
Chapter 8

Eigenvectors and Diagonalization

8.1 Eigenvalues and Eigenvectors

When a linear function maps a vector space into itself, essentially it

moves the vectors around in the space, and a description of the function

amounts to a description of how the vectors are moved around. This con-

trasts with the situation where the domain and codomain of the function are

different spaces: In that case, since the basis in the domain and the basis in

the codomain can be chosen independently, and since one basis is as good

as another from an abstract point of view, all linear functions of the same

rank are essentially alike in terms of abstract structure. (For example, any

nonsingular matrix can be row-reduced to the identity matrix. This amounts

to choosing the basis vectors in the codomain to be the images under the

linear function of the basis vectors in the domain.)

When the codomain is the domain, all bases are not alike. It turns

out that there are certain directions in the domain along which the action

of a given linear function is particularly simple. Instead of being “turned”

to point in a new direction, vectors in these directions are merely stretched

or shrunk (or perhaps reflected). These are called eigenvectors, and various

things related to these preferred directions are labelled by the prefix “eigen-”.

In the best circumstances, one can choose a basis for the domain consisting

entirely of eigenvectors, and the study of the linear function in question is

thereby tremendously simplified.

This kind of analysis of a linear function is of extreme importance in

many applications of linear algebra. For example, changing variables to an

eigenbasis simplifies a system of linear ordinary differential equations to a set

of separate equations that can each be solved by elementary means; the re-

sulting basic solutions are called “normal modes”, and regarding the motion

of a physical system as a linear combination of its normal modes is of great

conceptual as well as calculational value. Eigenvectors of differential oper-

ators in infinite-dimensional vector spaces are important in solving partial
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differential equations; again, the solutions can be constructed as superposi-

tions of normal modes associated with these eigenfunctions. The best-known

eigenfunction expansion is the Fourier series, whose terms are eigenfunctions

of the second-derivative operator.

Accordingly, let D be a vector space and let L be a linear function on

D into D. For us, D will be finite-dimensional. With respect to a basis, L is

represented by a square matrix, A.

Definition: If L(~v) = λ~v (where λ is a scalar) and ~v 6= 0, then

~v is an eigenvector of L and λ is an eigenvalue of L.

Other terms used for “eigenvalue” are proper value and characteristic

value, and similarly for the vectors. (In past generations there were linguistic

purists who objected to combining German and English roots in the same

word, but they lost the argument; today “eigen-” is simply a technical prefix

in the English language.)

Note: The vector ~0 is not an eigenvector, even though L(~0) = 0~0 (or

262~0, for that matter). But the scalar 0 can be an eigenvalue. Indeed,

L(~v) = 0~v precisely when ~v is in the kernel of L; the nonzero elements of the

kernel are thus eigenvectors with eigenvalue 0.

Example 1: A =





2 0 0
0 1 0
0 0 0



 defines an L on R3 (or on any 3-

dimensional space equipped with a basis) for which the first basis element,

~e1 , is an eigenvector with eigenvalue 2; ~e2 is an eigenvector with eigen-

value 1; and ~e3 is one with eigenvalue 0. Similarly, it is trivial to read off

the eigenvalues and eigenvectors of any diagonal matrix.

Example 2: A =

(

0 1
1 0

)

defines an L:R2 → R2 for which

(

1
1

)

is an eigenvector with λ = 1, and

(

1
−1

)

is an eigenvector with λ = −1.

(Check this.)

Example 3: Linear operators on infinite-dimensional spaces also can

have eigenvectors and eigenvalues: sin ωt and cos ωt are eigenvectors of

L = d2

dt2
with λ = −ω2. This special relationship of the trigonometric

functions (and, even more, the exponential functions) to the differentiation

operator is the reason why those functions are so prominent in the solution

of differential equations with constant coefficients. (The space D in this
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example is best taken to be the space C∞(−∞,∞) of all “smooth” functions

— those which can be differentiated arbitrarily many times.)

Why eigenvectors are nice

As long as we can deal only with eigenvectors of L, computations with L

are trivial. (More precisely, they are reduced to one-dimensional problems.)

For instance, if

L(~v) = λ~v,

then

L2(~v) ≡ L(L(~v)) = λ2~v.

(In terms of diagonal matrices,

(

−1 0
0 2

)2

=

(

1 0
0 4

)

,

for example.) Similarly,

L−1(~v) =
1

λ
~v

(if L−1 exists — and hence λ 6= 0). Indeed, any rational function of a real

variable (i.e., a quotient of polynomials) gives rise to a rational function of

a matrix variable and can be evaluated on eigenvectors simply by applying

that function to the eigenvalue. (P
Q

is interpreted as PQ−1, which is the

same as Q−1P in this case.)

We can go even further and define nonrational functions of L by equa-

tions such as √
L(~v) ≡

√
λ~v, eL(~v) ≡ eλ~v.

These define the operators
√

L and eL on eigenvectors. But suppose that we

have a basis for D consisting entirely of eigenvectors:

D = span{~v1, . . . , ~vn}, L(~vj) = λj~vj .

(The possibility that some of the λ’s are equal (say λ1 = λ3) is allowed.)

Then every vector ~x in D has a unique expansion

~x =
n

∑

j=1

xj~vj ,
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so

L(~x) =

n
∑

j=1

(λjxj)~vj , L2(~x) =
∑

j

(λj
2xj)~vj ,

etc. Thus all the rational functions of L can be computed. Furthermore, we

can define the nonrational functions for all ~x ∈ D by equations such as

eL(~x) =
n

∑

j=1

(

eλjxj

)

~vj .

The most important application of this construction is this: etL(~x) is

the solution of the differential equation

d~y

dt
= L(~y)

with the initial condition ~y(0) = ~x. If D = Rn, such a vectorial differential

equation is an abbreviation for a system of ODEs. For example, if L is the

operator represented by the diagonal matrix in Example 1 above, then the

system is

y′

1 = 2y1 , y′

2 = y2 , y′

3 = 0y3 = 0,

and the solution with ~y(0) = ~x is

y1 = e2tx1 , y2 = etx2 , y3 = e0tx3 = x3 ,

in accordance with the general claim.

An infinite-dimensional generalization of this enables one to solve cer-

tain partial differential equations. As previously mentioned, every “nice”

function on the interval 0 < x < π can be written as an infinite linear

combination

f(x) =

∞
∑

j=1

bj sin(jx),

called a Fourier series. We have just noted that the “basis” functions {sin jx}
are eigenvectors of the operator L = d2/dx2. So we can form

u(t, x) ≡
(

etLf
)

(x) ≡
∞
∑

j=1

e−j2tbj sin(jx),

and it is the solution of
∂u

∂t
=

∂2u

∂x2
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(the heat conduction equation) with the boundary conditions

u(0, x) = f(x) and u(t, 0) = 0 = u(t, π).

(We have not stated what the space D is in this example, for good reason;

the technicalities would lead us far afield.)

Unfortunately, the basis we start with in a problem usually is not an

eigenbasis of the operator of interest. However, if we can find an eigenbasis,

then we can use the techniques of change-of-basis from Chapter 4 to translate

everything into coordinates with respect to that basis, where the calculations

become easy.

Theorem: If a basis of eigenvectors {~vj} for L exists, then the matrix

D of L with respect to that basis is diagonal, and the jth diagonal element,

Djj , equals λj . For any function f :R →֒ R such that all the eigenvalues

of L belong to the domain of f , the operator f(L) is defined, the matrix of

f(L) with respect to the eigenbasis is diagonal, and its jth diagonal element

is f(λj).

Theorem If we start with another (“old”) basis and the corresponding

matrix A for L, then D = U−1AU , where U is the matrix whose jth column

contains the coordinates of new basis vector ~vj with respect to the old basis.

Thus we can compute L with respect to the old basis using the formula

A = UDU−1.

Proof: This is a corollary of the theory in Secs. 4.4–5. Let’s contem-

plate it just long enough to verify that we have the matrices going in the

right direction: U as described in the theorem clearly maps the coordinates

of an arbitrary vector ~x with respect to the new basis into its coordinates

with respect to the old basis. (Think of what it does to the coordinates of

the new basis vectors themselves, for example.) Therefore AU gives us the

coordinates of L(~x) with respect to the old basis, and applying U−1 to that

result gives us the coordinates with respect to the new basis. Thus U−1AU

does precisely what D is supposed to do.

How to find the eigenvalues and eigenvectors

(when they exist)

We will work in a particular “old” basis. In other words, we identify

D with Rn and identify L with its matrix A (with respect to the natural

basis).
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We want to solve the equation A~v = λ~v for both ~v and λ simultaneously.

The equation can be rewritten

(A − λ)~v = ~0.

(Here the term λ stands for the scalar λ times the identity matrix.) This

homogeneous linear system has nontrivial solutions if and only if the matrix

A − λ is singular — that is,

det(A − λ) = 0.

This is called the characteristic (or secular) equation for the matrix A (or

the linear function L), and its left-hand side is the characteristic polynomial

of A. It is a polynomial in λ of degree n if A is n × n. Therefore:

Theorem: λ is an eigenvalue of A if and only if it is a root of the

characteristic equation of A.

Example: A =





−1 2 3
0 1 6
0 0 −2



 .

∣

∣

∣

∣

∣

∣

−1 − λ 2 3
0 1 − λ 6
0 0 −2 − λ

∣

∣

∣

∣

∣

∣

= (−1)3(λ + 1)(λ − 1)(λ + 2).

