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CHAPTER 1

Boundary Value Problems

Preliminaries

We will be looking at partial di�erential equations (PDE) for the rest of the

course. Recall from 308: an ordinary di�erential equation is something like: d2y
dx2 +

2 dydx−3y = 0 on [0, 1], with perhaps initial conditions y(0) = 1, y′(0) = 0. A solution
to this is a function (so, solving a regular equation might give you a number, but
solving a di�erential equation gives you a function). Both ex and e−3x solve this
di�erential equation. The general solution to this di�erential equation (ignoring
the initial conditions) is C1e

x + C2e
−3x and the linear combination which satis�es

the initial conditions is 3
4e
x + 1

4e
−3x. This actually �ts in pretty well with linear

transformations: if we de�ne L : C2 [0, 1] → C [0, 1] by L [y] = y′′ + 2y′ − 3y, it's
not hard to see that L is linear. Looking for solutions to the equation is looking for
the kernel of L. It turns out that a basis for the kernel is

{
ex, e−3x

}
, and then we

look for the linear combination which satis�es the initial conditions.

Reminder from 308: solving linear homogeneous ODE's with constant coe�-
cients. A �rst order linear homogeneous ODE with constant coe�cients looks like
y′ = ky. The solution to this is y = y0e

kt, which you saw in calculus.
To solve the second order linear homogeneous ODE with constant coe�cients

ay′′+by′+cy = 0, plug in y = ert. Then we want r so that ar2ert+brert+cert = 0,
i.e., ar2+br+c = 0. This is called the auxiliary equation for the ODE. The following
can happen:

• (Real and unequal roots): If the auxiliary equation has two real roots r1,
r2, with r1 6= r2, then both er1t and er2t are solutions to the ODE, and
the general solution is C1e

r1t + C2e
r2t.

• (Real and equal roots): If the auxiliary equation has a double root r1 (i.e.,
the auxiliary equation is some constant times (r − r1)2), then both er1t

and ter1t are solutions, and the general solution is C1e
r1t + C2te

r1t.
• (Complex roots): If the auxiliary equation has the pair of complex roots
α + iβ and α − iβ (assuming that a, b, and c are real, complex roots
must come in conjugate pairs), then both eαt cos(βt) and eαt sin(βt) are
solutions, and the general solution is C1e

αt cos (βt) + C2e
αt sin (βt).

For our purposes, the most important cases of second order linear ODE's are:
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• y′′ = −λ2y. The general solution to this can be written as y(t) = a cosλt+
b sinλt.

• y′′ = λ2y. The general solution to this may be written as y(t) = C1e
λt +

C2e
−λt. If we introduce two (possibly) new functions coshx = ex+e−x

2

and sinhx = ex−e−x
2 , this can be written as y(t) = a cosh(λt) + b sinh(λt).

We'll see more about these hyperbolic trig functions later, when we need
them.

Partial di�erential equations involve partial derivatives. Recall that, if u is
a function of x and y, for example, that ∂u

∂x means to treat y as a constant and
take the derivative with respect to x. You should be aware that there is another
notation for partial derivatives which is in common use: we can write the partial of
u with respect to x as ux instead of ∂u∂x . I will be using both notations. A typical

PDE is something like Laplace's equation: ∂2u
∂x2 + ∂2u

∂y2 = 0. (Which can also be

written as uxx + uyy = 0.) We're looking for a function u (x, y) now, so we aren't
on an interval anymore. Instead, u would have some domain in the x, y plane, so
that's where we'd solve the equation. There's still the problem of what the analog
of initial conditions will be, but we'll get to that. A general solution often has
arbitrary constants, and then we might look for a particular solution, by choosing
the constants to satisfy some additional conditions. Sometimes (we'll see examples
later) general solutions even have arbitrary functions, not just arbitrary constants.

Things will be more complicated than ODE's: for example, there are many
solutions to Laplace's equation in the plane. Here are a few: u (x, y) = ex cos y,
u (x, y) = x2 − y2, u (x, y) = x3 − 3xy2. It's not nearly as simple as the ODEs we
were looking at. In fact, if we de�ne L(u) to be uxx + uyy, then the kernel of L
turns out to be in�nite dimensional, in contrast to the ODE case we were looking
at before.

An example of a boundary value problem is something like: �nd a function

u (x, y) satisfying ∂2u
∂x2 + ∂2u

∂y2 = 0 in the interior of the square 0 < x < 1, 0 < y < 1,

continuous on the closed square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and equal to given functions
on the boundary of the square: say u (x, 0) = x2, u (x, 1) = 1, u (0, y) = y, u (1, y) =
1.

The order of a PDE is the order of the highest derivative in it. For example,
the order of Laplace's equation is 2, since we're taking second derivatives. We will
generally be looking at second order linear PDE's. In two variables, these look like

A (x, y)uxx +B (x, y)uxy + C (x, y)uyy

+D (x, y)ux + E (x, y)uy + F (x, y)u = G (x, y) ,

although the variables could be other than x and y: x and t is also quite common.
If G is identically zero, this is a homogeneous equation, if not it's inhomogeneous.
So, what's linear about this? The functions A, B, and so on could be rather wild.
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The point is that

L (u) = A (x, y)uxx +B (x, y)uxy + C (x, y)uyy

+D (x, y)ux + E (x, y)uy + F (x, y)u

is a linear transformation: L (αu1 + βu2) = αL (u1)+βL (u2). Having things like u2

or sin (ux) would make the equation non-linear. Also, something like uyuxy−u = 0
is non-linear because of the product.

Principle of Superposition
If our equation is a homogeneous, linear PDE, i.e., L (u) = 0, then if u1 and

u2 are solutions, so is their sum. As an example, since ex cos y and x2 − y2 both
satisfy uxx+uyy = 0, so does their sum. We will be using this a lot, in constructing
series solutions to PDE's.

Classi�cation of second order linear PDE's
A second order linear PDE is hyperbolic, elliptic, or parabolic at a point if

B2 − 4AC is positive, negative, or zero (depends only on the highest order term).
Generally, we'll be considering cases where A through F are constant, but that's
not required in the de�nition. It's possible for an equation to be one type at one
point and another somewhere else: L (u) = xuxx + uyy = cosx is elliptic on x > 0,
hyperbolic on x < 0, and parabolic on x = 0. Notice that the cosine had nothing
to do with the classi�cation.

Basic Examples of PDE's

Here are the three most important PDE's. Notice that they all have constant
coe�cients.

