfying AB = I, then A and B are invertible (and there-

fore BA = I also). Hint: Use the result of the previous exercise.

5.5 Implicit and Inverse Functions

In one variable, the inverse function theorem is summarized in Leibnitz

notation by

dx

dy
=

(

dy

dx

)

−1

.

It is no big surprise that the generalization to several variables will turn out

to be
d~x

d~y
=

(

d~y

d~x

)

−1

(a matrix inverse).

Consider a function ~y = f(~x), f :Rn → Rn (the same n), and suppose

that a local inverse function (a “solution”), ~x = f−1(~y), is defined (at least

for ~y in some region).

For example: Recall the cylindrical coordinate transformation,

x = r cos θ,

y = r sin θ,

z = z.

Here the relation between the general notation and that of the application

is

~y =





x
y
z



 , ~x =





r
θ
z



 .

To solve for r and θ involves inverse trig functions; the answer is not unique,

and not smooth on the axis. In particular,

θ = tan−1 y

x
+ const.,

where the constant depends on the quadrant. However, calculating the

derivatives of r and θ is easier, as we’ll see.
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Returning to the general case, let’s write the condition defining the

inverse function as

f
(

f−1(~y)
)

= ~y = I(~y),

where I:Rn → Rn is the identity function. (Its matrix is the identity (unit)

matrix, 1.) By the chain rule in its Jacobian-matrix form,

f ′
(

f−1(~y)
)

f−1 ′

(~y) = I ′(~y) = 1.

(Remember that the Jacobian matrix of a linear function is the same as the

matrix that represents the function itself.) Therefore,

f−1 ′

(~y) =
[

f ′
(

f−1(~y)
)]−1

.

Alternative ways of writing this are

J~yf−1 =
[

Jf−1(~y)f
]−1

and
d~x

d~y
=

[

d~y

d~x

∣

∣

∣

∣

~x=f−1(~y)

]

−1

.

Normally in a calculation the right-hand side of this formula will come out

as a function of ~x, not of ~y.

Example: For the cylindrical coordinates,

d~y

d~x
=





∂x
∂r

∂x
∂θ

. . .
∂y
∂r

. . .
. . .



 =





cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1



 .

Inverting the matrix, we find

d~x

d~y
=





∂r
∂x

∂r
∂y

. . .
∂θ
∂x

. . .
. . .



 =





cos θ sin θ 0
− sin θ

r
cos θ

r
0

0 0 1



 .

Thus, for example,

∂r

∂x
= cos θ =

x

r
=

x
√

x2 + y2
.

We can check this directly by inverting the original nonlinear equations and

then differentiating; for instance,

r =
√

x2 + y2 leads to
∂r

∂x
=

x
√

x2 + y2
.
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Note that for many purposes the expression in terms of polar coordinates

(cos θ) or the mixed expression (x/r) may be as useful as the complicated

one in Cartesian coordinates (or more so).

More generally, in any of the many cases where a curvilinear coordinate

system is defined by formulas giving the Cartesian coordinates as functions

of the curvilinear ones, we have seen in Sec. 4.2 that the columns of the

Jacobian matrix of that coordinate transformation are the tangent vectors

to the coordinate curves. The discussion above shows that the other set of

local basis vectors, the normal vectors to the coordinate surfaces, are the

rows of the inverse of the Jacobian matrix. The formulas for the normal

vectors obtained in this way are functions of the curvilinear coordinates,

not of the Cartesian ones as they are when we find them by inverting the

nonlinear coordinate transformation as in the examples in Sec. 4.2. Let us

summarize the discussion in that section and here by a formal theorem:

Theorem: Let ~x = T (~u) be a transformation from curvilinear coordi-

nates to Cartesian coordinates in Rn. The columns of the Jacobian matrix

T ′(~u) =







∂x1

∂u1

∂x1

∂u2

· · ·
∂x2

∂u1

∂x2

∂u2

· · ·
...

...
. . .







are tangent vectors to the coordinate curves (not normalized to unit length).

More precisely,

ck ≡
∂~x

∂uk

≡

{

∂xj

∂uk

}∣

∣

∣

∣

j=1,...,n

,

evaluated at ~u0 , is tangent to the curve through ~x0 ≡ T (~u0) along which

uk varies and all other components of ~u are fixed. The rows of the inverse

Jacobian T ′−1 = (T−1)′ are normal vectors to the coordinate surfaces (not

normalized to unit length). (These “surfaces” have dimension n − 1.) More

precisely,

~dk ≡ ∇uk ≡

(

∂uk

∂x1
,
∂uk

∂x2
, . . .