Therefore,* the eigenvalues of A are −1, 1, and −2. (In general, the eigen-

values of a triangular matrix are its diagonal elements.) The order in which

we list and number the eigenvalues is rather arbitrary; let’s say λ1 = −1,

λ2 = 1, λ3 = −2.

Now, for each eigenvalue λj , one should solve (A−λj)~v = ~0 to obtain the

corresponding eigenvectors. There will always be at least a one-dimensional

subspace of them, since A − λj is singular (hence has a nontrivial nullity).

Example: Consider the case of the eigenvalue λ2 = 1 in the previous

example.

0 =





−1 − 1 2 3
0 1 − 1 6
0 0 −2 − 1









v1

v2

v3



 =





−2 2 3
0 0 6
0 0 −3









v1

v2

v3



 .

* It should be noted that in general the characteristic polynomial will not
automatically factor, as it does for a triangular matrix. In this book we restrict
attention to 3 × 3 examples whose characteristic cubic equation is easy to solve,
but nature is not always so cooperative.
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Therefore, v3 = 0, v2 is arbitrary, and v1 = v2. That is, the λ2-eigenvectors

are the multiples of the vector





1
1
0



 (λ2 = 1).

Similarly, one finds that the λ1-eigenvectors are multiples of





1
0
0



 (λ1 = −1),

and the λ3-eigenvectors are multiples of





1
−2
1



 (λ3 = −2).

Finally, we can form the change-of-basis matrix

U =





1 1 1
0 1 −2
0 0 1





and verify that D = U−1AU is diagonal:

D =





−1 0 0
0 1 0
0 0 −2



 =





λ1 0 0
0 λ2 0
0 0 λ3



 .

This is the result that we expected. In fact, since we know in advance

what D is supposed to be, the easier way to check our algebra is to verify

the equation A = UDU−1, rather than D = U−1AU . (Multiplying by a

diagonal matrix is easier than multiplying by a matrix with many nonzero

entries off-diagonal.)

In this example the eigenvalues were distinct. If some number appears

more than once as a root of the characteristic equation, the linear system

for its eigenvectors may have more than one linearly independent solution.

(In the more elementary terminology of Chapter 2, the general solution may

involve more than one parameter.)
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Can it be done?

The remaining question is whether we can always be sure that the fore-

going procedure will “work”: Given L (or A, its matrix), is a basis of eigen-

vectors of L guaranteed to exist? In other words, can every A be diagonalized

by a similarity transformation, A → U−1AU ?

To answer this we need some preliminary theorems:

Theorem: The eigenvectors corresponding to one eigenvalue λ, to-

gether with the zero vector, form a subspace.

Proof: L(~v1) = λ~v1 and L(~v2) = λ~v2 imply L(r~v1 +~v2) = λ(r~v1 +~v2).

Theorem: Eigenvectors corresponding to distinct λs are linearly inde-

pendent. (Thus linear combinations of them will not be eigenvectors.)

For example,





λ 0 0
0 µ 0
0 0 µ



 has a 1-dimensional subspace of λ-eigen-

vectors and a 2-dimensional subspace of µ-eigenvectors. (In the drawing an

arbitrary basis for each subspace is shown.)
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We can choose a basis for each eigensubspace. The question is whether

all the eigenvectors together span the whole space D. Equivalently, do the di-

mensions of all the eigensubspaces add up to n, the dimension of D? (Clearly

the total can’t be more than n, but it might be less.)

Answers to the question:

1. If all n roots of the characteristic equation det(A−λ) = 0 are real and

distinct, YES. Each λj has an eigenvector, and they are independent;

since there are n of them, they form a basis.
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2. If the characteristic equation has nonreal roots, NO — unless one

is working in a complex vector space. Note that a real matrix may

indeed have complex roots to its characteristic polynomial — for ex-

ample,

A =

(

0 −1
1 0

)

has eigenvalues λ1 = i, λ2 = −i.

If we enlarge our space from Rn to Cn, then such a matrix has com-

plex eigenvalues and complex eigenvectors. In this example,

~v1 =

(

i
1

)

, ~v2 =

(

1
i

)

; U =

(

i 1
1 i

)

, D =

(

i 0
0 −i

)

.

3. What about multiple real roots? Recall the Fundamental theorem

of algebra:

Every polynomial in a variable λ can be factored as

const. (λ − λ1)
p1(λ − λ2)

p2 · · · (λ − λr)
pr ,

where
∑r

j=1 pj equals the degree of the polynomial. (Thus

r is less than or equal to the degree.) Here some of the λj

may be complex, even if the original polynomial is real.

To see the implications of this, let’s look at some 2 × 2 cases:

(a)

(

µ 0
0 µ

)

. The characteristic equation is (µ − λ)2 = 0. In this

case the answer is clearly YES; the µ-eigenspace is all of R2.

(b)

(

µ 1
0 µ

)

. The characteristic equation is still (µ− λ)2 = 0. So µ

is the only possible eigenvalue. Let’s find its eigenvectors:
(

µ − µ 1
0 µ − µ

)

=

(

0 1
0 0

)

.

The augmented matrix of the homogeneous system is
(

0 1 | 0
0 0 | 0

)

,

so the general solution of the system is
(

x
y

)

with y = 0 and x

arbitrary. Thus the only eigenvectors are the multiples of
(

1
0

)

.

Therefore, NO eigenbasis exists!
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In general, if (λ − µ)p appears in the characteristic polynomial, you

may have p independent µ-eigenvectors, but you may have fewer than

p. (There will always be at least 1 and at most p.)

Let’s look at some examples in dimension 3:

(a)





µ 0 0
0 ν 0
0 0 ρ





........................................................................................................................................................................................................

ρ

ν

µ

(b)





µ 0 0
0 µ 0
0 0 ν





.....
.....
.....
.....
.....
.....
.....
.....
.....
...........................................................................................................................................................................................................................................................

.....
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

.

.µ

ν

(c)





µ 1 0
0 µ 0
0 0 ν





......................................................
......................................................

......

..........................................................................................................................

ν

µ (no basis)

(d)





µ 1 0
0 µ 0
0 0 µ





.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......................................................................................................................................................................................................................................................................................................
µ

(no basis)

(e)





µ 1 0
0 µ 1
0 0 µ





..........................................................................................................................
µ

(no basis)

(f)





µ 0 0
0 µ 0
0 0 µ



 (Eigenspace is all R3.)

These illustrate all the possibilities. In fact, if complex numbers are

allowed, every 3× 3 matrix can be put into one of these 6 forms by a

similarity transformation; this is the 3-dimensional case of the Jordan

canonical form theorem.

4. If A is (real and) symmetric — like





1 2 4
2 3 5
4 5 0





— then the answer is YES! In such a case all the λjs are real, and

the right number of eigenvectors always exists, even if some of the
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λjs coincide. We’ll look at this very important case in more detail

in the next section. It turns out that the basis of eigenvectors of

a symmetric matrix can always be chosen to be orthonormal. A

square matrix whose columns are an orthonormal basis is called an

orthogonal matrix (see the next section for more details). Therefore,

if a matrix is symmetric (equals its transpose), then it not only can

be diagonalized, but can be diagonalized by an orthogonal matrix.

Conversely, if a matrix is diagonalized by an orthogonal matrix, then

it is symmetric (Exercise 8.2.17).

Examples

Example 1. Find the eigenvectors of A =

(

5 1
1 5

)

.

Solution: The eigenvectors are nonzero solutions ~v of the linear system

(A − λ)~v = ~0, where λ is an eigenvalue. We have

A − λ =

(

5 − λ 1
1 5 − λ

)

,

so the characteristic equation is

0 = det(A − λ) =

∣

∣

∣

∣

5 − λ 1
1 5 − λ

∣

∣

∣

∣

= (5 − λ)
2 − 1.

We could multiply this out and use the quadratic formula, but it is quicker

to notice that (5 − λ)2 = 1 ⇒ 5 − λ = ±1, so that the roots are

λ1 = 4, λ2 = 6.

Case 1: λ1 = 4; let ~v (1) =

(

v
(1)
1

v
(1)
2

)

be the eigenvector. Set up and solve

the appropriate homogeneous system:

( (A − λ1) | ~0 ) =

((

1 1
1 1

) ∣

∣

∣

∣

~0

)

⇒
{

v
(1)
1 + v

(1)
2 = 0,

v
(1)
1 + v

(1)
2 = 0.

Therefore, v
(1)
1 = α, v

(1)
2 = −α, where α is an arbitrary number.

Case 2: λ2 = 6, ~v (2) =

(

v
(2)
1

v
(2)
2

)

;

( (A − λ2) | ~0 ) =

((

−1 1
1 −1

) ∣

∣

∣

∣

~0

)

⇒
{

−v
(2)
1 + v

(2)
2 = 0,

v
(2)
1 − v

(2)
2 = 0,
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so v
(2)
1 = β, v

(2)
2 = β, where β is an arbitrary number.

Summary: The eigenvectors are defined up to arbitrary constant factors

and are of the forms

~v (1) =

(

α
−α

)

, ~v (2) =

(

β
β

)

.

In other words, one eigenspace is the span of the vector
(

1
−1

)

, and the other

is the span of
(

1
1

)

.