• The wave equation: ∂2u
∂t2 = a2 ∂

2u
∂x2 . Here u is a function of x and t. One

physical interpretation is that we pluck a string, and u (x, t) is the displace-
ment of the point on the string x units from the end at time t (picture).
So, if t is �xed, you're taking a snapshot of the string. The constant a is
related to the tension in the string and the density (mass per unit length)
of the string. This is a hyperbolic equation (using t instead of y): A = a2,
C = −1, and B is zero, so B2 − 4AC is positive. If a string of length L
has initial position f(x) and is given initial velocity g(x), and if the ends
of the string are �xed, then the boundary value problem is

u(x, 0) = f(x)

ut(x, 0) = g(x)

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

∂2u

∂t2
= a2

∂2u

∂x2

If you're banging a drum rather than plucking a string (so it's a two di-
mensional membrane), the equation that the displacement u (x, y, t) must

satisfy is ∂2u
∂t2 = a2

(
∂2u
∂x2 + ∂2u

∂y2

)
.

• The heat equation: Suppose that we have a metal bar of length L. Sup-
pose that the temperature at location x at time t is u (x, t). Then the

temperature satis�es ∂u
∂t = κ∂

2u
∂x2 . Here κ is a physical constant called the
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di�usivity, which depends on the material of the bar. This is a parabolic
equation. Typical boundary conditions are to hold the ends of the bar
at temperature 0, so that u(0, t) = u(L, t) = 0 for t > 0, or to have the
ends insulated, which gives ut(0, t) = ut(L, t) = 0. A boundary value
problem will often assign an initial temperature u(x, 0). Unlike the wave
equation, it wouldn't make sense to also assign ut(x, 0), since ut is already
forced on you by the initial temperature and the di�erential equation. If
the object that we're taking the temperature of is two or three dimen-

sional (a plate or a solid), the equation becomes ∂u
∂t = κ

(
∂2u
∂x2 + ∂2u

∂y2

)
and

∂u
∂t = κ

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
respectively.

• Laplace's equation: If the temperature in the previous example has reached

a steady state in, say, a two dimensional plate, then ∂2u
∂x2 + ∂2u

∂y2 = 0. The

right hand side is called the Laplacian, and is often written as ∇2u or
∆u. (In three dimensions, the Laplacian adds a uzz.) Engineers tend to
use the �rst notation, mathematicians maybe both. I prefer to use ∇2u
to avoid confusing ∆u with the change in u. So, how does a steady state
temperature avoid ending up as a constant? We can include boundary
conditions, say keeping one part of the boundary at temperature u1 and
another at temperature u2. Laplace's equation is elliptic. There are other
applications of Laplace's equations besides steady state heat.

Notice that the Laplacian appears in all three of these: utt = a2∇2u is the wave
equation, ut = κ∇2u is the heat equation, and of course ∇2u = 0 is Laplace's
equation.

Examples of Explicit Solutions

There are a few PDE's that we can solve explicitly. The simplest type is a
second order partial equal to a function of the independent variables. You can
often solve these by integration. Here's an example.

Example 1. Solve the PDE uyy = ey with boundary conditions u (x, 0) = ex

and uy (x, 0) = x3.

Solution: Since uyy = ey, we can integrate both sides with respect to y to
get uy (x, y) =

∫
ey dy = ey + f (x), for some function f depending only on x.

The point is that the �+C� in the integration is only a constant as far as y is
concerned, i.e., it can depend on x. From the initial condition on uy, we must have
x3 = e0 + f (x), so f (x) = x3 − 1, therefore uy (x, y) = ey + x3 − 1. Integrate
again: u (x, y) = ey + yx3 − y + g (x) for some function g (x) . Plug in y = 0 to
use the initial condition: ex = 1 + g (x), so g (x) = ex − 1, so the answer is that
u (x, y) = ey + yx3 − y + ex − 1.

Example 2. For what values of a will u(x, y) = F (x + ay) solve the equation
uxx + 4uxy − 5uyy = 0, where F is an arbitrary twice di�erentiable function?
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Most of the time we won't be able to �nd an explicit solution except by sepa-
ration of variables, and I won't spend any more time on these.

Problems for chapter 1

(1) For what value(s) of a will u (x, y) = F (x+ ay) solve the PDE ∂2u
∂x2 +

∂2u
∂x∂y − 2∂

2u
∂y2 = 0, where F is an arbitrary twice di�erentiable function of

one variable?
(2) Classify the following PDEs as hyperbolic, elliptic, or parabolic:

(a) x2uxx + 2xyuxy + y2uyy + x3ux − y3uy = 0.

(b) ∂2f
∂x2 − 2 ∂2f

∂x∂t + 2∂
2f
∂2t = 0

(c) utt = tux
(3) Find a solution to the PDE uxy = x, satisfying u(x, 0) = ex and u(0, y) =

cos y.
(4) Solve the initial value problem uyy = xey, u(x, 0) = 3x, uy(x, 0) = ex.
(5) For what number(s) α will u(x, y) = e2x+αy solve the PDE uxx − uyy −

2ux + u = 0?

c©2013, T. Vogel 6



CHAPTER 2

Method of separation of variables

Separation of variables will be our most powerful tool in solving PDE's, which
will lead to series solutions later on. I'll illustrate with an example.

Example 3. Solve the �rst order PDE

ux = 6uy,

with initial condition u (0, y) = ey by separation of variables.

What this means is that we seek a solution of the form u (x, y) = X (x)Y (y).
If there is such a solution, we must have

X ′ (x)Y (y) = 6X (x)Y ′ (y) ,

so that
X ′ (x)

X (x)
= 6

Y ′ (y)

Y (y)
.

The key observation is that the left side doesn't depend on y, and the right side
doesn't depend on x. Since they're equal, they can't depend on x or y. What sort
of function doesn't depend on anything? A constant! In other words, there is a
constant λ called the separation constant, so that

X ′ (x)

X (x)
= 6

Y ′ (y)

Y (y)
= λ.

Therefore, the functions X and Y must satisfy X ′ (x) = λX (x) and Y ′ (y) =
λ
6Y (y). These are ODE's that we know how to solve: they're exponentials. So,

X (x) = Aeλx and Y (y) = Be
λ
6 y, so u = ABeλxe

λ
6 y = Keλxe

λ
6 y. Now, the initial

condition that u (0, y) = ey gives us that Ke
λ
6 y = ey, thus K = 1 and λ = 6, and

the solution is e6xey, which of course you can write as e6x+y.

Example 4. Solve

ut = 4uxx

on 0 < x < 2, t > 0, with initial conditions u (x, 0) = sinπx − 2 sin 2πx, u(0, t) =
u(2, t) = 0 for all t, under additional assumption that u (x, t) is bounded on the
region we're looking at. (This is the heat equation for one speci�c choice of the
di�usivity.)

Solution: Let's seek functions of the form u (x, t) = X (x)T (t) We must have

XT ′ = 4X ′′T,

so
T ′

4T
=
X ′′

X
= c
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for some separation constant c. I claim that we have to have c ≤ 0. The reason is
that the equation for T is T ′ = 4cT , with solution T = Ae4ct for some constant A.
If c > 0 this is unbounded as t tends to ∞. Thus, I can put in −λ2 for c:

T ′

4T
=
X ′′

X
= −λ2.