)

,

evaluated at ~u0 , is normal (perpendicular) to the surface through ~x0 ≡ T (~u0)

on which uk is constant and on which all other components of ~u vary and

serve as coordinates.

So far, we have assumed that f−1 exists and found a formula for its

differential (or its Jacobian matrix) and hence its partial derivatives. (In
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doing so, we also tacitly assumed that the Jacobian matrix is invertible.)

The full truth is even better:

Inverse Function Theorem: If ~f :Rn → Rn is differentiable, if the

matrix ~f ′(~x0) ≡
{

∂yj

∂xk

}∣

∣

∣

~x0

is invertible (equivalently, if the linear trans-

formation d~x0

~f has maximal rank), and if the first partial derivatives of ~f

(the matrix elements of ~f ′(~x)) are continuous for ~x near ~x0 , then there is

a region D ⊆ Rn around ~x0 which is the range of a local inverse function,
~f −1, whose domain is the image set ~f [D] and whose derivative (Jacobian)

matrix is ~f ′(~x)−1.

A full proof of this theorem is beyond the scope of this course. Proofs

can be found in textbooks on rigorous advanced calculus or real analysis,

such as L. H. Loomis and S. Sternberg, Advanced Calculus (Addison–Wesley,

1968), and W. Rudin, Principle of Mathematical Analysis, 3rd ed. (McGraw–

Hill, 1976). What is hard to prove is that the inverse function exists; once

that is known, it follows from our calculation above that the derivative is as

stated.

The implicit function theorem

Differentiation of inverse functions is a special case of differentiation of

implicit functions. Recall how that goes in R1:

x2 + y2 = 25

implies 2x + 2y
dy

dx
= 0;

therefore,
dy

dx
= −

x

y
.

.....

.....

.....

.....

.....
.....
.....
.....
.....
.....
......
......
......
......
.......
........

.........
...........

...............
..........................................................................................................................................................................................................................................................................................................................................
............
.........
........
.......
.......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
..
x

y
•

•

Which function y = f(x) you are differentiating depends on which value of

y you plug in (the positive or the negative square root).

In higher dimensions, consider an equation

~G(~x, ~y) = ~0, where ~G:Rn+m → Rm, ~x ∈ Rn, ~y ∈ Rm.

The condition may locally determine ~y, given ~x. (It amounts to m equations

in m unknowns, possibly nonlinear equations.) Let’s assume so. That is,
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locally we’ll have a function

~y = ~f(~x), ~f :Rn → Rm.

(Examples are coming up soon.)

To proceed further, we need to invent a notation adequate for the occa-

sion. Let ∂ ~G/∂~x stand for the matrix of partial derivatives of the components

of ~G with respect to the ~x variables (with ~y fixed), and so forth. That is,

d~G

d(~x, ~y)
≡







∂G1

∂x1

. . . ∂G1

∂xn

∣

∣

∂G1

∂y1

. . .

...
∣

∣

∂Gm

∂x1

. . .
∣

∣ . . . ∂Gm

∂ym






=

(

∂ ~G

∂~x

∣

∣

∣

∣

∂ ~G

∂~y

)

.

Then set ~y = ~f(~x) in the condition ~G(~x, ~y) = 0 and differentiate the latter

with respect to ~x, invoking the chain rule:

0 =
d~G
(

~x, ~f(~x)
)

d~x
=

∂ ~G

∂~x
+

∂ ~G

∂~y

∂~y

∂~x
.

In more detail:

d~G

d~x
=

d~G

d(~x, ~y)

d
(

~x, f(~x)
)

d~x
,

d
(

~x, f(~x)
)

d~x
=













1 0 . . .
0 1 . . .
...

...
. . .

———
d~y

d~x













.

Therefore,

d~y

d~x
= −

(

∂ ~G

∂~y

)

−1
∂ ~G

∂~x
. (∗)

This is the formula we are looking for.

