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ABSTRACT

Closed Path Approach to Casimir Effect in Rectangular Cavities and Pistons. (July 2009)

Zhonghai Liu, Doctor of Philosophy, Texas A&M University

Chair of Advisory Committee: Stephen Fulling

We study thoroughly Casimir energy and Casimir force in a rectangular cavity and

piston with various boundary conditions, for both scalar field and electromagnetic (EM)

field. Using the cylinder kernel approach, we find the Casimir energy exactly and analyze

the Casimir energy and Casimir force from the point of view of closed classical paths (or

optical paths). For the scalar field, we study the rectangular cavity and rectangular piston

with all Dirichlet conditions and all Neumann boundary conditions and then generalize

to more general cases with any combination of Dirichlet and Neumann boundary condi-

tions. For the EM field, we first represent the EM field by 2 scalar fields (Hertz potentials),

then relate the EM problem to corresponding scalar problems. We study the case with all

conducting boundary conditions and then replace some conducting boundary conditions

by permeable boundary conditions. By classifying the closed classical paths into 4 kinds:

Periodic, Side, Edge and Corner paths, we can see the role played by each kind of path.

A general treatment of any combination of boundary conditions is provided. Comparing

the differences between different kinds of boundary conditions and exploring the relation

between corresponding EM and scalar problems, we can understand the effect of each kind

of boundary condition and contribution of each kind of classical path more clearly.
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CHAPTER I

INTRODUCTION

A. Origin of Casimir Effect

In 1948, H.G.Casimir predicted the well-known Casimir effect [1], that is, two extremely

clean, neutral, parallel, micro-flat conducting surfaces, in a vacuum environment, at zero

temperature, attract one another by a very weak force that varies inversely as the fourth

power of the distance between them [2] :

F(a) = − π
2~c

240a4 A (1.1)

where a is the separation between two parallel plates, A � a2 is their area and c is the

speed of light. In the following we set ~=c=1. From dimensional analysis with ~, c and the

separation a, the Casimir force per unit area is inversely proportional to the fourth power

of the separation a. The Casimir effect was first demonstrated by M.J. Sparnaay in 1958

[3] and was confirmed to good accuracy by S. K. Lamoreaux’s experiment in 1997 [4].

The Casimir effect is a prediction of quantum electrodynamics (QED). However, Casimir

and Polder’s first attempt to compute the Casimir energy (force) was not based on QED;

instead, they investigate the Van der Waals forces in colloidal fluids [5]. There is an in-

teresting story on the history of the Casimir Effect that H.B.G.Casimir stated on his own

words [6]:

During a visit I paid to Copenhagen, it must have been in 1946 or 1947, Bohr asked

me what I had been doing and I explained our work on Van der Waals forces. “That’s nice,

that is something new”, he said. I then explained I should like to find a simple and elegant

derivation of my results. Bohr thought it over, then mumbled something like “must have

something to do with the zero-point energy”. That was all, but in retrospect I have to admit
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that I owe much to this remark.

It turns out that zero-point energy is the key word to understand Casimir effect.

B. Understanding of Casimir Effect

The Casimir effect is widely regarded as a rising from the zero-point fluctuations intrinsic

to any quantum system. The QED vacuum is a sea of virtual photons; in another words,

it may be regarded as an enormously large collection of harmonic oscillators representing

the fluctuations. A harmonic oscillator with frequency ω has a ground state energy which

is nonzero:

ε(ω) =
1
2
ω (1.2)

For free Minkowski space, the spectrum of frequency is continuous, so integration over

possible frequency gives the energy density:

ε =

∫ ∞

0
ε(ω)ρ(ω) dω =

∫ ∞

0

1
2
ωρ(ω) dω (1.3)

When boundaries are introduced into free Minkowski space, the spectrum of frequency will

be discrete; the integration in (1.3) has to be replaced by a summation:

ε =
∑

J

1
2
ωJ (1.4)

With boundaries the field is constrained to a finite spatial volume and is forced to satisfy

certain boundary conditions on the boundaries. It is the presence of boundaries that makes

the field constrained and changes the spectrum from continuous to discrete [7]. The Casimir

effect can be understood as resulting from the modification of zero-point fluctuations of

QED vacuum [8]. For the original model, parallel plates, Casimir energy corresponds to
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the energy difference between constrained field and unconstrained field (free field) [7]:

4ε = εplates − ε f ree =
∑

J

1
2
ωJ −

∫ ∞

0

1
2
ωρ(ω)dω (1.5)

One is faced with the problem of ultraviolet divergence when summing the zero-point en-

ergy over all modes [9]. Careful renormalization is needed to take care of the divergence.