Example 2. Find the characteristic polynomial and the eigenvalues

and eigenvectors of the matrix

A =





4 2 1
−1 1 −1
−2 −2 1



 .

Solution: The characteristic polynomial, P (λ) = det(A − λ), is

P (λ) =

∣

∣

∣

∣

∣

∣

4 − λ 2 1
−1 1 − λ −1
−2 −2 1 − λ

∣

∣

∣

∣

∣

∣

= (4 − λ)(1 − λ)
2

+ 4 + 2 + 2(1 − λ) − 2(4 − λ) + 2(1 − λ)

= 4 − λ − 8λ + 2λ2 + 4λ2 − λ3 + 6 + 2 − 2λ − 8 + 2λ + 2 − 2λ

= −λ3 + 6λ2 − 11λ + 6.

To find the eigenvalues one should find the roots of the characteristic equa-

tion, P (λ) = 0. We get (after changing the sign) λ3 − 6λ2 + 11λ − 6 = 0.

Looking among the divisors of 6 for a possible integer root, we find that

λ = 1 works, and hence

P (λ) = (λ − 1)(λ2 − 5λ + 6).

So it is easy to get the roots: λ1 = 1, λ2 = 2, λ3 = 3. These are the

eigenvalues.

Case λ1 = 1: ~v (1) =







v
(1)
1

v
(1)
2

v
(1)
3






, ( (B − λ1) | ~0 ) =









3 2 1
−1 0 −1
−2 −2 0





∣

∣

∣

∣

~0



 −→









1 0 1
0 1 −1
0 0 0





∣

∣

∣

∣

~0



 .
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It follows that v
(1)
2 = v

(1)
3 = α, v

(1)
1 = −α, where α is an arbitrary number.

Case λ2 = 2: ~v (2) =







v
(2)
1

v
(2)
2

v
(2)
3






, ( (B − λ2) | ~0 ) =









2 2 1
−1 −1 −1
−2 −2 −1





∣

∣

∣

∣

~0



 −→









1 1 0
0 0 1
0 0 0





∣

∣

∣

∣

~0



 .

It follows that v
(2)
3 = 0, v

(2)
2 = β, v

(2)
1 = −β, where β is an arbitrary number.

Case λ3 = 3: ~v( 3) =







v
(3)
1

v
(3)
2

v
(3)
3






, ( (B − λ3) | ~0 ) =









1 2 1
−1 −2 −1
−2 −2 −2





∣

∣

∣

∣

~0



 −→









1 0 1
0 1 0
0 0 0





∣

∣

∣

∣

~0



 .

It follows that v
(3)
2 = 0, v

(3)
3 = γ, v

(3)
1 = −γ, where γ is an arbitrary number.

Summary: The simplest basis of eigenvectors is

~v (1) =





−1
1
1



 , ~v (2) =





−1
1
0



 , ~v (3) =





−1
0
1



 .

Example 3. Let M =

(

5 1
2 4

)

.

(a) Find all eigenvalues and eigenvectors of M .

Solution: The characteristic equation is

0 =

∣

∣

∣

∣

5 − λ 1
2 4 − λ

∣

∣

∣

∣

= (5 − λ)(4 − λ) − 2

= λ2 − 9λ + 18 = (λ − 6)(λ − 3).

So the eigenvalues are 6 and 3.

Let us revert to a simpler, if less precise, notation, in which the eigen-

vectors are ~vj =

(

x
y

)

.
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Case λ = 6: Reduce

(

−1 1
2 −2

)

to

(

1 −1
0 0

)

and conclude that x = y.

Thus the eigenvectors are multiples of ~v1 =

(

1
1

)

.

Case λ = 3: Reduce

(

2 1
2 1

)

to

(

1 1
2

0 0

)

and conclude that x = − 1
2y.

Thus the eigenvectors are multiples of ~v2 =

(

−1
2

)

.

(b) Find the general solution of the system

{

dx
dt

= 5x + y,
dy
dt

= 2x + 4y.

Solution: Let ~x(t) =

(

x(t)
y(t)

)

. The system becomes the vectorial

differential equation
d~x

dt
= M~x.

Method 1: The solution is simply

~x(t) = c1~v1e
λ1t + c2~v2e

λ2t = c1

(

1
1

)

e6t + c2

(

−1
2

)

e3t,

where c1 and c2 are arbitrary constants.

Method 2: Start from the diagonalized form of M : D =

(

6 0
0 3

)

.

The matrix U =

(

1 −1
1 2

)

maps coordinates from the eigenbasis to the

natural basis. Then UetDU−1 maps the initial values ~x(0) into ~x(t). For

the problem as stated, we don’t care about initial values, so we don’t really

need to calculate U−1. We can just say (with ~c = U−1~x(0), whatever it is)
(

x(t)
y(t)

)

=

(

1 −1
1 2

)(

e6t 0
0 e3t

)(

c1

c2

)

=

(

e6tc1 − e3tc2

e6tc1 + 2e3tc2

)

.

This is the same as the result of Method 1, written out in components.

Example 4. Raise the matrix A to the 4th power: A =





−2 1 2
−6 1 3
−4 2 4



.

Solution:

Step 1: Find the eigenvalues and eigenvectors of the matrix A. We’ll

leave out some of the details, since the method is the same as for earlier

examples.

0 =

∣

∣

∣

∣

∣

∣

−2 − λ 1 2
−6 1 − λ 3
−4 2 4 − λ

∣

∣

∣

∣

∣

∣

= −λ3 + 3λ2 − 2λ = −λ(λ − 1)(λ − 2);
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λ1 = 0, λ2 = 1, λ3 = 2.

λ1 = 0 : ( A − λ1 | 0 ) =





−2 1 2
−6 1 3
−4 2 4

∣

∣

∣

∣

∣

0



 −→





1 0 − 1
4

0 1 3
2

0 0 0

∣

∣

∣

∣

∣

0



 ;

so a suitable eigenvector (to use as a basis element) is

~v1 =





1
−6
4



 .

(We have multiplied by a constant to get a vector without fractional ele-

ments.)

λ2 = 1: (A − λ2 | 0 ) =





−3 1 2
−6 0 3
−4 2 3

∣

∣

∣

∣

∣

0



 −→





1 1 0
0 1 1

2
0 0 0

∣

∣

∣

∣

∣

0



 ;

~v2 =





−1
1
−2



 .

λ3 = 2: (A − λ3 | 0 ) =





−4 1 2
−6 −1 3
−4 2 2

∣

∣

∣

∣

∣

0



 −→





1 0 − 1
2

0 1 0
0 0 0

∣

∣

∣

∣

∣

0



 ;

~v3 =





1
0
2



 .

Step 2: Find the change-of-basis matrix U from the eigenbasis to the

original basis, and find its inverse. Set up U from the column vectors

~v1, ~v2, ~v3 :

U =





1 −1 1
−6 1 0
4 −2 2



 .

Then

(U | I ) =





1 −1 1
−6 1 0
4 −2 2

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1



 −→





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

−1 0 1
2

−6 1 3
−4 1 5

2



 .

Therefore,

U−1 =





−1 0 1
2

−6 1 3
−4 1 5

2



 .
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Step 3: Construct the matrices D and D4:

D =





λ1 0 0
0 λ2 0
0 0 λ3



 =





0 0 0
0 1 0
0 0 2



 ;

D4 =





λ4
1 0 0
0 λ4

2 0
0 0 λ4

3



 =





0 0 0
0 1 0
0 0 16



 .

Step 4: Calculate A4 = UD4U−1:

A4 =





1 −1 1
−6 1 0
4 −2 2









0 0 0
0 1 0
0 0 16









−1 0 1
2

−6 1 3
−4 1 5

2





=





0 −1 16
0 1 0
0 −2 32









−1 0 1
2

−6 1 3
−4 1 5

2



 =





−58 15 37
−6 1 3
116 30 74



 .

Example 5. Calculate the given functions f(A) of the matrix

A =





−2 8 6
−4 10 6
4 −8 −4



 .

(a) f(A) = etA, where t is a real parameter.

(b) f(A) =
√

A (checking that A ≥ 0 so that this is defined).

(c) f an arbitrary function.

Solution: Start by finding the eigenvalues and eigenvectors of the

matrix A. Then, as in the previous example, build the matrix U , find U−1,

and use the formula f(A) = Uf(D)U−1, where

D = U−1AU =





λ1 0 0
0 λ2 0
0 0 λ3



 .

We have

0 = det(A − λ) =

∣

∣

∣

∣

∣

∣

−2 − λ 8 6
−4 10 − λ 6
4 −8 −4 − λ

∣

∣

∣

∣

∣

∣

= (2 − λ)

∣

∣

∣

∣

∣

∣

−2 − λ 2 6
−4 4 − λ 6
0 0 1

∣

∣

∣

∣

∣

∣

= (2 − λ)(λ2 − 2λ − 8 + 8)

= (2 − λ)(λ2 − 2λ) = −λ(λ − 2)2.
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So λ1 = 0, λ2 = λ3 = 2.

For λ1 = 0 we find, in the usual way, that the eigenvectors are precisely

the scalar multiples of

~v1 =





x
y
z



 =





1
1
−1



 .

The calculation for the eigenvalue λ2 = 2 is more unusual, since there

are two linearly independent eigenvectors:

( A − λ2 | 0 ) =





−4 8 6
−4 8 6
4 −8 −6

∣

∣

∣

∣

∣

0



 −→





2 −4 −3
0 0 0
0 0 0

∣

∣

∣

∣

∣

0



 .