The solution for T is Ae−4λ
2t, as noted before. Now for X, we get X ′′ = −λ2X,

which we recognize from 308 as having the general solution B cos (λx) +C sin (λx).
Therefore, we're getting that if the solution separates, it must be

e−4λ
2t (B cos (λx) + C sin (λx))

for some values B, C, and λ. There's no way to choose these to get the given
initial conditions. Instead, �nd two solutions, one for each initial condition, and
then superimpose them. To �nd u1 satisfying u1(x, 0) = sinπx, we need B =

0, C = 1, and λ = π. Thus u1(x, t) = e−4π
2t sin(πx). Similarly, to �nd u2

satisfying u2(x, 0) = −2 sin 2πx, we need B = 0, C = −2, and λ = 2π. Thus

u2 = −2e−16π
2t sin (2πx). Therefore the solution is the sum:

u(x, t) = e−4π
2t sin(πx)− 2e−16π

2t sin (2πx) .

Note that this solution doesn't separate, but it is the sum of separated solutions.
The physical problem is that of a metal bar stretching from x = 0 to x = 2, starting
at the given initial temperature, with the ends being held at temperature zero as
time goes along.

Some examples on separating variables:

Example 5. Does uxx+uyy+uy = 0 separate? If so, �nd the resulting ODE's.

Solution:

Example 6. Here's one that doesn't separate: (x + y)uxx + uyy = 0. Plug in
u = X(x)Y (y), and you get (x+ y)X ′′Y +XY ′′ = 0. Try as you might, there's no
way to separate the x's and the y's.

Example 7. (Here's an example for three variables, which gets a little more
involved.) Separate yuxx + xuyy + xyuzz = 0, �nding the resulting ODE's.

Now u is a function of x, y, and z. Write u = X(x)Y (y)Z(z). Then yX ′′Y Z +
xXY ′′Z + xyXY Z ′′ = 0. Divide through by xyXY Z to get

X ′′

xX
+
Y ′′

yY
+
Z ′′

Z
= 0.

So, now what do we do? Since

X ′′

xX
+
Y ′′

yY
= −Z

′′

Z
= λ,
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where λ can't depend on any variable, we must have Z ′′ = −λZ and X′′

xX + Y ′′

yY = λ.

The last equation separates between x and y:

X ′′

xX
= λ− Y ′′

yY
= µ,

so the equations that X and Y must satisfy are X ′′ = µxX and Y ′′ = (λ− µ)yY .

Problems for chapter 2

(1) The variables in the following PDE's separate. Write (but do not solve)
the resulting ODE's:
(a) uxy = u.
(b) uxx − uyy + 2ux − 2uy + u = 0.
(c) t2utt − x2uxx = 0.
(d) uxx + uyy = ut. (Note: since there are three variables, there will be

two constants of separation.)
(2) Find the general separated solution to the PDE utt = 4uxx under the

assumption that
(a) the constant of separation is negative (call it −λ2).
(b) the constant of separation is postive (call it λ2).

(3) Solve ut = uxx, u(x, 0) = cos 3x+ e2x by separation of variables.
(4) Solve ut + u = ux, u (x, 0) = e3x − 2e4x by separation of variables.
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CHAPTER 3

Fourier Series and Applications

PDE's and Trigonometric Polynomials

Let's look at a slight generalization of example 4.

Example 8. Find a solution to the heat equation ut = 4uxx on [0, L], with
u (0, t) = u (L, t) = 0, u (x, t) bounded, and initial conditions u (x, 0) =

∑m
n=1 bn sin

(
nπx
L

)
.

The above initial conditions are an example of a trigonometric polynomial. It's
going to be particularly good to �t in with the separation of variables approach.
The factors of nπ

L were chosen so that it's automatically zero at the endpoints.

Using what we already did in example 4, set un (x, t) = bne
−4λ2t sin (λx), where

the choice of λ must be nπ
L . So, we're getting that

u (x, t) =

m∑
n=1

bne
−4(n2π2/L2)t sin

(nπx
L

)
.

Very pretty, but having the initial conditions a trigonometric polynomial seems
pretty specialized. In fact, it's not: we will be approximating functions with trigono-
metric polynomials, or to put it another way, we will be writing functions as Fourier
series. We'll then be able to apply this to similar initial value problems.

Approximation by Trigonometric Polynomials

Suppose that we have a function f (x) de�ned on the interval (−L,L), and
that, for �xed m, we want the trigonometric polynomial of the form

tm (x) =
a0
2

+

m∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
which approximates it best in some sense. Recall that we had an inner product

and norm de�ned by integrals. De�ne 〈f, g〉 = 1
L

∫ L
−L f (x) g (x) dx, and ‖f‖ =√

〈f, f〉 = 1√
L

√∫ L
−L f

2 (x) dx. Let's look for the trigonometric polynomial which

approximates it best in this norm on (−L,L), in other words we want to �nd
a trigonometric polynomial tm (x) so that ‖tm − f‖ is as small as possible. (We
actually saw this example with L = π in section 5.5 of Leon, but it won't hurt
to look at it in a little more detail.) The set of trigonometric polynomials we're
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looking at are spanned by
{

1√
2
, cos

(
kπx
L

)
, sin

(
nπx
L

)}
, n, k from 1 to m. We saw

in homework in Leon, section 5.4, that for L = π, this is an orthonormal set with
respect to the inner product 〈f, g〉 = 1

π

∫ π
−π f(x)g(x) dx. The same holds true for

general L > 0.

The closest vector in the span of
{

1√
2
, cos

(
kπx
L

)
, sin

(
nπx
L

)}
to f (x) is given

by inner products:

α0
1√
2

+

m∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

where

α0 =

〈
f(x),

1√
2

〉
=

1

L

∫ L

−L
f (x)

1√
2
dx,

an =
〈
f (x) , cos

(nπx
L

)〉
=

1

L

∫ L

−L
f (x) cos

(nπx
L

)
dx,

bn =
〈
f (x) , sin

(nπx
L

)〉
=

1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx.

Notice that when n = 0 for the formula for an, you get almost the formula for α0; it's
o� by a factor of

√
2. We saw this before, and we can include that into the constant

term to get that the closest vector in the span of
{

1√
2
, cos

(
kπx
L

)
, sin

(
nπx
L

)}
, n, k

from 1 to m, is

a0
2

+

m∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

where

an =
1

L

∫ L

−L
f (x) cos

(nπx
L

)
dx,

and

bn =
1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx.

What happens when m tends to in�nity? We get a Fourier series.

Fourier Series

De�nition: Suppose that f(x) is de�ned on the interval (−L,L) and that it is
de�ned on the rest of the real line by extending it periodically, i.e., by f (x+ 2L) =
f (x). The Fourier series corresponding to f(x) is

a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

where

an =
1

L

∫ L

−L
f (x) cos

(nπx
L

)
dx,

and

bn =
1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx.
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A natural question is when does a function equal its Fourier series. For this we
need a de�nition:

De�nition: A function f (x) is piecewise continuous on an interval [a, b] if
there are a �nite number (possibly zero) of xi's so that a = x0 < x1 < · · · <
xk−1 < xk = b, such that f is continuous on (xj−1, xj) for all j = 1, · · · , k, and the
one-sided limits at each xj exist and are �nite.

