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Introduction

Recently, there has been a flurry of pa-

pers concerning “exact” methods of calculat-

ing Casimir energies or forces between arbi-

trary distinct bodies. Most notable is the re-

cent paper by Emig, Graham, Jaffe, and Kardar,

“Casimir forces between arbitrary compact ob-

jects,” arXiv:0707.1862 [cond-mat.stat-mech].
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This paper has spawned responses noting that

the methods are not so novel: Duplantier, stat-

ing that the idea was explicit in his famous pa-

pers with Balian (1977); Barton, pointing out pre-

cursor in Sommerfeld (1909); and most explicitly,

the appearance of a earlier drafted paper by Ken-

neth and Klich, “Casimir forces in a T operator ap-

proach.” arXiv:0707.4017 [quant-ph]
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Green’s Function Approach

We agree with these critiques, as to novelty of
the formulation, and note that indeed, the
derivation of the chief result of Emig et al. is
much more general than that given in their paper.
In fact, it is a consequence of the general formula
for Casimir energies (for simplicity here we
restrict attention to a massless scalar field)(τ is
the “infinite” time that the configuration
exists)[Schwinger, 1975]

E =
i

2τ
Tr ln G,
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where G is the Green’s function satisfying (matrix
notation)

(−∂2 + V )G = 1,

subject to some boundary conditions at infinity.
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Derivation

Start from the vacuum amplitude in terms of
sources,

〈0+|0−〉
K = eiW [K],

W [K] =
1

2

∫

(dx)(dx′)K(x)G(x, x′)K(x′).

From this the effective field is

φ(x) =

∫

(dx′)G(x, x′)K(x′).
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If the geometry of the region is altered slightly, as
through moving one of the bounding surfaces,
the vacuum amplitude is altered:

δW [K] =
1

2

∫

(dx)(dx′)K(x)δG(x, x′)K(x′)

= −
1

2

∫

(dx)(dx′)φ(x)δG−1(x, x′)φ(x′),

GG−1 = 1.
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Effective two-particle source

Upon comparison with the two particle term in

eiW [K] = ei
∫

(dx)K(x)φ(x)+i
∫

(dx)L

= · · ·+
1

2

[

i

∫

(dx)K(x)φ(x)

]2

,

we deduce

iK(x)K(x′)

∣

∣

∣

∣

eff

= −δG−1(x, x′).
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Thus the change in the generating functional is

δW =
i

2

∫

(dx)(dx′)G(x, x′)δG−1(x′, x)

= −
i

2

∫

(dx)(dx′)δG(x, x′)G−1(x′, x).

From this, in matrix notation

δW = −
i

2
Tr ln G⇒ E =

i

2τ
Tr ln G.
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Ambiguity in formula

The above formula for the Casimir energy is
defined up to an infinite constant, which can be
at least partially compensated by inserting a
factor as do Kenneth and Klich:

E =
i

2τ
Tr ln GG−1

0 .

Here G0 satisfies, with the same boundary
conditions as G, the free equation

−∂2G0 = 1.
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T -matrix

Now we define the T -matrix,

T = S − 1 = V (1 + G0V )−1.

The following is just standard scattering
theory a la Lippmann-Schwinger (1950).

There seem to be some sign and ordering
errors in Kenneth & Klich.
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Expression for Green’s function

The Green’s function can be alternatively written
as

G = G0 −G0TG0

=
1

1 + G0V
G0 = V −1TG0,

which results in two formulæ for the Casimir
energy

E =
i

2τ
Tr ln

1

1 + G0V
=

i

2τ
Tr ln V −1T.
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Interaction between two potentials

If the potential has two disjoint parts,

V = V1 + V2

it is easy to show that

T = (V1+V2)(1−G0T1)(1−G0T1G0T2)
−1(1−G0T2),

where

Ti = Vi(1 + G0Vi)
−1, i = 1, 2.
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Interaction in terms of Ti or Gi

Thus, we can write the general expression for the
interaction between the two bodies (potentials) in
two alternative forms:

E12 = −
i

2τ
Tr ln(1−G0T1G0T2)

= −
i

2τ
Tr ln(1− V1G1V2G2),

where

Gi = (1 + G0Vi)
−1G0, i = 1, 2.
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The first form is exactly that given by Emig et al.,

and by Kenneth and Klich, while the latter is actu-

ally easily used if we know the individual Green’s

functions.
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Green’s functions for δ-plates

We now use the second formula above to
calculate the Casimir energy between two
parallel semitransparent plates, with potential

V = λδ(z − z1) + λδ(z − z2).

The free reduced Green’s function is

g(z, z′) =
1

2κ
e−κ|z−z′|, κ2 = ζ2 + k2.