Two of the coordinates are arbitrary parameters. To construct a basis,

we find one solution with z = 0 and y nonzero, and one with the reverse

conditions:

~v2 =





2
1
0



 , ~v3 =





3
0
2



 .

From the eigenvectors we find

U =





1 2 3
1 1 0
−1 0 2



 , U−1 =





2 −4 −3
−2 5 3
1 −2 −1



 ,

and

D =





0 0 0
0 2 0
0 0 2



 .

Now to cases:

(a) f(D) = etD =





etλ1 0 0
0 etλ2 0
0 0 etλ3



 =





1 0 0
0 e2t 0
0 0 e2t



 ;

etA = f(A) = Uf(D)U−1

=





1 2 3
1 1 0
−1 0 2









1 0 0
0 e2t 0
0 0 e2t









2 −4 −3
−2 5 3
1 −2 −1





=





1 2e2t 3e2t

1 e2t 0
−1 0 2e2t









2 −4 −3
−2 5 3
1 −2 −1





=





2 − e2t −4 + 4e2t −3 + 3e2t

2 − 2e2t −4 + 5e2t −3 + 3e2t

−2 + 2e2t 4 − 4e2t 3 − 2e2t



 .
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(b) Since the eigenvalues are nonnegative,
√

D is defined. Thus

f(D) =
√

D =





0 0 0
0

√
2 0

0 0
√

2



 ;

√
A = f(A) = Uf(D)U−1

=





1 2 3
1 1 0
−1 0 2









0 0 0
0

√
2 0

0 0
√

2









2 −4 −3
−2 5 3
1 −2 −1





=





0 2
√

2 3
√

2
0

√
2 0

0 0 2
√

2









2 −4 −3
−2 5 3
1 −2 −1





=





−2
√

2 4
√

2 3
√

2
−2

√
2 5

√
2 3

√
2

2
√

2 −4
√

2 −2
√

2



 .

(c) f(A) = Uf(D)U−1 = U





f(λ1) 0 0
0 f(λ2) 0
0 0 f(λ3)



 U−1

=





1 2 3
1 1 0
−1 0 2









f(0) 0 0
0 f(2) 0
0 0 f(2)









2 −4 −3
−2 5 3
1 −2 −1





=





f(0) 2f(2) 3f(2)
f(0) f(2) 0
−f(0) 0 2f(2)









2 −4 −3
−2 5 3
1 −2 −1





=





2f(0) − f(2) −4f(0) + 4f(2) −3f(0) + 3f(2)
2f(0) − 2f(2) −4f(0) + 5f(2) −3f(0) + 3f(2)
−2f(0) + 2f(2) 4f(0) − 4f(2) 3f(0) − 2f(2)



 .

Example 6. Solve the linear homogeneous system of ordinary differ-

ential equations (ODEs)

dx

dt
= 2x − 2y,

dy

dt
= x − z,

dz

dt
= −y + 2z.

Solution: Construct the matrix A of coefficients of the system and

find its eigenvalues:

A =





2 −2 0
1 0 −1
0 −1 2



 ;
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det(A − λ) =

∣

∣

∣

∣

∣

∣

2 − λ −2 0
1 −λ −1
0 −1 2 − λ

∣

∣

∣

∣

∣

∣

= (−λ)(2 − λ)2 − (2 − λ) + 2(2 − λ)

= −λ(λ2 − 4λ + 4) + 2 − λ = −λ3 + 4λ2 − 5λ + 2.

Solve the equation det(A − λ) = 0:

λ3 − 4λ2 + 5λ − 2 = (λ − 2)(λ − 1)2 = 0.

It follows from this that λ1 = 2 and λ2 = 1, and the eigenspace for λ2 may

or may not have dimension 2.

For the root λ1 = 2, reduce in the usual way




0 −2 0
1 −2 −1
0 −1 0



 to





1 0 1
0 1 0
0 0 0



 .

Thus the root λ1 = 2 is simple (nondegenerate), as expected, and the eigen-

vectors have y = 0, y = z. The corresponding solutions of the ODE system

are

x(t) = C1e
2t, y(t) = 0, z(t) = C1e

2t,

where C1 is an arbitrary constant. In vectorial notation, we have a basis

solution

~r1(t) =





1
0
1



 e2t.

For the multiple (degenerate) root λ2 = 1, reduce





1 −2 0
1 −1 −1
0 −1 1



 to





1 0 −2
0 1 −1
0 0 0



 .

Thus the only eigenvectors are those with x = 2z, y = z, and the corre-

sponding solutions are

x(t) = 2C2e
t, y(t) = C2e

t, z(t) = C2e
t,

where C2 is an arbitrary constant. In vector form the second basis element

is

~r2(t) =





2
1
1



 et.
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We now have a problem, since to accommodate all initial conditions we

need a third type of solution, but there is not a third independent eigenvec-

tor. One way of finding the third solution is to use the theory of the Jordan

canonical form, but that has been ruled out of the scope of this book. So we

will just use a well known trick for this sort of problem (which is actually a

Jordan calculation in disguise): Hunt for solutions of the form





α
β
γ



 et + t ~r2(t).

That is, substitute

x(t) = αet + 2tet, y(t) = βet + tet, z(t) = γet + tet

into the differential equations, getting (after division by the common fac-

tor et)

α + 2(1 + t) = 2α + 4t − 2β − 2t,

β + (1 + t) = α + 2t − γ − t,

γ + (1 + t) = −β − t + 2γ + 2t.

The terms involving t completely cancel (because ~r2 is an eigensolution),

leaving a nonhomogeneous system for (α, β, γ) with augmented matrix





1 −2 0 2
1 −1 −1 1
0 −1 −1 1



 −→





1 0 0 0
0 1 0 −1
0 0 1 0



 ,

whose solution is β = −1, α = γ = 0. Therefore, the third basis solution is

~r3(t) =





0
−1
0



 et + t ~r2(t).

In component form, the third type of solution is

x(t) = 2C3te
t, y(t) = C3(t − 1)et, z(t) = C3te

t.

The general solution is a sum of the three kinds of solutions we have

found, with arbitrary constants Cj ; in other words, an arbitrary linear com-

bination of the three basis solutions ~rj(t) .
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Exercises

8.1.1 Let A =

(

3 −2
2 −2

)

.

(a) Find all the eigenvalues and eigenvectors of A.

(b) Find the coordinate transformation, U , that converts A to a di-

agonal matrix, D (which you should also exhibit). Be precise

about how the three matrices A, D, and U are related!

8.1.2
(a) Find all eigenvalues and eigenvectors of C =





5 2 −1
0 1 2
0 2 4



.

(b) What is the rank of C? What is the relevance of this question

to the answer to (a)?

8.1.3 Find all eigenvalues and eigenvectors of M =





9 0 0
0 9 5
0 0 4



, and use

the result to define and calculate the matrix called
√

M .

8.1.4 Find all eigenvalues and eigenvectors of A =





−2 2 2
2 −2 2
2 2 −2



.

8.1.5 The matrix M =

(

3 −2
2 −2

)

has eigenvalues λ1 = 2 and λ2 = −1,

with eigenvectors ~b1 =

(

2
1

)

and ~b2 =

(

1
2

)

, respectively.

(a) Find the coordinate transformation, U , that converts M to a

diagonal matrix, D.

(b) Find the matrix etM (for an arbitrary real number t) and use it

to solve the differential equation

d~x

dt
= M~x with initial data ~x(0) =

(

1
0

)

.

8.1.6
(a) Find all the eigenvectors of M ≡

(

1 2
0 3

)

.

(b) Find a matrix U that diagonalizes M .

(c) Use the foregoing to define a matrix that deserves to be called√
M + 5.
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8.1.7 Find a basis for R3 of eigenvectors of A =





3 1 1
1 3 1
0 0 3



.

8.1.8 Let B =





1 2 3
4 5 6
7 8 9



.

(a) Find the eigenvalues of M .

(b) Without solving for the eigenvectors, explain why you can be

confident that R3 has a basis consisting of eigenvectors of B.

8.1.9 Let M =

(

2 2
8 2

)

.

(a) Find all the eigenvalues of M and the corresponding eigenvectors.

(b) Solve the differential equation

d~x

dt
= M~x, ~x(0) =

(

1
−1

)

.

8.1.10 Let A =





−1 1 3
1 2 0
3 0 2



.

(a) Show that the eigenvalues of A are 4, 2, and −3.

(b) Find all the eigenvectors of A.

(c) Show how to diagonalize A. (Find the matrices D, U , and U−1,

in the notation of this section.)

8.1.11 The matrix M =

(

3 −2
2 −2

)

has eigenvalues λ1 = 2 and λ2 = −1,

with eigenvectors ~b1 =

(

2
1

)

and ~b2 =

(

1
2

)

, respectively.

(a) Find the coordinate transformation, U , that converts M to a

diagonal matrix, D.

(b) Use (a) to calculate the matrix M8 efficiently.

8.1.12 Let A be an n×n matrix whose eigenvalues are distinct and nonzero.

Prove that A has exactly 2n different diagonalizable square roots (that

is, matrices B such that B2 = A; complex entries are allowed). Do

this by considering the action of B2 on the elements of an eigenbasis
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in Cn for B. (You may ignore the possibility of existence of nondiag-

onalizable square roots.)