The result about when a function equals its Fourier series is this:
Theorem: (Dirichlet conditions)

• Suppose that f is de�ned except for possibly a �nite number of points in
(−L,L).
• f (x) is periodic of period 2L.
• f and f ′ are piecewise continuous in (−L,L).

Then, the Fourier series corresponding to f converges at every x. If f (x) is continu-
ous at a, then the Fourier series at a converges to f (a). If f has a jump discontinuity
at a, then the Fourier series at a converges to 1

2 (limx→a− f (x) + limx→a+ f (x)).
So, for such functions,

f (x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
at every point of continuity of f . These are the sorts of functions which generally
arise in engineering applications. (Although f(x) = x1/3 on, say, [−1, 1], does not
satisfy the Dirichlet conditions, since its derivative is unbounded at 0. The Fourier
series still seems to converge as above, though.)

Half-range Fourier series

Note (even and odd functions): A function g (x) is even if g (−x) = g (x)
(picture). A function g (x) is odd if g (−x) = −g (x). The way to remember this is
even power and odd powers: g (x) = x4 is an even function, g (x) = x3 is an odd
function. Most functions are neither even nor odd: f (x) = x2+x for example, since
f (−1) = 0 is not f (1) or −f (1). For our purposes, it's important to note that
sinx and in fact sin

(
nπx
L

)
is an odd function, and cos

(
nπx
L

)
is an even function.

Also, the product of an odd function with an odd function is even, the product of
an even function with an even function is even, and the product of an odd and an
even function is odd.

The reason that we care is that for functions which are even or odd, you can
sometimes simplify integrals on intervals whose midpoint is 0. If g (x) is odd,
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then
∫ L
−L g (x) dx = 0, since it's not hard to believe that the integral from 0 to

L is cancelled out by the integral from −L to 0 (picture). If g is even, then∫ L
−L g (x) dx = 2

∫ L
0
g (x) dx, since the integrals on the two halves of the inter-

val are equal. (picture). So, if f is an odd function, so is f (x) cos
(
nπx
L

)
. This

means that all the an's in the Fourier series are zero, and there are just sine terms.
In fact, if f is odd,

bn =
1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx

=
2

L

∫ L

0

f (x) sin
(nπx
L

)
dx.

This is called a half-range Fourier sine series: all we need are the values of f
on [0, L] and the fact that f is odd and periodic. If f is even you similarly get
a half-range Fourier cosine series. In that case, all the bn's are zero since now
f (x) sin

(
nπx
L

)
is odd, and

an =
2

L

∫ L

0

f (x) cos
(nπx
L

)
dx.

Example 9. Suppose you expand f(x) = x, 0 ≤ x ≤ 1 in a half-range
Fourier sine series. Sketch what the series converges to. (i.e., what does the series∑∞
k=1 bk sin(kπx) converge to on R, where bk = 2

∫ 1

0
x sin(kπx) dx.) Same question

for a half-range cosine series for f(x) = x.

Example 10. Find the Fourier series for the square wave: f (x) = −1, for
−1 ≤ x < 0, and f (x) = 1, 0 ≤ x < 1, and f is periodic of period 2.

This is an odd function, so that there will only be sines. In fact,

bn = 2

∫ 1

0

f (x) sin (nπx) dx

= 2

∫ 1

0

sin (nπx) dx

= 2

(
−cos (nπx)

nπ

)∣∣∣∣1
0

=

{
0, n even,
4
nπ , n odd.
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So, the Fourier series for the square wave is

4

π
sinπx+

4

3π
sin (3πx) +

4

5π
sin (5πx) + · · · =

∞∑
k=0

4

(2k + 1)π
sin ((2k + 1)πx) .

By the Dirichlet conditions, this series converges to the square wave at every x
which is not an integer. For those x's, it converges to the average of the left and
right limits, i.e., 0.

Double Fourier Series

Suppose that f(x, y) is a nice function (say, continuous, with continuous deriva-
tives) de�ned on the rectangle −K < x < K, −L < y < L. If we hold y constant
for the moment, we can write f(x, y) as a Fourier series in x:

f(x, y) =
a0(y)

2
+

∞∑
m=1

am(y) cos
(mπx
K

)
+ bm(y) sin

(mπx
L

)
,

where the familiar formulas for ai and bi now have y's in them. But then we can
expand ai(y) and bi(y) in Fourier series in y, leading to a double Fourier series for
f(x, y). The formulas are su�ciently nasty that I won't do the general case, but
let's look at the special case of a double sine series.

Suppose now that f(x, y) is de�ned on 0 < x < K and 0 < y < L. If we do a
half-range sine series for f , then

f(x, y) =

∞∑
m=1

bm(y) sin
(mπx
K

)
,

where bm(y) = 2
K

∫K
0
f(x, y) sin

(
mπx
K

)
dx. Now take a half-range sine series for

bm(y):

bm(y) =

∞∑
n=1

bmn sin
(nπy
L

)
,

where

bmn =
2

L

∫ L

0

bm(y) sin
(nπy
L

)
dy

=
4

KL

∫ L

0

∫ K

0

f(x, y) sin
(mπx
K

)
sin
(nπy
L

)
dx dy,

where these are the coe�cients in the double sine series for f(x, y):

∞∑
n=1

∞∑
m=1

bmn sin
(mπx
K

)
sin
(nπy
L

)
,

where this equals f(x, y) where f and the partials of f are continuous.

Example 11. Find the double sine series for f(x, y) = 1, on 0 < x < 2,
0 < y < 1.
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We have that

bmn =
4

2 · 1

∫ 1

0

∫ 2

0

1 · sin
(mπx

2

)
sin(mπy) dx dy.

The double integral is easy to evaluate, and recalling that cos kπ = (−1)k, we get
that the series is

4

∞∑
m=1

∞∑
n=1

(1− (−1)m)(1− (−1)n)

mnπ2
sin
(mπx

2

)
sin(mπy).

If you plot the sum over the x, y plane, the graph is a checkerboard of +1's and
−1's.

Problems for chapter 3

(1) f(x) equals 2 for 0 < x < 2, equals −2 for 2 < x < 4 and has period 4.
Find its Fourier series.

(2) De�ne f(x) by

f(x) =

{
x 0 < x < 1

2− x 1 ≤ x < 2.

Expand f in a sine series. For x not in the open interval (0, 2), what will
the sine series converge to? (Sketch your answer,)

(3) (a) Prove that x2 = π2

3 −
4
12 cosx+ 4

22 cos 2x− 4
32 cos 3x+ · · · for −π ≤

x ≤ π.
(b) Use the result from part a to evaluate

∑∞
k=1

(−1)k+1

k2 .