Of course, the formula (∗) makes no sense unless the (square) matrix

∂ ~G/∂~y has maximal rank. It seems plausible that this condition is closely

related to our initial assumption that the equations ~G(~x, ~y) can be solved (in

principle) for ~y. Indeed, just as in the inverse-function case, the full implicit

function theorem guarantees existence of the implicit function, given a rank

condition on the matrix of derivatives:
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Implicit Function Theorem: Let (~x0, ~y0) be a solution of the equa-

tion ~G(~x, ~y) = 0. If
(

∂ ~G

∂~y

)

−1
∣

∣

∣

∣

∣

∣

(~x0,~y0)

exists and ~G is continuously differentiable in the vicinity, then a local im-

plicit function, ~y = ~f(~x), such that ~G
(

~x, f(~x)
)

= 0, exists near ~x0 , and its

Jacobian matrix is given by (∗).

Exactly the same remarks about proof apply here as to the inverse

function theorem.

In practice, you may not do such a calculation in matrix notation; as in

the case of the chain rule, you can let the Leibnitz notation take care of the

matrix multiplication for you automatically. This “classical” approach is to

differentiate each component equation of ~G(~x, ~y) = 0 with respect to each

component of ~x and then solve for all the
∂yj

∂xk
.

Example 1. Regard the equations

x2 − y2 + u2 − v2 = 0

xy − uv = 0

as implicitly defining u and v as functions of x and y in a neighborhood of

the solution

x = 1, y = 1, u = 1, v = 1.

Let’s calculate ∂u
∂x

and ∂v
∂x

at that point. Differentiate the equations with

respect to x (remembering that u and v are functions of x, but y is indepen-

dent):

2x + 2u
∂u

∂x
− 2v

∂v

∂x
= 0,

y −
∂u

∂x
v − u

∂v

∂x
= 0.

Evaluate the coefficients at the point:

∂u

∂x
−

∂v

∂x
= −1,

∂u

∂x
+

∂v

∂x
= 1.
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The solution is
∂u

∂x
= 0,

∂v

∂x
= 1.

We could calculate the derivatives with respect to y similarly. The two

calculations fit together to make up the matrix calculation prescribed in (∗)

(with ~y = (u, v), ~x = (x, y)).

Example 2. Three quantities A, B, C are related by the equations

AB + BC = 18,

A + B = 2C.

(a) Regard A and B as functions of C. Find the derivatives of A and B with

respect to C at the point where A = B = C = 3. (b) Find the derivatives

of functions f(A,B) and g(A,B) with respect to C at that point, if

( ∂f
∂A

∂f
∂B

∂g
∂A

∂g
∂B

)

=

(

1 2
0 −1

)

there.

Solution: Implicit differentiation with respect to C yields

dA

dC
B + A

dB

dC
+

dB

dC
C + B = 0,

dA

dC
+

dB

dC
= 2.

Setting all variables equal to 3 (which, we note in passing, does satisfy the

original equations!), we get

3
dA

dC
+ 6

dB

dC
= −3,

dA

dC
+

dB

dC
= 2.

The solution (by elementary algebra or by inverting the coefficient matrix)

is
(

dA
dC
dB
dC

)

=

(

− 1
3

2
1
3

−1

)(

−3
2

)

=

(

5
−3

)

.

This completes part (a). Part (b) can now be done by the chain rule:

( df
dC
dg
dC

)

=

( ∂f
∂A

∂f
∂B

∂g
∂A

∂g
∂B

)(

dA
dC
dB
dC

)

=

(

1 2
0 −1

)(

5
−3

)

=

(

−1
3

)

.
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Next, a larger-scale example of implicit differentiation and of nonorthog-

onal curvilinear coordinates:

Example 3. Recall the formulas defining spherical coordinates:

x = r sin θ cos φ, (1)

y = r sin θ sin φ, (2)

z = r cos θ. (3)

These are 3 equations in 6 variables. Therefore, at most points in the space

we should be able to solve for 3 of the variables in terms of the other 3. To

consider (r, θ, φ) as functions of (x, y, z) is a routine application of the inverse

function theorem. (Some details will be given as an example in Sec. 7.1.) In

order to see an application of the more general implicit function theorem,

let’s consider (x, θ, φ) as functions of (r, y, z). More generally, we shall study

the possibility of using (r, y, z) as a coordinate system for R3, or for parts

of it.