8.1.13 Assume that A is a diagonalizable matrix (independent of t) and that

all its eigenvalues are positive. Show that the solution of the second-

order homogeneous linear differential equation

d2~x

dt2
= −A~x ; ~x(0) = ~x0 , ~x ′(0) ≡ d~x

dt

∣

∣

∣

t=0
= ~v0 ,

can be written in terms of trigonometric functions of the matrix t
√

A,

acting on the vectors ~x0 and ~v0 .

8.1.14 What are the eigenvalues and eigenvectors of the operator L = d/dt

acting in the vector space (with complex scalars)

V = span{cos t, sin t} ?

In the remaining exercises, find the eigenvalues and eigenvectors

of the matrix. Remark upon any case where an eigenbasis of real

eigenvectors does not exist.

8.1.15





0 1 0
−4 4 0
−2 1 2





8.1.16





2 6 −15
1 1 −5
1 2 −6





8.1.17





9 −6 −2
18 −12 −3
18 −9 −6





8.1.18





0 −4 0
1 −4 0
1 −2 −2





8.1.19





4 −5 2
5 −7 3
6 −9 4





8.1.20





1 −3 3
−2 −6 13
−1 −4 8




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8.1.21





1 −3 4
4 −7 8
6 −7 7





8.1.22





7 −12 −2
3 −4 0
−2 0 −2





8.1.23





0 3 3
−1 8 6
2 −14 −10





8.1.24





α 0 0
0 α 0
α 0 α



 (α 6= 0)

8.2 Diagonalization of Real, Symmetric Matrices

A (real) symmetric matrix always has an eigenbasis; moreover, its eigen-

vectors are orthogonal. This important theorem is the subject of this section.

We’ll build up to it with several little theorems.

Theorem 1: If A is a real p × n matrix, then

(A~x) · ~y = ~x · (At~y)

for all ~x in Rn and all ~y in Rp. (At ≡ transpose of A.)

Proof: Both sides of the equation equal

p
∑

j=1

n
∑

k=1

yjAjkxk .

Remark: The “complexification” of this theorem is: If A is any p × n

matrix, then (A~x) · ~y = ~x · (A*~y) for all ~x in Cn and all ~y in Cp, where A*

is the adjoint matrix (complex conjugate of the transpose): (A*)jk ≡ Akj .

Definition and Theorem 2: A real, square matrix U is orthogonal if

any of the following equivalent conditions holds. (Any one of the conditions

implies all the others.)

(a) U−1 = U t.

(b) The columns of U are orthonormal (hence form an orthonormal basis

for Rn).

(c) The rows of U are orthonormal.
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(d) (U~x) · (U~y) = ~x · ~y for all ~x and ~y in Rn.

(e) The linear function from Rn onto Rn represented by U maps the

natural basis onto another orthonormal basis. (Geometrically, such

a transformation of Rn is a rotation if det U = 1, and a rotation

composed with a reflection if det U = −1. It turns out that these are

the only possible values of det U .)

Proof: See Exercise 8.2.14.

Theorem 3: All eigenvalues of a real, symmetric matrix are real, and

its eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof: Suppose A~x = λ~x and A~y = µ~y, where the coordinates of

~x and ~y may be complex, for the moment. Then, using the complex dot

product ~x · ~y ≡
∑

j xjyj , we have (A~x) · ~y = λ(~x · ~y) and ~x · (A~y) = µ(~x · ~y).

But, by Theorem 1 and the assumed symmetry of A, we have ~x · (A~y) =

(At~x) · ~y = (A~x) · ~y. Therefore,

(λ − µ)(~x · ~y) = 0. (∗)

If ~x = ~y 6= ~0 (hence λ = µ), (∗) says that µ − µ = 0. That is, µ is real.

When we return to the general case, (∗) now becomes

(λ − µ)(~x · ~y) = 0.

So if λ 6= µ, necessarily ~x · ~y = 0, as claimed.

Now we are ready to consider the problem of finding all the eigenvalues

and eigenvectors of an n × n real, symmetric matrix, A. The characteristic

equation for this problem can (in principle) be factored into

0 = (−1)n (λ − λ1)
p1(λ − λ2)

p2 · · · (λ − λr)
pr ,

where
∑r

j=1 pj = n. We know that every root of this equation corresponds

to at least one eigenvector, and every real root corresponds to at least one

real eigenvector, which may be chosen to have unit length (normalized).

Putting these two facts together with the first half of Theorem 3, we see

that all the roots are real and are eigenvalues of A as a linear operator on

Rn (not just as an operator on Cn). Furthermore, if the roots are distinct

(each pj = 1), we know from Sec. 8.1 and Theorem 3 that the normalized

eigenvectors form an orthonormal basis for Rn.
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Even if some of the pj are greater than 1, it can be shown (see be-

low) that the dimension of the subspace of Rn consisting of eigenvectors

with eigenvalue λj actually does have dimension pj (rather than something

smaller). Thus A does possess an eigenvector basis. The basis within each

eigensubspace can be chosen to be orthonormal (by the Gram–Schmidt pro-

cess), and the eigenvectors corresponding to different λj ’s are automatically

orthogonal by Theorem 3. So:

Theorem 4: If A is an n × n real symmetric matrix, there is an or-

thonormal basis for Rn consisting of eigenvectors of A. In other words, A

can be diagonalized by an orthogonal matrix U :

A = UDU−1, D diagonal and real.

(The columns of U are the elements of the orthonormal eigenvector basis.)

Proof: All that is left to prove is the claim that a full set of eigenvec-

tors exists even when some of the eigenvalues are multiple. Let W be the

subspace of Rn spanned by the eigenvectors of A. Assume (in order to get

a contradiction) that W is not all of Rn. Let U ≡ W⊥ be the subspace of

vectors orthogonal to W. By the projection theorem (Sec. 6.2), W and U
together span the whole space Rn. Since A = At, Theorem 1 shows that

(A~x) · ~y = ~x · (A~y) = 0

for all ~x ∈ U and ~y ∈ W (hence A~y ∈ W). This shows that A maps U
into itself. We know that every linear operator from a nontrivial finite-

dimensional space into itself has at least one eigenvector, so A must have an

eigenvector in U . This is a contradiction, since W was supposed to contain

all the eigenvectors, and a nonzero vector in W can’t also be in W⊥. The

only possible explanation is that U = {~0}; that is, W = Rn, as we wanted

to prove.

Remarks and Warnings: Let’s get clear when and how the eigenvec-

tors are orthogonal:

1. If A is symmetric, the eigenvectors corresponding to different eigen-

values are automatically orthogonal.

2. Any basis may be used for the subspace of eigenvectors corresponding

to one particular eigenvalue. This basis may be chosen to be orthog-

onal. If you construct a basis by parametrizing in the usual way
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the solutions of the row-reduced version of the eigenvector equations,

the result will not automatically be orthogonal; in general, you must

perform a Gram–Schmidt calculation to replace it by an orthogonal

basis.

3. If A is not symmetric, the eigenvectors corresponding to different

eigenvalues are usually not orthogonal. Applying Gram–Schmidt to

vectors belonging to different eigenvalues is a mistake; the resulting

vectors will no longer be eigenvectors!

As a corollary to Theorem 4 we see:

Theorem 5: If A is a real symmetric matrix and L:Rn → Rn is a

linear operator represented by A, then:

(1) Every vector in the kernel of L is orthogonal to every vector in the

range of L.

(2) Every vector in Rn can be written (uniquely) as the sum of a vector

in the kernel and a vector in the range. That is, Rn = ker L ⊕ ran L.

(The restriction to Rn is not essential. The theorem holds for any vector

space with an inner product, as long as the linear operator in question is

represented with respect to an ON basis by a real symmetric matrix.)

Proof: The kernel is the span of the eigenvectors (if any) with eigen-

value 0. The range is the span of the eigenvectors with nonzero eigenvalues

— i.e., the vectors represented by the nonzero columns of the diagonalized

matrix, which looks something like this:

D = U−1AU =













kernel | range

kernel
0 0
0 0

∣

∣

∣

∣

0 0 0
0 0 0

——— —— ———

range
0 0
0 0
0 0

∣

∣

∣

∣

∣

5 0 0
0 5 0
0 0 2













These two subspaces are orthogonal (claim 1), and they span the whole space

(claim 2). The uniqueness statement in claim 2 is true because the two types

of eigenvectors are independent.

Remark: Theorem 5 tells us that (for real, symmetric A) the set of

vectors ~y in Rn for which A~x = ~y is solvable is precisely those vectors which

are orthogonal to the solutions ~z of the homogeneous system A~z = ~0. This

makes our previous discussion (in Sec. 5.4) of the solvability of homogeneous
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and nonhomogeneous systems simpler and more explicit. The corresponding

theorem for a real, possibly nonsymmetric or even nonsquare, A is:

A~x = ~y is solvable if and only if ~y · ~z = 0 for all solutions of At~z = ~0. (†)

(For complex A, replace the transpose by the adjoint.) This theorem is

actually fairly easy to prove without any reference to eigenvalues or diago-

nalization (see Theorem 18.3 of R. M. Bowen and C.-C. Wang, Introduction

to Vectors and Tensors, Vol. 1 (Plenum, 1976).) The theorem is the finite-

dimensional version of a general principle called the Fredholm alternative.