(c) Use the result from part a to prove that
∑∞
k=1

1
k2 = π2

6 .
(4) Expand f(x, y) = xy, 0 < x < 1, 0 < y < 2 in a double sine series.
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CHAPTER 4

Series solutions to PDE's

Now to apply this sort of thing to a boundary value problem.

Example 12. Suppose that we start with a bar of metal of length 1, with con-
stant temperature 1, except at the ends of the bar we keep the temperature at zero.
What happens to the temperature as a function of time?

Naturally we expect it to eventually drop to zero, but we'd like to come up
with the exact formula for the temperature. The problem is this: Find a solution
to the heat equation ut = κuxx, u (x, 0) = 1 for 0 < x < 1, and u (0, t) = u (1, t) = 0
for t > 0. (There's a discontinuity at the corners of the domain, but that won't
be a serious problem.) Let's separate variables �rst. We get XT ′ = κX ′′T , so
1
κ
T ′

T = X′′

X = µ, so T ′ = µκT and X ′′ = µX. Now, we expect the temperature to

be bounded as t tends to in�nity. The solution to T ′ = µκT is T (t) = T0e
µκt, so

for this to stay bounded, we need the exponent to be negative. So, set µ to be −λ2,
which will work nicely with the X equation. The solutions to X ′′ = −λ2X are
spanned by sinλx and cosλx. To ensure that we're zero at x = 0 and x = 1, we're
looking at sin (nπx). Here's the idea: expand the initial conditions in a half-range
sine series, �nd the solution for initial conditions for each term of the series, and
then superimpose them.

The half-range sine series which equals 1 from 0 to 1 is precisely the Fourier
series for the square wave which we just saw. So, we solve the boundary value
problem for ut = κuxx, u (x, 0) = 4

(2k+1)π sin ((2k + 1)πx), u (0, t) = u (1, t) = 0 for

t > 0 for each k, and then add them up. For this, we take λ to be (2k + 1)π, so we
get

4

(2k + 1)π
e−κπ

2(2k+1)2t sin ((2k + 1)πx)

(check that this does in fact satisfy ut = κuxx). Superpose all of them to get the
solution

u (x, t) =

∞∑
k=0

4

(2k + 1)π
e−κπ

2(2k+1)2t sin ((2k + 1)πx) .

We're glossing over some �ne points here, about whether we can take the derivative
of an in�nite sum by taking the sum of the derivatives. These are okay in the case
we're looking at by general theory, but I won't spend any time worrying about this.

Note: We've seen one type of boundary condition for the heat equation: just
holding the end of the bar at a constant temperature. There are two others which
make sense: If the ends are insulated, then the heat �ow through the ends is zero,
which says that ux (0, t) = 0, ux (1, t) = 0. If we looked at the previous example
with these boundary conditions, we'd get that the temperature just stays constantly
1, which makes sense. The third one is based on Newton's law of cooling, that the
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heat �ow (i.e., ux) leaving the rod is proportional to the di�erence between the
heat of the bar at the end and a prescribed external temperature. I would write
any boundary conditions out explicitly when I posed a problem.

Example 13. Not everything is the heat equation, though. Let's solve Laplace's
equation uxx+uyy = 0 on the square 0 < x < 1, 0 < y < 1, with boundary conditions
u(0, y) = u(1, y) = u(x, 0) = 0, u(x, 1) = u1. (A problem which speci�es values of
u on the boundary is called a Dirichlet problem.)

Separate variables: X ′′Y + XY ′′ = 0, so X′′

X = −Y
′′

Y = −λ2. Okay, so why
is this assumed to be negative? The answer is that we expect X to be a trig
function to be zero at each endpoint, i.e., at x = 0 and x = 1. We don't expect
the same for Y . We're getting X ′′ + λ2X = 0, Y ′′ − λ2Y = 0. The solution to
the �rst we already know: it's of the form a1 cosλx+ b1 sinλx. For the second, we
could write it as a linear combination of eλy and e−λy. Instead, I'll introduce two

(possibly) new functions: sinh t = et−e−t
2 and cosh t = et+e−t

2 . These are called
hyperbolic functions and have properties similar to regular trig functions, except
that about half the time the sign switches: (sinh t)

′
= cosh t, (cosh t)

′
= sinh t,

cosh2 t − sinh2 t = 1 for example. Anyway, we can write the general solution to
Y ′′−λ2Y = 0 as a2 coshλy+b2 sinhλy. The general separated solution is therefore

(a1 cosλx+ b1 sinλx) (a2 coshλy + b2 sinhλy) .

The plan is to �nd those guys which are zero on the three sides that we're asking
for, and then get the fourth side right by taking a series. Okay, so when y = 0, we
get (a1 cosλx+ b1 sinλx) a2. We don't want the X function always zero, or else we
won't have anything, so we'll require that a2 = 0. When x = 0, we therefore have
a1b2 sinhλy, so we want a1 to be zero (if b2 is zero, we get Y identically zero, and
again we have nothing). So, we've got b1b2 sinλx sinhλy at this point. Finally, to
get this zero along x = 1, we need λ = mπ. So, a separated solution which is 0 on
the three sides we're asking for is B sinmπx sinhmπy (might as well call b1b2 B).

A series formed of these functions must look like
∞∑
m=1

Bm sinmπx sinhmπy.

Now we need to �nd Bm so that the boundary value on the top edge of the square
is u1. Thus we need to �nd Bm so that

∑∞
m=1Bm sinhmπ sinmπx = u1. But this

is writing a constant as a Fourier sine series, which is our friend the square wave
(times u1). We need

Bm sinhmπ =

{
0, m even,
4u1

mπ , m odd.

This says that our solution is

u (x, y) =
∞∑
k=0

4u1
(2k + 1)π sinh (2k + 1)π

sin ((2k + 1)πx) sinh ((2k + 1)πy) .

Example 14. Solve the heat equation ut = κuxx on [0, L], with initial tempera-
ture u (x, 0) = f (x), and with ends insulated, so that ux (0, t) = 0 and ux (L, t) = 0
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for all t > 0 (the solution will be in terms of the function f (x), which I'll assume
is reasonably nice, i.e., it and its derivative are continuous).

Two new things here: �rst, I'm not specifying f (x), and second, the boundary
conditions (i.e., at x = 0 and x = L) are di�erent that what we've been seeing.