There are many approaches to yield finite results for Casimir energy with different mecha-

nisms.

C. Various Approaches to Casimir Effect

Various methods have been developed to evaluate Casimir energy since H.B.G. Casimir’s

famous paper [1] in 1948. The Casimir energy can be defined directly as the sum of half-

frequencies that is interpreted via ζ-function regularization [10]. Multiple reflection ex-

pansion [11] and optical approximation [12] are based on the analysis of density of states

and they develop general methods to deal with either flat or curved surfaces by bringing in

stationary path/optical path analysis. The Green function formalism [13], and heat kernel

expansion [14] find systematic applications to quite a lot of problems.

Our approach to scalar field Casimir problems is closed path analysis based on the

cylinder kernel [15, 16]. For the electromagnetic (EM) field, we find that the Hertz potential

approach is convenient to convert the EM problem to a scalar problem; thus we can analyze

it by closed paths as well [17].

Casimir energy depends strongly on geometry and the relation between sign of Casimir

force and geometry is nontrivial. The earliest and simplest geometry is parallel plates,

which can be dealt with by almost every approach. The piston geometry has attracted

much interest since Cavalcanti published his first piston paper [18]. The piston geometry

is our focus in this dissertation, for both scalar field and EM field. The measurement of
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the force between two parallel plates is not as easy as its derivation because of alignment.

An experimentally interesting geometry is a sphere above a plate, since that is a highly

symmetrical geometry. We will discuss more about measurement in the following section.

D. Measurement and Application of Casimir Effect

One of the main pioneers in measuring the Casimir force was M.J. Sparnaay in 1958 [3].

He used the standard parallel plate geometry with a spring balance, measuring the capaci-

tance between the two plates to determine distances, obtaining results not in contradiction

with the Casimir theory, but with large experimental errors. Since then greater and greater

accuracy was achieved through a succession of different techniques. The Casimir effect was

measured more accurately by S. K. Lamoreaux in 1997 [4] and by U. Mohideen’s group in

1999 with the use of an atomic force microscope (AFM) [19]. In practice, rather than using

two parallel plates, which would require phenomenally accurate alignment to ensure they

were parallel, the experiments use one plate that is flat and another plate that is a part of a

sphere with a large radius. In 2001, a group at the University of Padua finally succeeded in

measuring the Casimir force between parallel plates using micro-resonators [20].

Presently there are many applications of the Casimir effect to modern physics. Per-

haps most directly applicable to theoretical physics is the Casimir effect’s role in the ex-

tremely small distance scales at which quarks interact; physicists studying QCD have mod-

eled hadron interactions within nucleons using the chiral bag model [9]. The dynamical

Casimir effect is one of the more interesting predictions in modern physics. Physicists have

theorized that such an effect might explain the phenomenon of sonoluminescence [21].

Moreover, it has been suggested that the Casimir forces have application in nanotech-

nology, in particular silicon integrated circuit technology.
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E. Structure of This Dissertation

We shall begin in Chapter II with the foundation of the closed path approach based on the

cylinder kernel, with a brief review of other approaches; by applying every approach to the

parallel plates model we explore the relation between our approach and others. In Chapter

III a thorough study of the scalar piston will be presented, starting from a 3-D rectangular

cavity and extending to the piston. Comparison with existing results will be conducted. By

means of Hertz potentials, we deal with the EM piston in Chapter IV. Once the EM field is

converted to scalar fields, the systematic method for scalar fields developed in Chapter III

is convenient to apply. The Casimir effect for a curved boundary such as a sphere will be

investigated in Chapter V, where the idea of multiple reflection expansion (MRE) is applied

to compute the corresponding Green’s function. Chapter VI presents conclusions.
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CHAPTER II

FOUNDATION OF CLOSED PATH APPROACH

Although the vacuum energy observable in the laboratory arises from quantum electrody-

namics (QED), the simpler model of a scalar field is frequently studied and casts light on

most of the questions of principle that arise for QED. In Chapter IV we will treat an elec-

tromagnetic field by decomposing it into two corresponding scalar fields by means of Hertz

potentials.