Quadratic forms

Symmetric matrices play another role in mathematics besides represent-

ing certain linear functions. They appear as the coefficients in the second-

order terms of Taylor series for functions of several variables. Their diag-

onalization leads directly to the extension of the second-derivative test for

maxima and minima to such functions.

Definition: A quadratic form is a function of n variables of the type

Q =

n
∑

j=1

n
∑

k=1

Ajkxjxk .

If we regard the xs as elements of a column vector in Rn, this can be

written as

Q(~x) = ~x tA~x or Q(~x) = ~x · (A~x).

Without loss of generality we may assume that the matrix A is symmetric,

since the function Q is unchanged if we replace Ajk by 1
2 (Ajk + Akj).

Example: Q(~x) = 2x 2
1 − x 2

2 + 2x1x2 has the matrix A =

(

2 1
1 −1

)

.

Note that each off-diagonal element of A equals half the coefficient of the

corresponding “cross term” in Q.

Consider the linear change of variables in Rn described by the equation

~x = U~y. One has Q = (U~y)tAU~y = ~yt U tAU~y. That is, the matrix repre-

senting a quadratic form transforms under change of basis to U tAU , not to

U−1AU as the matrix representing a linear function does.

However, if U is orthogonal, then U−1 = U t, so there’s no difference

after all in that case. Hence our knowledge of diagonalization of symmetric

matrices can be applied, yielding —
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Theorem Q: Given a quadratic form Q(~x) = ~x tA~x, one can introduce

new coordinates, ~y ≡ U−1~x, with respect to which it takes the diagonal form

Q = Q̃(~y) ≡ Q(U~y) =

n
∑

j=1

λjy
2
j .

The λj are the eigenvalues of A.

Example 1. Let Q(x, y) = x2 + xy + y2 and consider the linear change

of variables

x = u − v, y = u + v.

We obtain the new quadratic form (or, rather, the same function Q, written

in terms of new variables)

Q̃(u, v) = (u − v)2 + (u − v)(u + v) + (u + v)2 = 3u2 + v2.

If we do the inverse transformation

u =
x + y

2
, v =

y − x

2

on Q̃, we get back the original quadratic form:

3

(

x + y

2

)2

+

(

y − x

2

)2

= x2 + xy + y2.

Example 2. Consider the quadratic form

2x1
2 + 5x2

2 + 7x3
2 − 6x1x2 + 2x1x3 − 8x2x3 .

In the usual way, one finds that

U =





1 1 2
1 2 2
1 1 1



 diagonalizes A =





2 −3 1
−3 5 −4
1 −4 7



 .

Therefore, the diagonalizing transformation of variables, ~x = U~y, is

x1 = y1 + y2 + 2y3 ,

x2 = y1 + 2y2 + 2y3 ,

x3 = y1 + y2 + y3 .
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The matrix of the quadratic form with respect to the new coordinates is

Ã = U tAU =





1 1 1
1 2 1
2 2 1









2 −3 1
−3 5 −4
1 −4 7









1 1 2
1 2 2
1 1 1





=





0 −2 4
−3 3 0
−1 0 1









1 1 2
1 2 2
1 1 1



 =





2 0 0
0 3 0
0 0 −1



 .

The new quadratic form itself is

2y1
2 + 3y2

2 − y3
2 .

Corollary to Theorem Q: Q(~x) is positive for all nonzero ~x if and

only if all the λj are positive. (Likewise with “positive” replaced in both

places by “negative”, “nonnegative”, or “nonpositive”.)

The most important feature of a quadratic form is the signs of its eigen-

values. The numbers of positive, negative, and zero eigenvalues of the matrix

representing Q can be shown to be invariant even under nonorthogonal co-

ordinate changes.* In dimension 2, these numbers determine whether the

curve with equation

Q(~x) = ~v · ~x − F

is an ellipse, hyperbola, or parabola. Indeed, you have probably already

been taught how to diagonalize 2 × 2 quadratic forms under the heading of

“conic sections”. Given an equation

Ax2 + Bxy + Cy2 = −Dx − Ey − F, (‡)

one can tell which kind of conic section it represents by knowing that the

quantities

d ≡ −1

4
(B2 − 4AC) and t ≡ A + C

* Note that the magnitudes |λj | are certainly not invariant, since the nonorthog-

onal coordinate transformation zj ≡
√

|λj | yj (for every j such that λj 6= 0)
converts each eigenvalue to either 1, −1, or 0. Thus every quadratic form can be
reduced to a standard diagonal form whose nonvanishing coefficients have absolute
value 1.
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are “invariant under rotations of axes” — that is, under coordinate trans-

formations
(

x
y

)

= U

(

x′

y′

)

, U orthogonal.

There is some coordinate system in which the equation has no cross term:

A′(x′)2 + C ′(y′)2 = −D′x′ − E′y′ − F.

(This is guaranteed by Theorem Q.) One can find A′ and C ′ by solving the

equations

d = A′C ′, t = A′ + C ′.

The signs of A′ and C ′ determine the type of curve; those signs in turn can

be found from the signs of d and t:

• d > 0 ⇒ A′ and C ′ have the same sign ⇒ ellipse. (In this case

the sign of t determines the overall sign of Q. This is important in

testing for a maximum or minimum of a function of two variables.)

• d < 0 ⇒ A′ and C ′ have opposite signs ⇒ hyperbola.

• d = 0, t 6= 0 ⇒ either A′ or C ′ = 0 ⇒ parabola.

• d = 0, t = 0 ⇒ A′ = 0 = C ′ ⇒ straight line.

(Here we are not distinguishing the “degenerate cases”, such as the hyper-

bola’s collapsing to two intersecting lines, which occur for certain values of

the coefficients of the linear and constant terms (~v ≡ (D,E) and F ).)

Why does this analysis work? Obviously, A′ and C ′ are the eigenvalues

of the matrix of the quadratic form Q ≡ Ax2 + Bxy + Cy2, but what are d

and t? The answer lies in some general theorems:

Definition: The trace of a square matrix is the sum of its diagonal

elements:

tr A =

n
∑

j=1

Ajj .

Theorem T: tr AB = tr BA for any matrices A and B (square and of

the same size).

Proof: tr AB =
∑

j

∑

k AjkBkj =
∑

k

∑

j BkjAjk = tr BA.

Theorem D: The determinant and trace of a matrix are invariant

under similarity transformations:

det A = det (UAU−1), tr A = tr (UAU−1).
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(U is any invertible matrix of the same size as A — not necessarily orthog-

onal.)

Proof:

det (UAU−1) = (det U)(det A)(det U−1)

= (det U)(det A)(det U)−1 = det A.

By Theorem T, tr (UAU−1) = tr (U−1UA) = tr A.

Corollary: If A is diagonalizable, then det A equals the product of the

eigenvalues, and tr A equals the sum of the eigenvalues.

The matrix of the quadratic form on the left side of equation (‡) is

(

A B/2
B/2 C

)

,

which has d as determinant and t as trace. So it’s clear from Theorem D

and its corollary why d and t are fundamental numbers describing the shape

of the conic section, which are invariant under rotations of axes (orthogonal

changes of coordinates). Another way of seeing the special significance of d

and t is to write out the characteristic polynomial for our matrix:

∣

∣

∣

∣

A − λ B/2
B/2 C − λ

∣

∣

∣

∣

= λ2 − (A + C)λ + AC − 1

4
B2 = λ2 − tλ + d.

The rightmost member of this equation is a correct formula for the char-

acteristic polynomial of any 2 × 2 matrix in terms of its determinant and

trace.

This last observation gives a clue for analyzing quadratic forms in n

variables. The coefficients of the characteristic polynomial of a matrix are

invariant under similarity transformations (Exercise 8.2.15). They are called

“the invariants” of the matrix or quadratic form. For an n× n matrix there

are n such coefficients (not counting the coefficient of λn, which is always

(−1)n). For example, for a 3 × 3 matrix one finds

det (A − λ) = −λ3 + (tr A)λ2 − cλ + det A,

where

c ≡
∣

∣

∣

∣

A22 A23

A32 A33

∣

∣

∣

∣

+

∣

∣

∣

∣

A11 A13

A31 A33

∣

∣

∣

∣

+

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣
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is the sum of the cofactors of the diagonal elements of A. The coefficients

in this polynomial must be equal to the corresponding quantities for the

diagonalized matrix D = U−1AU :

t = tr A = λ1 + λ2 + λ3 ,

d = det A = λ1λ2λ3 ,

c = λ2λ3 + λ3λ1 + λ1λ2 .

In principle one could solve these equations for the eigenvalues, given t, d,

and c; but this is not a practical way of solving the eigenvalue problem. In

fact, even determining the signs of the eigenvalues from a knowledge of the

invariants is much harder here than in dimension 2.

The most important question is whether all the eigenvalues have the

same sign. Fortunately, there is a theorem which enables us to answer that

question by straightforward calculation.

Theorem P: If A is a real, symmetric matrix, all its eigenvalues are

positive if and only if all the upper left-hand corner minor determinants

A11,

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣

∣

∣

∣

∣

∣

, . . . ,

are positive. All the eigenvalues are negative if and only if these minors

alternate in sign, starting with “−”.

The proof, a massive exercise in completing the square, is omitted; see,

for instance, J. Heading, Matrix Theory for Physicists (Wiley, 1958), Sec.