Solution: First we separate variables. Set u (x, t) = X (x)T (t), so thatXT ′ =

κX ′′T , so that T ′

κT = X′′

X = −λ2. The choice of the separation constant is as we've

seen before: it must be negative for u to be bounded, and the λ2 will work well
with the trig functions which will arise for X. The general separated solution will

be e−λ
2κt (A cosλx+B sinλx). The solution to the example will be the sum of a

series of terms which look like this. To ensure that the sum has zero x derivatives at
the endpoints, we'll make sure that each term has zero derivative at the endpoints.
So, take the partial of the general separated solution with respect to x to get

e−λ
2κt (−Aλ sinλx+Bλ cosλx). At x = 0 this is e−λ

2κt (Bλ). For this to always
be zero, either B = 0 or λ = 0. If λ = 0 we'll get a constant term that we'll have to
remember. Otherwise we've got B = 0, and the sine terms won't appear. At this

point we know the terms in the series look like Ae−λ
2κt cosλx. For the partial with

respect to x to be zero at x = L we need e−λ
2κt (−Aλ sinλL) = 0, which occurs for

λ = nπ
L . Therefore each term in the series be of the form Ae−

n2π2

L2 κt cos
(
nπ
L x
)
, so

that we're looking for a solution which looks like

a0
2

+

∞∑
n=1

ane
−n2π2

L2 κt cos
(nπ
L
x
)
,

where I put in the a0
2 to agree with the formula for Fourier series. When t = 0, this

should be f (x). But when t = 0 we have a half-range cosine series. Thus we have

an =
2

L

∫ L

0

f (x) cos
(nπ
L
x
)
dx.

This is as far as we can go with this problem since we aren't given a speci�c f .
On the other hand, since we've solved it for general f , we can write a Maple sheet
which has the integrals evaluated for given f , so we can solve this for any reasonable
starting f .

Here's an example in three variables:

Example 15. Solve the heat equation in the square 0 < x < 1, 0 < y < 1,
if the sides of the square are kept at temperature 0, and the initial temperature
distribution is u(x, y, 0) = f(x, y), where f(x, y) is a smooth function de�ned on
the square.

The heat equation is now

ut = κ(uxx + uyy).

In separating variables, there will be two constants of separation, since there are
three variables. First, we have

T ′

κT
=
X ′′

X
+
Y ′′

Y
.

It turns out to be more important to have the second order fractions equal to nice
things, so before we set things equal to a constant of separation, write it as

T ′

κT
− Y ′′

Y
=
X ′′

X
= −λ2,
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where I take a negative constant since the boundary conditions are going to lead
us to have trig functions for X. The ODE for X is X ′′ = −λ2, with solution
A1 cosλx+B1 sinλx. The equation for Y and T separates again:

Y ′′

Y
=

T ′

κT
+ λ2 = −µ2,

where we also expect trig functions for Y . The ODE for Y is Y ′′ = −µ2Y , with
solution A2 cosµy + B2 sinµy, and the ODE for T is T ′ = −κ(λ2 + µ2)T , with

solution T = T0e
−κ(λ2+µ2)t. Thus (absorbing the constant T0 as usual) the general

separated solution to the heat equation can be written as

e−κ(λ
2+µ2)t (A1 cosλx+B1 sinλx) (A2 cosµy +B2 sinµy) .

If this is to be zero on x = 0, we must have A1 = 0, and if it is to be zero on y = 0,
we must have A2 = 0, so we will be looking at a double series of sines. To make this
zero on x = 1, we need λ = mπ, and to make this zero on y = 1 we need µ = nπ.
The solution will be a series of these terms, a solution to the heat equation on the
square which is zero on all sides of the square must be of the form

u(x, y, t) =

∞∑
n=1

∞∑
m=1

bmne
−κπ2(m2+n2)t sin(mπx) sin(nπy).

To �nd the speci�c series which also satis�es the initial conditions, we need u(x, y, 0)
to equal f(x, y). But plugging in t = 0 just gives us the double sine series we saw
in Chapter 3, so (taking K = L = 1),

bmn = 4

∫ 1

0

∫ 1

0

f(x, y) sinmx sinny dy dx

as co�cients will give us the solution.

Problems for chapter 4

(1) Solve the boundary value problem ut = 2uxx, u(0, t) = u(2, t) = 0 for
t > 0, u(x, 0) = x on 0 < x < 2. Give a physical interpretation of this
boundary value problem.

(2) Solve the boundary value problem ut = 2uxx, ux(0, t) = ux(2, t) = 0 for
t > 0, u(x, 0) = x on 0 < x < 2. Give a physical interpretation of this
boundary value problem.

(3) Solve the wave equation utt = a2uxx u(0, t) = u(L, t) = 0 for t > 0,
u(x, 0) = f(x), ut(x, 0) = 0, by constructing a series solution. Since you
aren't told what f is, you will have to leave the coe�cients in terms of f
as in example 14.

(4) Solve the wave equation utt = a2uxx u(0, t) = u(L, t) = 0 for t > 0,
u(x, 0) = 0, ut(x, 0) = g(x), by constructing a series solution. Since you
aren't told what g is, you will have to leave the coe�cients in terms of g.

(5) Solve the wave equation in the square 0 < x < 1, 0 < y < 1

utt = a2(uxx + uyy)

with boundary conditions u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0, and
initial conditions u(x, y, 0) = f(x, y) and ut(x, y, 0) = 0. (Physically, this
is a vibrating drum with a square head.)
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CHAPTER 5

Bessel Functions

Bessel's equation of order ν ≥ 0 is this ODE:

(1) x2y′′ + xy′ +
(
x2 − ν2

)
y = 0.

(Note that this is not great terminology: it's a second order ODE no matter what
ν is.) We'll see where these come from a little later, and their connection to PDE's.
First, though, a few facts. In general, you expect a second order ODE to have two
linearly independent solutions. That's the case here, although when x = 0, the
coe�cients of the ODE are zero and some singular stu� can happen. The general
solution to the equation is y = c1Jν (x)+c2Yν (x), where Jν (x) is the Bessel function
of the �rst kind of order ν and Yν (x) is the Bessel function of the second kind of
order ν. So, what are these? It turns out that there is only one solution (up to
a constant) which is bounded at x = 0: that's Jν . The other guy blows up like
natural log of x or a negative power of x (depending on ν) at x = 0: that's Yν .
By assuming that Jν has a power series expression and plugging that into Bessel's
equation, you can �gure out what the power series must be. This is the method of
Frobenius. We won't go through that, though, and instead just take these as new
functions. Both Jν and Yν have an in�nite number of roots.

The power series expansion for Jν is

(2) Jν(x) =
xν

2νΓ(ν + 1)

{
1− x2

2(2ν + 2)
+

x4

2 · 4 · (2ν + 2)(2ν + 4)
+ · · ·

}
,

where Γ is the gamma function, which is a generalization of factorial. In particular,
if ν is a positive integer, Γ(ν + 1) = ν!. (However, the gamma function is de�ned
for other numbers as well, but we won't get into that.) Expansions for Yν exist but
are a bit messier, and I'll skip that.

A slight variation of Bessel's equation is

(3) x2y′′ + xy′ +
(
λ2x2 − ν2

)
y = 0.

This turns out to have general solution c1Jν (λx) + c2Yν (λx) . You will show this
in problem 2.

So, where do these come from in practice? Basically, they arise from putting
PDE's which involve the Laplacian into polar or cylindrical coordinates. It's not
worth getting into the derivation, but in polar coordinates, ∇2u = 1

r2uθθ+ 1
rur+urr.