(1) First we ask the standard calculational question: What are the

partial derivatives of the dependent variables with respect to the independent

ones (the new coordinates)? That is, what are the elements of the Jacobian

matrix






∂x
∂r

∂x
∂y

∂x
∂z

∂θ
∂r

∂θ
∂y

∂θ
∂z

∂φ
∂r

∂φ
∂y

∂φ
∂z






? (4)

To find the first column of this matrix, differentiate (1)–(3) with respect

to r, with y and z fixed:

∂x

∂r
= sin θ cos φ + r cos θ cos φ

∂θ

∂r
− r sin θ sinφ

∂φ

∂r
, (5)

0 =
∂y

∂r
= sin θ sin φ + r cos θ sin φ

∂θ

∂r
+ r sin θ cos φ

∂φ

∂r
, (6)

0 =
∂z

∂r
= cos θ − r sin θ

∂θ

∂r
. (7)

As it happens, this is an essentially triangular system that can be solved

from the bottom up: We easily get

∂θ

∂r
=

1

r tan θ
, (8)
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∂φ

∂r
= −

tan φ

r sin2 θ
, (9)

and a messy expression that simplifies to*

∂x

∂r
= csc θ secφ. (10)

(2) Let us pause to examine where the three formulas (8)–(10) break

down. We observe that their denominators can vanish under any of three

conditions:

(i) r = 0,

(ii) sin θ = 0,

(iii) cos φ = 0.

Cases (i) and (ii) are no surprises: The origin is always a singular point in

spherical coordinates, and the north and south polar axes (θ = 0 or π) only

slightly less singular. The third condition is less obvious. We observe (from

(1)) that wherever (i) and (ii) are false, (iii) is equivalent to x = 0. What

is special about that plane, with regard to the coordinate system (r, y, z)?

Consider what happens when we hold the coordinates y and z fixed and

vary r. The resulting “curve” is a horizontal line, and varying r along it is

equivalent to varying x (or φ). As x varies from −∞ to +∞, r decreases

until x = 0, then begins to increase again. As the line crosses the plane, the

line becomes tangent to one of the spheres of constant r, rather than cutting

through it. At this point, a tiny change in r corresponds to a large change

in x and in φ, and this is exactly what the derivatives (8) and (10) are telling

us.

* Incidentally, a first attempt to use a computer algebra program to solve the
entire linear system (5)–(7) yielded

∂x

∂r
= cosφ sin θ −

cot θ cos θ secφ − r2 cos θ sin θ

r2 + sinφ sin θ tan φ
.

This is obviously wrong, since the “units” don’t make sense — the square of a
length shouldn’t be added to a pure trigonometric function. In fact, it is easy
to see from (5), (8), and (9) that the correct answer cannot depend upon r at
all. This anecdote demonstrates the importance of maintaining skepticism about
the output of computations, especially symbolic ones, and of developing the gut
understanding of mathematical and physical concepts that enables one to catch
errors in calculations, whether by machine or by hand.
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(3) To investigate this phenomenon more systematically, we recall that

the implicit function theorem guarantees existence and differentiability of

an implicit function wherever a certain determinant is nonzero. This is the

determinant of the Jacobian matrix of the (3-component) function of (x, θ, φ)

obtained by moving all the terms in (1)–(3) to the same side and treating

all 6 variables as independent. (This is the matrix called ∂ ~G
∂~y

above.) We

have already calculated these partial derivatives in (5)–(7); we merely need

to extract them with the correct signs and in the correct positions:

∣

∣

∣

∣

∣

∣

−1 r cos θ cos φ −r sin θ sin φ
0 r cos θ sin φ r sin θ cos φ
0 −r sin θ 0

∣

∣

∣

∣

∣

∣

= −r2 cos φ sin2 θ. (11)

The zeros of the determinant are exactly the same “bad spots” we identified

earlier. They mark the places where the quantities (x, θ, φ) do not depend

smoothly on (r, y, z).

We can complete the calculation of the partial derivatives (4) by multi-

plying the negative of the inverse of the matrix in (11), which is





1 tan φ cot θ sec φ
0 0 1

r
csc θ

0 − 1
r

csc θ sec φ − 1
r

cot θ csc θ tan φ



 , (12)

by the matrix of derivatives of the 6-variable function with respect to the

other set of variables, (r, y, z) (the matrix called ∂ ~G
∂~x

above), which is





sin θ cos φ 0 0
sin θ sin φ −1 0

cos θ 0 −1



 . (13)

The result is






∂x
∂r

∂x
∂y

∂x
∂z

∂θ
∂r

∂θ
∂y

∂θ
∂z

∂φ
∂r

∂φ
∂y

∂φ
∂z






=





csc θ sec φ − tan φ − cot θ sec φ
1
r

cot φ 0 − 1
r

csc θ
− 1

r
csc2 θ tan φ 1

r
csc θ secφ 1

r
cot θ csc θ tan φ



 .