This chapter presents a systematic study of the relationship between vacuum energy

and Green’s function for a massless scalar field since the scalar field model provides a

simple relationship to classical paths which can improve our understanding intuitionally.

Since our concern is vacuum energy or vacuum energy density, it’s a good idea to explore

the stress tensor, which has energy density as its first component, T00. It turns out that

vacuum energy density is closely related to the propagators.

A. Relation between vacuum energy and propagator of Klein-Gorden equation

A massless scalar field satisfies the Klein-Gordon equation (K-G equation or wave equa-

tion):
∂2φ

∂t2 − ∇2φ = 0 (2.1)

For the whole space, the normal-mode solution satisfying the K-G equation, with its stan-

dard normalization, is:

φ(r, t) = φ(r) e−ıωt =
1√
2ω

eıωre−ıωt (2.2)
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The corresponding propagator (Green’s function) G(t−t′, r, r′) satisfies the inhomogeneous

Klein-Gordon equation:

(
∂2

∂t2 − ∇2)G(t − t′, r, r′) = −δ(D)(r − r′)δ(t − t′) (2.3)

and it is understood as the vacuum expectation value (VEV) of the time-ordered product of

two fields [21]:

G(t − t′, r, r′) = ı〈Tφ(r, t)φ(r′, t′)〉 (2.4)

where T is the time ordering operator.

It’s necessary to discuss the reduced Green’s function G(t − t′, r, r′) by taking the

inverse Fourier transform of G(t − t′, r, r′) with respect to time t:

G(r, r′, ω) =

∫ ∞

−∞
dt e−ıω(t−t′)G(t − t′, r, r′) (2.5)

it thus satisfies

(ω2 + ∇2)G(r, r′, ω) = −δ(D)(r − r′) (2.6)

Correspondingly, G(t−t′, r, r′) can be achieved by taking Fourier transform of G(t−t′, r, r′)

with respect to ω:

G(t − t′, r, r′) =

∫ ∞

−∞

dω
2π

eıω(t−t′)G(r, r′, ω) (2.7)

The reduced Green’s function G(r, r′, ω) is a good starting point. The eigenfunction expan-

sion for the reduced Green’s function is

G(r, r′, ω) =
∑

n

φn(r)φn(r′)
k2

n − ω2 (2.8)

For the whole space, however, eigenfunctions φn(r) should be replaced by the usual set of

plane waves normalized to a δ-function. This gives

G f (r, r′, ω) =

∫
d3 p

(2π)3

eıp·(r−r′)

p2 − ω2 =
eıω|r−r′ |

4π | r − r′ | (2.9)
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We call the reduced Green’s function for the whole space free propagator; it will be useful

later.

Now we derive the relation between the stress tensor and the Green’s function. The

stress tensor, for flat space and minimal coupling, is [2]

T00(t − t′, r, r′) =
1
2

[
∂0φ∂0′φ

′ + ∂1φ∂1′φ
′ + ∂2φ∂2′φ

′ + ∂3φ∂3′φ
′]

=
1
2

[∂0∂0′ + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G(r, t; r′, t′)

ı

(2.10)

Taking the inverse Fourier transform on both side, we find from (2.4),

T00(t − t′, r, r′) =
1
2

[ω2 + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G(r, r′, ω)

ı
(2.11)

We now integrate over ω; the relation between vacuum energy density and the reduced

Green’s function comes out as

T00(t − t′, r, r′) =

∫ ∞

−∞

dω
2π

T00(r, r′, ω) e−ıω(t−t′)

=
1
2

∫ ∞

−∞

dω
2π

e−ıω(t−t′) [ω2 + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G(r, r′, ω)

ı

(2.12)

From the analysis above, we see that once we know the reduced Green’s function, the

energy density can be evaluated by integration over ω. Now we apply Green’s function’s

approach to the parallel plates with separation a. For parallel, the Green’s function is [21]:

Gq(t − t′, r, r′) =

∫
d2k⊥
(2π)2 eık⊥·(x−x′)

∫
dω
2π

e−ıω(t−t′)g(z, z′, λ) (2.13)

Here λ2 = ω2 − k2
⊥ and the reduced Green’s function g(z, z′, λ) satisfies

(− ∂
2

∂z2 − λ2)g(z, z′, λ) = δ(z − z′) (2.14)