(If you want to try this at home, use x = r cos θ, y = r sin θ and the chain rule:
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ur = ux
∂x
∂r + uy

∂y
∂r = ux cos θ + uy sin θ, �nd urr and uθθ similarly, plug in to the

right side and it eventually simpli�es to uxx + uyy.)

Example 16. A circular plate of radius 1 has initial temperature F (r) (so that
there's no theta dependence), and the rim is kept at temperature zero. Find the
temperature at time t. (Assume that the faces are insulated, so that it's strictly a
problem in the plane.) We won't be able to �nish this problem yet, but it will guide
us in a useful direction.

The temperature is independent of θ, so the boundary value problem for deter-
mining the temperature u(r, t) is

ut = κ

(
urr +

1

r
ur

)
,

with u(r, 0) = F (r) and u(1, t) = 0. This separates: let u = R(r)T (t) to get
RT ′ = κ

(
R′′T + 1

rR
′T
)
, so that

T ′

κT
=
R′′

R
+

1

r

R′

R
= −λ2.

The constant of separation is chosen to be negative so that the temperature remains
bounded (otherwise it would grow exponentially). Also, −λ2 goes well with Bessel
functions. From this, T ′ = −λ2κT and R′′ + 1

rR
′ + λ2R = 0, where the second

equation can be written as r2R′′ + rR + (λ2r2 − 02)R = 0. These have general

solutions T = C1e
−κλ2t and R = A1J0 (λr) + B1Y0 (λr). Since we require the

solution to be bounded at r = 0, we must have B1 = 0, so that a general separated

solution must be u(r, t) = Ae−κλ
2tJ0 (λr).

Now, we would like to construct a series solution, and require each term of the
series to always be zero on the edge of the plate at r = 1 (so that their sum will

automatically be zero at r = 1). To have u(1, t) = Ae−κλ
2tJ0(λ) to always be zero,

we need λ such that J0(λ) = 0. Call the positive roots of J0 λ1, λ2, and so on, we
get that a separated solution which is always zero on the edge of the plate must be

Ae−κλ
2
mtJ0(λmr). Therefore the series solution must be

u(r, t) =

∞∑
m=1

Ame
−κλ2

mtJ0(λmr).

To satisfy the initial condition, we need to have

(4)

∞∑
m=1

AmJ0(λmr) = F (r).

This is an example of a Fourier-Bessel series. To come up with a formula for the
coe�cients Am we will have to develop the theory of these series a bit.

More generally, we will want to write a function f(r) on an interval 0 < r < b
as a series

∑∞
m=1AmJn(λmr), where λm will be the zeroes of Bessel function Jn di-

vided by b. At least for now, n will be �xed (in the plate example, it was 0). Think-
ing back to Fourier series, we were able to �nd the coe�cients by using the inner

product 〈f, g〉 = 1
L

∫ L
−L f(x)g(x) dx, and the fact that

{
1√
2
, cos

(
kπx
L

)
, sin

(
kπx
L

)}
is an orthonormal set. What we need is the correct inner product and orthonormal
basis for the set of functions {Jn(λmr)}.
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Orthogonality of Bessel functions

To make things speci�c, I'll look at the interval 0 < r < 1; for the interval
0 < r < b we can just scale. The result is that for λ 6= µ,

(5)

∫ 1

0

rJn(λr)Jn(µr) dr =
µJn(λ)J ′n(µ)− λJn(µ)J ′n(λ)

λ2 − µ2
.

The reason is this: let y1 = Jn(λx) and y2 = Jn(µx). From (3), we know that

r2y′′1 + ry′1 + (λ2r2 − n2)y1 = 0

and

r2y′′2 + ry′2 + (µ2r2 − n2)y2 = 0.

Multiply the �rst equation by y2, the second equation by y1 and subtract to get

r2(y2y
′′
1 − y1y′′2 ) + r(y2y

′
1 − y1y′2) = (µ2 − λ2)r2y1y2,

which, if you divide by r, can be written as

d

dr
(r(y2y

′
1 − y1y′2)) = (µ2 − λ2)ry1y2.

Integrate both sides from 0 to 1:

1·(y2(1)y′1(1)−y1(1)−y′2(1))−0·(y2(0)y′1(0)−y1(0)−y′2(0)) = (µ2−λ2)

∫ 1

0

ry1(r)y2(r) dr.

Plug in what y1 and y2 and the result follows.
From (5): if λ and µ are both zeroes of Jn, then∫ 1

0

rJn(λr)Jn(µr) dr = 0,

i.e., Jn(λr) and Jn(µr) are orthogonal with respect to the inner product 〈f, g〉 =∫ 1

0
rfg dr.
We'll also need the inner product of Jn(λr) with itself. Taking the limit of (5)

as µ approaches a �xed λ, and using l'Hôpital's rule, we get

(6)

∫ 1

0

rJ2
n(λr) dr =

1

2

(
J ′n

2
(λ) +

(
1− n2

λ2

)
J2
n(λ)

)
,

so that if λ is a root of Jn,

(7)

∫ 1

0

rJ2
n(λr) dr =

J ′n
2
(λ)

2
.

It turns out that by looking at the power series for Bessel functions (in a process
similar to problem 1 in the homework) that one can show the following identity:

rJ ′n(r) = nJn(r)− rJn+1(r),

so that if λ is a root of Jn, we have J
′
n(λ) = −Jn+1(λ), so that we can write (7) as∫ 1

0

rJ2
n(λr) dr =

J2
n+1(λ)

2
.,

which is what one generally sees in references, and is a little more convenient, since
software generally has Bessel functions easily available, and not their derivatives.
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The point of all of this is to �nd coe�cients in a Fourier-Bessel series such as
(4). Suppose that

F (r) =

∞∑
p=1

ApJn(λpr)

on (0, 1), where λp is the p
th root of Jn. Then formally, i.e., ignoring any questions

about convergence, if λk is the kth root of Jn,∫ 1

0

rF (r)Jn(λkr) dr =

∞∑
p=1

Ap

∫ 1

0

rJn(λkr)Jn(λpr) dr = Ak

∫ 1

0

rJ2
n(λkr) dr = Ak

J2
n+1(λk)

2
,

since all other terms are zero. We can solve this for the coe�cients:

(8) Ak = 2

∫ 1

0
rF (r)Jn(λkr) dr

J2
n+1(λk)

.

The actual theorem is parallel to the theorem for Fourier series: if f and f ′ are
piecewise continuous on (0, 1), then the Fourier-Bessel series with coe�cients given
by (8) will converge to f(x) at every x for which f is continuous, and at jump
discontinuities it will converge to the average of the left and right hand limits.

Back to example 16. Given an initial temperature F (r), we need to write F as
the Fourier-Bessel series

∑∞
m=1AmJ0(λmr), using (8), and the solution will be

u(r, t) =

∞∑
m=1

Ame
−κλ2

mtJ0(λmr).