(14)

(4) We saw above that the lack of smoothness (and possible nonexis-

tence) of the implicit function in this example is at least as much the fault

of the behavior of the independent variables as of the dependent ones. This

raises the question: In what regions is (r, y, z) a well-defined, smooth coor-

dinate system? We can answer this question by looking at the local bases
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defined (where they exist) by the tangent vectors to the coordinate curves

and the normal vectors to the coordinate surfaces. These fit together to form

the Jacobian matrices of the function (r, y, z) 7→ (x, y, z) and its inverse, so

in essence this is another calculation of the same type as the foregoing.

It is convenient to use the explicit formula

r2 = x2 + y2 + z2. (15)

From this we get a system of formulas analogous to (1)–(3):

x =
√

r2 − y2 − z2, (16)

y = y, (17)

z = z. (18)

Derivatives of x with respect to the 3 independent variables can be calculated

either from (16) or (slightly less messily) by implicit differentiation of (15).

We find that the tangent vectors are

∂~x

∂r
=





r
x

0
0



 ,
∂~x

∂y
=





− y
x

1
0



 ,
∂~x

∂z
=





− z
x

0
1



 . (19)

The normal vectors can be obtained directly from (15), (17), and (18):

∇r =
(x

r
,
y

r
,
z

r

)

, ∇y = (0, 1, 0), ∇z = (0, 0, 1). (20)

It is easy to check that the matrices formed from the vectors in (19) and

(20) are inverse to each other, as they should be.

Let us examine (19) and (20) for singularities:

(i) When r = 0 (and hence x = y = z = 0) most of the vectors are

not defined. (The expressions involve division of 0 by 0. Going

back to the definitions of the vectors as derivatives, one sees that

those derivatives truly don’t exist.)

(ii) The polar axis is not singular in this problem.

(iii) When x = 0 but r 6= 0, ∇r is a linear combination of ∇y and

∇z. Algebraically, this says that the Jacobian determinant of the

coordinate transformation vanishes. Geometrically, it says that
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the “r direction” lies in the y–z plane, so that there is no co-

ordinate to measure displacements transverse to the plane. The

coordinate system breaks down there. Since the determinant is

0, the determinant of the inverse transformation should in some

sense be infinite; indeed, we see that each of the tangent-vector

formulas involves division of a nonzero quantity by zero, and the

Jacobian matrix of the inverse transformation does not exist at

points on the plane. All these facts are expressions of the phe-

nomenon we noted earlier: The surface of constant r becomes

tangent to the curves of constant y and z.

Postscript

The linear algebra sections of Chapters 3, 4, and 5 have unavoidably

presented a melange of abstract concepts at a rate that makes many students

uncomfortable. Furthermore, as previously remarked, there is no ideal order

in which to learn these things; they have to be understood as a whole. This is

an excellent time to pause and consolidate your understanding by rereading

the definitions and theorems in Sections 3.1, 3.2, 4.1, 4.3, 4.4, 4.5, 5.1, 5.2,

5.4.

Exercises

5.5.1 Verify that the inverse function theorem is a special case of the im-

plicit function theorem. (How are the G, ~x, and ~y of the latter related

to the f , ~x, and ~y of the former?)

5.5.2 Let x = u2 − cos v, y = eu + v2. Calculate ∂u
∂x

, ∂v
∂x

, ∂u
∂y

, and ∂v
∂y

as

functions of u and v.

5.5.3 A function ~u = F (~v) is defined implicitly by the equations

u1 − u2
2 + 3u1v2 = 0,

u1
2v2 + u2v1

2 = 0.

Find the Jacobian matrix, F ′, (at points where it exists) by implicit

differentiation.
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5.5.4 (Continuation of Exercise 3.4.3)

(a) Find the partial derivatives ∂u
∂x

and ∂v
∂x

as functions of u and v.