Here k = k⊥ and ζ = −iω is the Euclidean fre-

quency.
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The Green’s function associated with a single
potential is

gi(z, z′) =
1

2κ

(

e−κ|z−z′| −
λ

λ + 2κ
e−κ|z−zi|e−κ|z′−zi|

)

.
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Casimir interaction betweenδ-plates

Then the energy/area is (a = |z2 − z1|)

E1 =
1

16π3

∫

dζ

∫

d2k

∫

dz ln(1− A)(z, z),

A(z, z′) =
λ2

4κ2
δ(z − z1)

(

1−
λ

λ + 2κ

)

e−κ|z1−z2|

×

(

1−
λ

λ + 2κ

)

e−κ|z′−z2|

=

(

λ

λ + 2κ

)2

e−κae−κ|z′−z2|δ(z − z1).
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Casimir Energy

We expand the logarithm according to

ln(1− A) = −
∞
∑

n=1

An

n
.

For example the leading term is easily seen to
be (a = |z2 − z1|)

E(2) = −
λ2

16π3

∫

dζ d2k

4κ2
e−2κa = −

λ2

32π2a
,

which uses the change to polar coordinates,

dζ d2k = dκ κ2 dΩ. TAMU, August 6, 2007 – p.19/43



Generalλ

In general, it is easy to check that, because
A(z, z′) factorizes here, A(z, z′) = B(z)C(z′),

Tr ln(1− A) = ln(1− Tr A),

so the Casimir interaction between the two
semitransparent plates is

E =
1

4π2

∫ ∞

0

dκ κ2 ln

(

1−

[

λ

λ + 2κ
e−κa

]2
)

,

which is exactly the well-known result.

TAMU, August 6, 2007 – p.20/43



Multipole expansion

To proceed to apply this method to general
bodies, Emig et al. revert to an even older
technique, the multipole expansion. Let’s
illustrate this with a 2 + 1 dimensional version,
which allows us to describe cylinders with
parallel axes. We seek an expansion of the free
Green’s function

G0(R + r
′ − r) =

ei|ω||r−R−r
′|

4π|r−R− r′|

=

∫

dkz

2π
eikz(z−Z−z′)g0(r⊥ −R⊥ − r

′
⊥),
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Reduced Green’s function

g0(r⊥ −R⊥ − r
′
⊥) =

∫

(d2k⊥)

(2π)2

e−ik⊥·R⊥eik⊥·(r⊥−r
′

⊥
)

k2
⊥ + k2

z + ζ2
.

As long as the two potentials do not overlap, so
that we have r⊥ −R⊥ − r

′
⊥ 6= 0, we can write an

expansion in terms of modified Bessel functions:

g0(r⊥ −R⊥ − r
′
⊥) =

∑

m,m′

Im(κr)eimφI ′m(κr′)e−im′φ′

×g̃0
m,m′(κR), κ2 = k2

z + ζ2.
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Expression for g0
m,m′

By Fourier transforming, and using the definition
of the Bessel function

imJm(kr) =

∫ 2π

0

dφ e−imφeikr cosφ,

we easily find

g̃0
m,m′(κR) =

1

2π

∫

dk k

k2 + κ2
Jm−m′(kR)

Jm(kr)Jm(kr′)

Im(κr)Im(κr′)
,

which is in fact independent of r, r′.
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Discrete matrix realization

Thus we can derive an expression for the
interaction between two bodies, in terms of
discrete matrices,

Eint

L
=

1

8π2

∫

dζ dkz ln det
(

1− g̃0T̃1g̃
0T̃2

)

,

where the T̃ matrix elements are given by

T̃mm′ =

∫

dr r dφ

∫

dr′ r′ dφ′Im(κr)e−imφIm′(κr′)eim′φ′

×T (r, φ; r′, φ′).
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Numerics of multipole expansion

This method can be used, by successive
truncation of the matrices, to develop a
systematic multipole expansion of the Casimir
interaction between the bodies, which is quite
rapidly convergent.

Precisely the analogous expansion can be
developed in 3 dimensions, in terms of
spherical Bessel functions. This was what
was used in the Emig et al., and Kenneth and
Klich papers.

We are further exploring this technique.
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Capasso Method

A. Rodrigues, M. Ibanescu, D. Iannuzzi, F.
Capasso, J. D. Joannopoulos, and S. G.
Johnson, “Computation and visualization of
Casimir forces in arbitrary geometries:
non-monotonic lateral forces and failure
proximity force approximations,”
arXiv:0704.1890v2.

Calculate force from stress tensor from

〈E(r)E(r′)〉 =
ω2

c2
G(r− r

′, iω)

〈H(r)H(r′)〉 = ∇×G(r− r
′, iω)×

←−

∇
′;
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the Green’s dyadic satisfies the equation
(

∇×∇×+
ω2

c2
ε(r, iω)

)

G(r− r
′, iω)

= 1δ(r− r
′).
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This method is completely standard, indeed
Schwingerian, in the cases where G is known
exactly.

However, Capasso et al. use a numerical
engineering method: finite-difference
frequency-domain methods are employed in
2-dimensions to obtain forces between metal
squares and plates to 3% accuracy, “using
reasonable computational resources.”