Unfortunately, unlike Fourier series, there's really no way to evaluate the integrals
in (8) in general. However, we can certainly do these numerically.

Vibrating drum example

Example 17. Suppose that I have a drum with a circular head, I push the
head out a little so that it has an initial displacement (not assumed to be radially
symmetric), and then let it go (starting with zero as initial velocity). What happens?

Let's be a little more precise. Put polar coordinates on the drum head, assume
that it has radius 1. Then the wave equation becomes

utt = a2
(

1

r2
uθθ +

1

r
ur + urr

)
,

where u (r, θ, t) is the displacement of the drum head at location r, θ, and time t.
The boundary conditions are that u (1, θ, t) = 0 for all t. The initial conditions are
that u (r, θ, 0) is some speci�ed F (r, θ), and that ut (r, θ, 0) = 0. We also assume
that the displacement remains bounded as t goes to in�nity. Let's try to separate
variables. Write u as R (r) Θ (θ)T (t) and get

RΘT ′′ = a2
(
RΘ′′T

r2
+
R′ΘT

r
+R′′ΘT

)
.

Divide through by a2RΘT to get

T ′′

a2T
=

Θ′′

r2Θ
+
R′

rR
+
R′′

R
.
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The left side depends only on t, the right on r and θ, so they must be a con-
stant. Moreover, the constant must be negative, or otherwise T will in general
grow exponentially: you get sinh's and cosh's. Thus

T ′′

a2T
= −λ2

and
Θ′′

r2Θ
+
R′

rR
+
R′′

R
= −λ2.

The second equation will separate again, since

−Θ′′

Θ
=
r2R′′

R
+
rR′

R
+ λ2r2 = µ2.

Here the constant of separation is positive so that we'll get Θ as a linear combination
of sines and cosines, so that Θ (θ) can be periodic in θ. After all, if we increase θ
by 2π we get back to the same point, and therefore expect the same displacement.
The equations for Θ and R are:

Θ′′ = −µ2Θ

and

r2R′′ + rR′ +
(
λ2r2 − µ2

)
R = 0.

The general solutions are T = A1 cosλat + B1 sinλat, Θ = A2 cosµθ + B2 sinµθ,
and R = A3Jµ (λr) + B3Yµ (λr), and the separated solution is a product of these.
As I said above, we expect Θ to be periodic with period 2π. That doesn't have to
be its least period, but certainly the least period is 2π

m for some positive integer m.
This gives us that µ = m, where m = 0, 1, · · · . (m = 0 is a special case: then Θ is
constant, which can certainly happen. This corresponds to no θ dependence in the
solution, which means it is the same in every direction). Also, B3 must be zero,
since Yµ is unbounded at the origin, and we'd poke a hole through the drum if that
term is in there. To get ut to be zero at t = 0, we want B1 to be zero. Finally, to
get Jm (λr) to be zero at r = 1, we need λ to be a root of Jm. We de�ne λmk to

be the kth positive root of Jm, so λ = λmk.
Thus a separated solution must be

Jm (λmkr) cosλmkat (A cosmθ +B sinmθ) .

These are the various modes of vibration of the drumhead. The frequency of
vibration for each mode is fmk = λmk

2π a (this is the value of t which increases the
angle by 2π, so that you repeat in time by this). Since these aren't in general
integral multiples of the lowest frequency, a drum won't sound as musical as, say, a
violin. A general solution will be a sum of these, chosen so that the initial conditions
are correct.

The general solution will be
∞∑
m=0

∞∑
k=1

Jm (λmkr) cosλmkat (Amk cosmθ +Bmk sinmθ) ,

Where we have to choose Amk and Bmk so that, at t = 0, we start with the given
initial conditions, i.e., we need

∞∑
m=0

∞∑
k=1

Jm (λmkr) (Amk cosmθ +Bmk sinmθ) = F (r, θ) .
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(we already have ut = 0 at t = 0 automatically, by choosing the value of B1 in the
formula for T (t) to be zero.) Write the sum as

F (r, θ) =

∞∑
m=0

( ∞∑
k=1

AmkJm (λmkr)

)
cos(mθ) +

( ∞∑
k=1

BmkJm (λmkr)

)
sin(mθ).

=

∞∑
m=0

Cm cos(mθ) +Dm sin(mθ)

First, think of this as a Fourier series (i.e., focus on the m sum and not the k sum).
From the theory of Fourier series, (holding r as a constant for the moment)

Cm(r) =

{
1
π

∫ π
−π F (r, θ) cosmθ dθ, m = 1, 2, · · ·

1
2π

∫ π
−π F (r, θ) dθ m = 0

and

Dm(r) =
1

π

∫ π

−π
F (r, θ) sinmθ dθ.

Now use the results for Fourier-Bessel series:

Amk =
2

Jm+1(λmk)2

∫ 1

0

rJm(λmkr)Cm(r) dr

=

{
2

π(Jm+1(λmk)2
)
∫ 1

0

∫ π
−π rF (r, θ)Jm(λmkr) cosmθ dr dθ, m = 1, 2, · · ·

1
π(Jm+1(λ0k)2

)
∫ 1

0

∫ π
−π rF (r, θ)J0(λ0kr) dr dθ, m = 0

and

Bmk =
2

Jm+1(λmk)2

∫ 1

0

rJm(λmkr)Dm(r) dr

=
2

π(Jm+1(λmk))2

∫ 1

0

∫ π

−π
rF (r, θ)Jm(λmkr) sinmθ dr dθ.

This is animated in �Drum.mws�.

Problems for chapter 5

(1) Use equation (2) to show that, for positive integers n,

d

dx
(xnJn(x)) = xnJn−1(x).

(2) Verify that c1Jν (λx) + c2Yν (λx) solves equation (3).
(3) Determine the solution u (r, t) to the boundary value problem ut = urr +

1
rur, u (1, t) = 0 for all t > 0, u (r, t) is bounded as r → 0, and u (r, 0) =
J0 (λ1r) + 2J0 (λ2r). Here J0 is the zeroth order Bessel function of the

�rst kind, and λn is its nth positive root.
(4) Determine the solution u (r, t) to the boundary value problem utt = urr +

1
rur, u (1, t) = 0 for all t > 0, u (r, t) is bounded as r → 0, u (r, 0) =
J0 (λ1r) + 4J0 (λ2r), and ut (r, 0) = 0.

(5) Suppose that the initial temperature of the plate in example 16 is F (r, θ),
in other words, it depends on θ as well as r. Find a series solution to this
problem, giving formulas for the coe�cients to the series as in example
17.
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(6) A solid cylinder of height and radius 1 and with di�usivity κ is initially
at temperature f(r, z) (i.e., no θ dependence). The entire surface (both
circular ends and the cylindrical side) is suddenly lowered to temperature
zero and kept at that temperature. Determine the temperature u(r, z, t)
of the cylinder for all t ≥ 0.
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