Do this by the “classical” method: Differentiate each of the two

formulas

x = cosh u cos v, y = sinhu sin v

with respect to x, then solve for the desired derivatives. (Find

formulas for the partials at a general point, not just at ~u0 .)

(b) Let ~x0 = F (~u0) (~u0 ≡
(

1
0

)

). From your answer to 3.4.3(a), find

the matrix representing d~x0
F−1. Verify the consistency of your

result with (a) of the present problem.

5.5.5 Find the formulas for ∂u
∂x

, ∂v
∂x

, ∂w
∂x

in parabolic cylindrical coordinates,

x = 2uv, y = u2 − v2, z = w.

(The answers will be functions of (u, v,w).)

5.5.6 A new coordinate system (u, v) is introduced into the plane by

x = u3 − 3uv2,

y = 3u2v − v3.

(a) Find (as functions of u and v) the Cartesian components of the

(unnormalized) tangent vectors to the coordinate curves (the

curves v = constant and the curves u = constant).

(b) Calculate the determinant of the Jacobian matrix.

(c) Find the normal vectors to the coordinate surfaces (as functions

of u and v).

5.5.7 Define coordinates q and p in a region of the (y, z) plane by

y = q2 sinh p, z = q2 cosh p.

Find formulas for ∂q
∂y

, ∂q
∂z

, ∂p
∂y

, and ∂p
∂z

by implicit differentiation. (An-

swers will be functions of q and p.)
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5.5.8 Define coordinates (u, v) in a suitable region of the (x, y) plane by

x = u2v, y = u + v2.

(a) To be “suitable”, the region must stay away from the places where

the determinant of the Jacobian of the coordinate transformation

equals 0. Find these dangerous places. (The final answer should

be one or more equations relating x and y, with u and v elimi-

nated.)

(b) Calculate the partial derivatives of u and v with respect to x

and y. (The formulas for the answers will contain u and v.)

(c) In the (x, y) plane, at the point (4, 3) (corresponding to u = 2,

v = 1), draw the tangent vectors to the coordinate curves and the

normal vectors to the coordinate “surfaces” (which are curves,

in dimension 2). (Don’t normalize these vectors to unit length.)

Then plot the curve u = 2, the curve v = 1, and (with dashed

lines) the dangerous curves you found in (a). Comment on the

relation among these curves.

5.5.9 Suppose that x2y + yz = 0 and xyz + 1 = 0.

(a) Find dx
dy

and dz
dy

at (x, y, z) = (1, 1,−1).

(b) What is the function G in the implicit function theorem as ap-

plied to this problem?

5.5.10 Again suppose that x2y + yz = 0 and xyz + 1 = 0, but this time

regard x and y as functions of z. Find the equation of the tangent

line to the curve at any point where z = −2. How many such points

are there?

5.5.11 Find an equation for the tangent plane to the graph of a function

z = f(x, y) at (x0, y0) by first finding a normal vector to the surface

G(x, y, z) ≡ f(x, y) − z = 0. Show that the result agrees with the

construction of the tangent plane in Sec. 2.4.

5.5.12 Which statement is correct? In a curvilinear coordinate system,

(u, v,w), in R3, the normal vector to the coordinate surface v =

constant (at a particular point ~x) is

(A) always perpendicular to the normal vector (at ~x) to the surface

u = constant.
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(B) always perpendicular to the tangent vectors (at ~x) to the surface

v = const.

(C) always of length 1 when computed from the Jacobian matrix.

(D) equal to the gradient of either u or w.

5.5.13 The quantities A, B, s, and t are related by the equations

tA4 − sB4 = 0,

sA2 + tB2 = 0.

Find formulas for ∂A
∂t

and ∂B
∂t

(partial derivatives taken with s fixed).

These formulas will involve all 4 variables.

5.5.14 (Continuation of Exercise 4.2.1) For elliptic coordinates,

(a) Find all four partial derivatives ∂u
∂x

, ∂u
∂y

, ∂v
∂x

, ∂v
∂y

.

(b) Find the normal vectors to the coordinate curves.

5.5.15 (Continuation of Exercise 4.2.3) Find the normal vectors to the

coordinate surfaces for spherical coordinates in R3.

5.5.16 Use implicit differentiation to solve Exercise 4.2.5 in another way.

(This time the answers will be functions of u and v, whereas before

they were functions of x and y.)