Problem: Scalability?
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Earlier Emig method

R. Büscher and T. Emig, “Geometry and
Spectrum of Casimir Forces,” Phys. Rev. Lett.
94, 133901 (2005); T. Emig, R. L. Jaffe, M.
Kardar, and A. Scardicchio, “Casimir
Interaction between a Plate and a Cylinder,
Phys. Rev. Lett. 96, 080403 (2005)

Then from the change in the density of states,

E =
~c

2

∫ ∞

0

dq q δρ(q),

δρ(q) = −
1

π

∂

∂q
Tr lnMM−1

∞ ,
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where the matrix operatorM is given by the
Euclidean Green’s function

G0(x,x′, q) =
1

4π|x− x′|
e−q|x−x

′|

evaluated on the (Dirichlet, for example) sur-

faces. M∞ is defined at infinite surface separa-

tion.
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Applications

Emig first used this method to calculate the
force between corrugated surfaces.

He later used the technique to calculate the
exact force between a cylinder and a plate.
The determinant is obtained by a truncation
on partial waves; l = 25 is sufficient even for
a/R = 0.1 Strong deviation from the PFA is
seen for a/R ≥ 1. (As Geis and Klingmüller
note, 1% deviations from the PFA occur when
a/R ∼ 0.01.) (a is the distance between the
cylinder and plate, R is the radius of the
cylinder.)
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Bulgac et al. method

A. Bulgac, P. Marierski, and A. Wirzba,
“Scalar Casimir effect between Dirichlet
spheres or a plate and a sphere,” Phys. Rev.
D 73, 025007 (2006)

They use a modified Krein formula for the
change in the density of states due to the
presence of N scatterers,

δg(ǫ) =
1

2πi

d

dǫ
ln det SN(ǫ),

where SN is the scattering matrix for N point
scatterers.
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This leads to

E =
~c

2π

∫ ∞

0

dk4 ln detM(ik4),

where M is the multiple-scattering matrix, an
energy integral over the multiple-scattering
phase shift.
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Applications

They obtain results for the interaction of two
spheres, or a sphere and a plate (Dirichlet).

“The exact results . . . are easy to calculate
and definitely simpler to evaluate than in a
path integral approach.”

“Proximity formula and the semiclassical/orbit
approaches are limited to small separations
only, typically much smaller than the
curvature radii of the two surfaces.”
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Bordag method

M. Bordag, “Casimir effect for a sphere and a
cylinder in front of a plane and corrections to
the proximity force theorem,” Phys. Rev. D 73,
125018 (2006); “Generalized Lifshitz formula
for a cylindrical plasma sheet in front of a
plane beyond proximity force approximation,”
Phys. Rev. D 75, 065003 (2007).

He rederives the representation for the
Casimir energy found by Bulgac et al., and by
Emig et al., using a path integral approach:

E =
1

2T
Tr ln K,
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K(z, z′) =

∫

dx dy H(x, z)D(x, y)H(y, z′),

where H is the surface profile function,

H(x, z) = δ(x− f(z)).
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Applications

He obtains an exact expression for the
interaction between a cylinder and a plane,
with thereby corrections to the PFA, for both
TE and TM modes, agreeing with Emig.

For a sphere and a plane he only obtains the
large-separation limit, agreeing with Bulgac.

He uses the same method to calculate the
first correction to the PFA for a cylindrical
graphene sheet in front of a flat graphene
sheet or dielectric plate.
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Dalvit method

D. A. R. Dalvit, F. C. Lombardo, F. D.
Mazzitelli, and R. Onofrio, “Exact Casimir
interaction between eccentric cylinders,”
Phys. Rev. A 74, 020101(R) (2006); “Exact
zero-point interaction energy between
cylinders,” New J. Phys. , 240 (2006)

They use the argument principle to calculate
the interaction between conducting cylinders
with parallel axes,

E12 =
~cL

4π

∫ ∞

0

dy y ln M(iy),
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where M is a function which vanishes at the
eigenvalues.

As we’ve seen above, this is an exactly
solvable problem.
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Multiple-Scattering Approach

R. Balian and B. Duplantier, “Electromagnetic
waves near perfect conductors. I. Multiple
scattering expansions and distributions of
modes,” Ann. Phys. (N.Y.) 104, 300 (1977);
“Electromagnetic waves near perfect
conductors. II. Casimir effect,” ibid. 112, 165
(1978); “Geometry of the Casimir effect,
quant-ph/0408124.

They famously confirmed Boyer’s result for
the Casimir self-repulsion of a perfectly
conducting spherical shell.
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Most importantly, they derive a multiple
scattering formalism that is completely
equivalent to the recent Emig et al. approach,
at least for the case of perfect conductors.
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Comments and Prognosis

The methods proposed are in fact not
particularly novel, and illustrate the ability of
physicists to continually rediscover old
methods.

What is new is the ability, largely due to
enhancement in computing power and
flexibility, to evaluate continuum determinants
(or infinitely dimensional discrete ones)
accurately numerically.

This will make it possible to compute Casimir
forces for geometries previously inaccessible.
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Whether this will lead to improved conceptual
understanding, or to better comparison with
experiment, remains to be seen.
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