Take into account the Dirichlet boundary condition on plates, g(0, z′, λ) = g(a, z′, λ) = 0,
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we got the reduced Green’s function as

g(z, z′, λ) = − 1
λ sin λa

sin λz sin λ(z − a) (2.15)

Substituting into (2.13) and (2.10), the vacuum energy density for parallel plates is:

T q00(r, r) = − 1
2ı

∫ ∞

−∞

dω
2π

d2k⊥
(2π)2

1
λ sin λa

[(ω2 + k2
⊥) sin λz sin λ(z − a) + λ2 cos λz cos λ(z − a)]

= − 1
16π3ı

∫ ∞

−∞
dωd2k⊥

1
λ sin λa

[ω2 cos λa − k2
⊥ cos λ(2z − a)]

(2.16)

Perform a complex frequency rotation: ω→ ıζ, λ→ ıκ

T q00(r, r) = − 1
16π3

∫
dζ

∫
dk2
⊥
ζ2

κ
coth κa +

1
16π3

∫
dζ

∫
dk2
⊥

k2
⊥ cosh κ(2z − a)

κ sin κa
= − π2

1440
1
a4

(2.17)

This recovers the well known result for the 3-D parallel plates model. However, this is not

the only way to construct the Green’s function.

An alternate way to construct the Green’s function possibly more instructively is to

introduce the method of images. By the method of images, we can construct the Green’s

function for parallel plates starting from the free propagator in (2.9),

Gq(r, r′, ω) =

∞∑

n=−∞
[

eıω(2na+z−z′)

4π(2na + z − z′)
− eıω(2na+z+z′)

4π(2na + z + z′)
] (2.18)

Knowing this Green’s function is enough to evaluate the energy density for parallel plates.

Before doing that, let’s study the contribution to the stress tensor from the free propagator.

Substituting (2.9) into (2.13), and performing a complex frequency rotation ω → ıζ, we
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can get the 00-component of the stress tensor contributed by the free propagator:

T f
00(r, r′) =

1
2

∫ ∞

−∞

dω
2π

[ω2 + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G f (r, r′, ω)

ı

=
1

4π2

∫ ∞

0
dωω2 eıω|r−r′ |

ı | r − r′ | = −
1

4π2

∫ ∞

0
dζ ζ2 e−ζ |r−r′ |

| r − r′ |
= − 1

2π2

1
| r − r′ |4

(2.19)

To obtain the energy density we would like to set r = r′. However, (2.19) is determined

by the distance between the two points and inversely proportional to the fourth power of

that length. In (2.18) we see that the Green’s function for plates can be constructed as a

summation of free Green’s functions with different path lengths. From the point of view of

the method of images, the summation is over number of reflections. Different numbers of

reflection indicate different lengths of path between the two points, dn. When putting the

two points identical, the contribution from the free propagator is divergent, hence it should

be excluded. But all other terms in (2.18) contributes a finite result.

T q00(r, r) =

∞∑

n=−∞
− 1

2π2

1
d4

n
= − 1

2π2

∞∑

n=−∞
[

1
(2na)4 −

1
(2na + 2z)4 ] (2.20)

The total vacuum energy is the integral of energy density over space. The integral of the

second sum in (2.20) yields a surface divergent term which is independent of the plate

separation a and hence does not affect the Casimir energy. We will discuss this issue in

later chapters, see [33, 37] for more extensive discussion. The integral of the first sum in

(2.20), which is position-independent, yields the total energy of the parallel plates:

ε = − a
2π2

∞∑

n=−∞

1
(2na)4 = − π2

1440
1
a3 (2.21)
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B. Relation between vacuum energy and propagator of Laplace equation

1. Definition of cylinder kernel and its relation to vacuum energy density

The Laplace equation relates to the K-G equation by converting the time parameter t in

K-G to an imaginary time parameter t → ıt:

∂2φ

∂t2 + ∇2φ = 0 (2.22)

The Green’s function of Laplace equation is named as Poisson kernel or cylinder kernel,

we will use the second name “cylinder kernel” throughout this dissertation. We should

understand that cylinder kernel is just a name for one special kind of Green’s function (for

Laplace equation) and has nothing to do with circular symmetry. The cylinder kernel in

unconstrained space is defined as:

T (t, r, r′) = −
∫

dωφ(r)φ∗(r′)e−tω = −
∫

dω
1
ω

eıω(r−r′)e−ωt

= − 1
2π2

1
t2+ | r − r′ |2

(2.23)

Correspondingly, the cylinder kernel in constrained space has discrete spectrum other than

continuous spectrum.