2.6. (The proof of the second-derivative test for two variables in Sec. 12.7

of J. Stewart, Calculus, 3rd ed. (Brooks–Cole, 1995) is essentially a special

case of this proof of Theorem P.) The negative case follows from the positive

case immediately by changing the sign of the matrix. (Note, incidentally,

that the theorem is obviously true if the matrix is already diagonal; this may

help one to remember the theorem. Since the minors are not invariant under

similarity transformations, the validity of the theorem in the general case is

far from obvious.)

Application of the application: The “second-derivative test”

for functions of many variables. Suppose that all first-order partial

derivatives of w = f(x1, . . . , xn) ≡ f(~x) vanish at some point ~x0 . Then

that point is a candidate for the location of a maximum or minimum. For
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notational ease assume ~x0 = ~0 and f(~x0) = 0. A smooth function of several

variables can be expanded near a point in a Taylor series in all the variables

simultaneously.† The Taylor series of f about ~x0 is

w =
1

2

n
∑

j,k=1

∂2f(~x0)

∂xj∂xk

xjxk + higher-order terms.

The leading term is a quadratic form, Q(~x), whose matrix A is built out of

the second derivatives of f at ~x0 . (Q or A is called the Hessian of f . Notice,

incidentally, that its trace is the Laplacian of f .) Its eigenvalues determine

the behavior of w near ~x0 :

λ signs behavior

all positive minimum

all negative maximum

mixed saddle point

some zero, others all one sign more information needed

The signs can be determined in principle by solving the eigenvalue problem.

Or, with luck, they can be deduced from the invariants, as we have seen for

dimension 2, or from Theorem P.

Warning: What is important is the signs of the eigenvalues, not of the

individual partial derivatives in the matrix

Ajk ≡ ∂2f(~x0)

∂xj∂xk

.

For example, by looking at the determinants we see that

A =

(

1 40
40 2

)

has a negative eigenvalue (so it doesn’t mark a minimum), while

A =

(

100 −1
−1 40

)

† Unfortunately, most calculus textbooks don’t teach this fact, except possibly
for the case of only two variables. But see L. H. Loomis and S. Sternberg, Ad-

vanced Calculus (Addison–Wesley, 1968), Secs. 3.16–17; G. B. Folland, Remain-
der estimates in Taylor’s theorem, Amer. Math. Monthly 97, 233–235 (1990);
J. A. Facenda Aguirre, A note on Taylor’s theorem, Amer. Math. Monthly 96,
244–247 (1990).
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has only positive eigenvalues (so it would indicate a minimum). On the other

hand, by the corollary to Theorem Q, if one of the diagonal elements of A

is negative, then the eigenvalues can’t be all positive, because Ajj = Q(êj).

Example. Investigate the function

u(x, y, z) = x3 + y3 + z2 − 3xy

for extrema.

Solution: Examine the gradient to find the critical points:

∂u

∂x
= 3x2 − 3y = 0 ⇐⇒ y = x2.

∂u

∂y
= 3y2 − 3x = 0 ⇐⇒ x = y2.

∂u

∂z
= 2z = 0 ⇐⇒ z = 0.

There are two such points: (1, 1, 0) and (−1,−1, 0).

The Hessian matrix is





6x −3 0
−3 6y 0
0 0 2



 .

At (1, 1, 0) this is




6 −3 0
−3 6 0
0 0 2



 .

Because

∣

∣

∣

∣

6 −3
−3 6

∣

∣

∣

∣

= 27 > 0, all the signs in Theorem P are positive and

this point marks a minimum. At (−1,−1, 0) we have





−6 −3 0
−3 −6 0
0 0 2



 .

Without even calculating the 2 × 2 minor, we can see that this is a saddle

point, because the first minor, A11 , is negative, but the third eigenvalue is

obviously positive.
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In hindsight, the fact that there is no local maximum is obvious from

the behavior of u in the z variable.

These conclusions can be checked by calculating the eigenvalues. This is

effectively a 2×2 problem, since the third eigenvalue, 2, is already known. For

the case (1, 1, 0), the matrix

(

6 −3
−3 6

)

has determinant 27 and trace 12,

both positive, so the two nontrivial eigenvalues are positive. For (−1,−1, 0),

the matrix

(

−6 −3
−3 −6

)

has determinant −45, negative, so the two eigenval-

ues are of opposite sign.

Exercises

8.2.1 The only eigenvalues of the matrix B =





−2 1 1
1 −2 1
1 1 −2



 are λ1 = 0

and λ2 = −3. Construct an orthonormal basis for R3 consisting of

eigenvectors of B.

8.2.2 Let A =





3 2 2
2 3 2
2 2 3



. Find an orthonormal basis for R3 consisting

of eigenvectors of A.

8.2.3 Consider the matrix N =





3 0 −1
0 2 0
−1 0 3



.

(a) Does there exist an orthonormal basis consisting of eigenvectors

of N? Explain.

(b) Suppose that a function f satisfies ∇f(~x0) = 0 and the matrix

of second-order partial derivatives of f at ~x0 equals N . Does ~x0

mark a maximum of f , a minimum, or neither? Explain.

8.2.4 Find the eigenvalues and eigenvectors of M =





1 b b
b 1 b
b b 1



, where b

is a parameter in R.

8.2.5 Find an orthonormal basis for R3 consisting of eigenvectors of




2 1 1
1 2 1
1 1 2



 .
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8.2.6 The real-valued function y = g(x1, x2) has a critical point (i.e., both

first-order partial derivatives are zero) at x1 = 0, x2 = −5. Let

M be the matrix of its second derivatives, evaluated at that point

(Mjk = ∂2y/∂xj ∂xk). Is the point the location of a maximum of g,

a minimum, or a saddle point? Explain.

(a) M =

(

3 4
4 5

)

(b) M =

(

5 −4
−4 5

)

8.2.7 Suppose that at a point ~x0 in R2, both first-order partial derivatives

of a function f(~x) are zero, and the matrix of second-order partial

derivatives is one of those given below. In each case, tell whether ~x0

is the location of a maximum, a minimum, or a saddle point.

(a)

(

4 −1
−1 4

)

(b)

(

8 −10
−10 8

)

8.2.8 Roger Rapidrudder measured the gradient vector of the air temper-

ature to be exactly zero, and the matrix of second derivatives of the

temperature to be





∂2T
∂x2

∂2T
∂x ∂y

· · ·
· · ·
· · ·



 =





3 2 2
2 3 2
2 2 3



 .

At that moment, was Roger at a maximum of temperature, a mini-

mum, a saddle point, or none of these? Explain.

8.2.9 The real-valued function y = g(x1, x2) has vanishing gradient at the

point x1 = 0, x2 = −5. At that point the matrix of second derivatives

of g is

M ≡
{

∂2y

∂xj ∂xk

}

=

(

1 5
5 2

)

.

Is that point the location of a maximum of g, a minimum, or a saddle

point? Explain.
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8.2.10 Suppose that at a point ~x0 in R2, both first-order partial derivatives

of a function f(~x) are zero, and the matrix of second-order partial

derivatives is

Q~x0
f =

(

2 3
3 2

)

.

(a) Is ~x0 the location of a maximum, a minimum, or neither? Ex-

plain.

(b) Let C be a constant close to (but not equal to) f(~x0). What

kind of conic section (ellipse, hyperbola, or parabola) would you

expect the graph of the relation f(~x) = C to resemble? Hint:

Think of using Q~x0
f to approximate f by a quadratic polynomial.

8.2.11 Find all the local extrema and saddle points of f(u, v) = 2 cosh u cos v.

Explain your reasoning thoroughly.

8.2.12 Let M =

(

0 1
1 0

)

.

(a) Explain why M is guaranteed to possess an orthonormal eigen-

basis.

(b) Find the eigenvalues and normalized eigenvectors of M .

(c) Find the matrix called etM (for each t ∈ R), and show how to

use it to solve the system of differential equations

u′ = v,

v′ = u,

u(0) = 0,

v(0) = 1.

8.2.13 Show that the Fredholm theorem (†) implies that the dimension of

the space spanned by the rows of a matrix equals that of the space

spanned by the columns. (This is Theorem 2 of Sec. 5.4.) Hint:

Apply Theorem 1 of Sec. 5.4 (the equation relating rank to nullity)

to the linear functions represented by A and At.

8.2.14 Prove that the 5 proposed definitions of orthogonal matrix are equiv-

alent.

8.2.15 Prove that all the coefficients of the characteristic polynomial of a

matrix are invariant under similarity transformations. Hint: Observe

that UAU−1 − λ = U(A − λ)U−1.
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8.2.16 Suppose that at a point ~x0 in R3, both first-order partial derivatives

of a function f(~x) are zero, and the matrix of second-order partial

derivatives is one of those given below. In each case, tell whether ~x0

is the location of a maximum, a minimum, or a saddle point.

(a)





1 2 0
2 1 3
0 3 6





(b)





−2 1 0
1 −2 3
0 3 5





8.2.17 Prove the assertion in Sec. 8.1 that the only matrices that are diago-

nalizable by orthogonal matrices are the symmetric matrices.

8.2.18 Let A =

(

1 2
3 4

)

, B =

(

1 1
1 1

)

, C =

(

2 0
1 2

)

.

Little or no calculation is needed to answer the following questions.

(a) Which matrix can be diagonalized by an orthogonal matrix?

(b) Which can be diagonalized, but only by a nonorthogonal matrix?

(c) Which can’t be diagonalized at all?

8.2.19 Let A =





1 1 0
0 1 0
0 0 4



 , B =





1 2 0
2 1 3
0 3 6



 , C =





1 2 0
0 3 2
0 0 4



 .

Little or no calculation is needed to answer the following questions.

(a) Which matrix can be diagonalized by an orthogonal matrix?

(b) Which can be diagonalized, but only by a nonorthogonal matrix?

(c) Which can’t be diagonalized at all?

8.3 A Note on History

The history of matematics should be more important to the nonmathe-

matician than to the mathematician. The math major studies mathematics

for its own sake, and may be willing to accept the concepts and concerns of

the subject as if engraved on stone tablets handed down through the profes-

sors. The technical student from outside, who has been told to learn some

mathematical subject as a useful tool, is more likely to wonder why anyone
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would come up with those concepts and problems. Mathematical ideas de-

velop for a reason; they grow out of real problems (not necessarily “applied”

problems, but natural questions that arise at a less abstract level), and un-

derstanding where they came from can help one to see how they can be used

in new, but similar, circumstances today. Furthermore, seeing the gradual

way in which understanding has developed — often cluttered for some time

by confusion or irrelevant side issues — can help the student to appreciate

his or her own learning struggles as natural and healthy.

I therefore took it for granted that if I ever wrote a textbook, it would

be grounded in the history of mathematical ideas. When I sat down to write

this book, I realized with a shock that I didn’t know any history of linear

algebra. When I studied linear algebra in college in the 1960s, the tablets

had already been written. But more than that, unlike textbooks in calcu-

lus, Fourier analysis, probability, number theory, or differential equations,

linear algebra books seem to be peculiarly devoid of history, lacking even

those sterile footnotes listing the nationalities and birth and death dates of

mathematicians.*

In reality, despite its static nature in the curriculum since 1950, linear

algebra as we know it today is a rather recent consensus. Its serious devel-

opment began around 1800; it reached its present form in the 1920s; and

only then did it attain its central, fundamental place in pure and applied

mathematics.

As reflected in the first two chapters of this book, the concept of a

vector emerged out of two distinct areas of mathematics, geometry and al-

gebra. “Algebra” in the nineteenth century meant largely the study of the

transformation (with luck, simplification) of equations by various changes of

variables, but also the study of “systems” of “quantities” satisfying various

rules for multiplication, etc. (compare our Sec. 2.1 and Sec. 3.1). Near the

beginning of the nineteenth century, several people independently recognized

that complex numbers could be represented by line segments (characterized

by length and direction) in a plane, and vice versa. It was natural to ask

whether three-dimensional space also had such an algebraic structure.

The Irish mathematician (and theoretical physicist) William Rowan

Hamilton devoted the last two-thirds of his career to this question — first

to finding an answer, then to developing and promoting it. Progress was

* An exception is J. B. Fraleigh and R. A. Beauregard, Linear Algebra (Addison–
Wesley, 1987), with historical notes by Victor Katz.
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hampered by the fact that nineteenth-century mathematicians were trying

to think of vectors as a new kind of “number”, much as the negative integers

had grown out of the positive ones and had in turn been extended to the

rational numbers and then to the complex numbers.† It was expected, there-

fore, that two vectors could be multiplied or divided to yield a third vector.

Hamilton discovered that multiplication of three-dimensional vectors was

possible, at the cost of abandoning the commutative law of multiplication;

thereby he invented the vector cross product — almost. However, he also

maintained the associative law of multiplication and the possibility of divi-

sion (contrast Sec. 2.5!) at the cost of introducing a fourth dimension. He

called his new hypercomplex numbers quaternions, and he and his followers

proceeded to reformulate physics in terms of them. Quaternions did indeed

provide a way of thinking about three-dimensional geometry and physics

that was independent of any particular choice of coordinate axes; velocities

and forces could be comprehended as single objects, rather than triples of

numbers. Unfortunately, Hamilton had been somewhat misled by the co-

incidence that the dimension of the space of 3 × 3 antisymmetric matrices

(which are related to rotations in three-dimensional space, as remarked in

Secs. 6.3 and 7.2) is also equal to 3. From a modern point of view, in the

quaternion formalism the vectors and the rotation operators that act upon

them are jumbled together. (In fact, Hamilton consistently made an error

of a factor of 2 in rotation angles as a result of trying to force the vectors

and the rotations to be the same thing. The relation between vectors and

rotations was more accurately understood in that era by the less famous

Olinde Rodrigues. See the fascinating article by S. L. Altmann, Hamilton,

Rodrigues, and the quaternion scandal, Math. Mag. 62, 291–308 (1989).)

Simultaneously, a different algebraic approach to geometry was devel-

oped by Hermann Grassmann, a German schoolteacher. His theory, called

Ausdehnungslehre (“theory of extension”), had the great advantage of apply-

ing in all dimensions, not just 3. He was largely concerned with the relation

between p-dimensional affine subspaces and antisymmetric algebraic combi-

nations of p vectors, something we have touched on in Sec. 7.2. Grassmann’s

best ideas were almost a century ahead of their time, and they were buried

in other material that turned out to be irrelevant or misguided. His books

† Logically, the real numbers should come between the rationals and the
complexes, but historically a solid understanding of the reals did not come until
later in the century.
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were considered unreadable, even by other Germans, so for a long time he

was essentially ignored.

The era of Hamilton and Grassmann occupied the middle of the nine-

teenth century; it was truly the Mesozoic Era of our subject. The last two

decades of that century saw the emergence of vectors and vector spaces in

their modern forms.

On the one hand, J. Willard Gibbs (American physicist) and Oliver

Heaviside (British engineer) distilled from the quaternion theory its useful

essence, the three-dimensional vectors we see in physics and engineering

textbooks today, with their dot and cross products and nabla operators. This

quickly became the standard language of physics and applied mathematics.

On the other hand, several mathematicians in Italy, especially Giuseppe

Peano, were separating the wheat from the chaff in Grassmann’s work. The

result was the modern definition of a vector space. However, this develop-

ment did not attract much attention at the time.

The triumph of the abstract vector concept did not happen until the

study of infinite-dimensional vectors made it necessary. A number of math-

ematicians, notably Stefan Banach, independently reinvented the concept

of a vector space (equipped with an inner product or a norm) around 1920

in order to deal with infinite-dimensional problems, in which the vectors

were functions or infinite sequences. (We have made the point through-

out this book that the abstract concepts, which may be elegant and mildly

helpful in elementary low-dimensional problems, reach their full power and

become indispensible in more complicated, especially infinite-dimensional,

problems.) It is striking that this development roughly coincided with the

rise of quantum mechanics in physics. Quantum theory would be almost im-

possible without the idea of an infinite-dimensional vector space, but it was

not quantum theory that sparked the creation of the mathematical theory.

Functional analysis, or infinite-dimensional linear algebra, developed just a

few years earlier, largely in response to purely classical physical problems

involving integral and differential equations.

In more recent years both Grassmann and Hamilton have been partially

vindicated. Grassmann’s geometrical ideas evolved into the modern theory

of differential forms (Sec. 7.4). Hamilton’s strange four-dimensional space,

with a few sign changes, turned out to be related to the space-time of special

relativity, in a formalism well adapted to the study of rotations acting on

the fields and wave functions that represent electrons and other half-integral-
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spin particles (fermions). At the same time that Gibbs was cleaning up the

vector half of the quaternion formalism, mathematicians such as Felix Klein

and Sophus Lie were, in effect, rescuing its rotational half, by creating the

modern theory of the groups of rotations in n-dimensional space, and the

more general theory of Lie groups and Lie algebras. In short, the Pauli

matrices of quantum mechanics are quaternions in disguise — or, better, in

their true form with their nineteenth-century disguise removed. The quater-

nions in their original form retain some followers among applied researchers

whose work heavily involves rotations, as evidenced by the recent book of J.

B. Kuipers, Quaternions and Rotation Sequences, A Primer with Applica-

tions to Orbits, Aerospace, and Virtual Reality (Princeton University Press,

1999). They have always been of interest to pure mathematicians as a very

special kind of algebraic system.

In writing this addendum I found the following resources helpful. Two

books:

• M. J. Crowe, A History of Vector Analysis (University of Notre Dame

Press, 1967; Dover Publications, 1994).

• A. F. Monna, Functional Analysis in Historical Perspective (Halsted

Press, 1973).

Two scholarly historical articles:

• J.-L. Dorier, A general outline of the genesis of vector space theory,

Historia Mathematica 22, 227–261 (1995).

• G. H. Moore, The axiomatization of linear algebra: 1875–1940, Hist.

Math. 22, 262–305 (1995).

(See also the article by Altmann cited above and the one by Katz cited in

Sec. 7.5.) Three short articles (by V. J. Katz, O. B. Becken, and K. Reich)

in the collection

• Learn from the Masters!, ed. by F. Swetz et al. (Mathematical Asso-

ciation of America, 1995).

And one World Wide Web site:

• http://www-groups.dcs.st-and.ac.uk/ history/, The MacTutor

History of Mathematics Archive, especially the pages on “Matrices

and Determinants” and “Abstract Linear Spaces”.

This view of history is necessarily incomplete and oversimplified. The

seriously interested reader should consult the sources listed above and seek

out others.
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