T (t, r, r′) = −
∑

n

φn(r)φ∗n(r′)e−tωn (2.24)

On the other hand, the stress tensor of a scalar field in flat surface is,

Tµν = (1 − 2ξ)∂µφ∂νφ + (2ξ − 1
2

)ηµν∂λφ∂λφ − 2ξφ∂µ∂νφ (2.25)

where R is the curvature scalar, and ξ labels different possible gravitational couplings. Note

that ξ does not affect the total energy. Throughout this dissertation we choose ξ= 1
4 because

doing so simplifies the relation between the stress tensor and the total energy. When ξ is
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set to 1
4 , the energy density (00-component of the stress tensor) is simplified as [33]:

T00 =
1
2

∑

n

ωn|φ(r)|2 (2.26)

Based on the definition of cylinder kernel in (2.23) and (2.24) and the definition of vacuum

energy density in (2.26), we can see the relation between cylinder kernel and vacuum en-

ergy density directly. By taking second derivative of cylinder kernel with respect to t we

get the vacuum energy density:

ε(t, r, r) = T00(t, r, r) = − 1
2

lim
t→0

∂2

∂t2 T (t, r, r) =
1
2

∫
ωeıω(r−r′)e−tωdω (2.27)

The exponential term e−tω can be understood as a cutoff function. The structure of cutoff de-

pendence is simple and clear since we have an asymptotic expansion in t. For instance, the

leading divergent term depending on cutoff is proportional to the volume V of the rectangu-

lar cavity and t−4, as we will discuss in detail later. The inverse of t here is the counterpart

of Λ (upper limit of frequency) in [12]. However, not all divergences are removed even

after the cutoff. Be aware that there are also other divergences such as a surface divergence

proportional to 1/d3 appearing in the expression of energy density; here d is the distance

from r to r′. we will talk about that when studying the rectangular cavity in the next section.

2. An alternate derivation of the relation between cylinder kernel and vacuum energy

It is worthwhile to investigate the relation between energy density and free propagator as

in (2.11) in more detail.

T00(r, r′, ω) =
1
2

[ω2 + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G f (r, r′, ω)

ı

=
ω2

ı
G f (r, r′, ω) =

ω2

4πı
eıω|r−r′ |

| r − r′ | =
ω2

4π
sinω | r − r′ | −ı cosω | r − r′ |

| r − r′ |
(2.28)
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If we take Laplace transform on both sides of (2.28) with respect to ω, we get,

T00(r, t; r′, t′) =
1

4π
L[ω2 sinω | r − r′ |

| r − r′ | , ω→ t] − ı 1
4π

L[ω2 cosω | r − r′ |
| r − r′ | , ω→ t] (2.29)

where L[ f (ω), ω → t] represents Laplace transform operation of f (ω) with respect to ω.

We take the real part since the energy density is a real number. To go forward, refer to the

formula [22]

L[ω2 f (ω), ω→ t] =
∂2

∂t2 L[ f (ω), ω→ t] (2.30)

so ω2 inside the L operation is equivalent to two t derivative outside L, so

T00(r, t; r′, t′) =
1

4π
∂2

∂t2 L[
sinω | r − r′ |
| r − r′ | ] =

1
4π2

∂2

∂t2

1
(t − t′)2+ | r − r′ |2

= −1
2
∂2

∂t2 [− 1
2π2

1
(t − t′)2+ | r − r′ |2 ]

(2.31)

The cylinder kernel T is defined as :

T (r, t; r′, t′) = − 1
2π2

1
(t − t′)2+ | r − r′ |2 (2.32)

Since we get this expression from the free propagator, it is the cylinder kernel for the whole

space; we call it free cylinder kernel. The relation between energy density and cylinder

kernel is [33]:

T00(r, t; r′, t′) = −1
2
∂2

∂t2 T (r, t; r′, t′) = − 1
2π2

1
| r − r′ |4 (2.33)

Thus we have reproduced the result from Green’s function analysis in (2.19) by cylinder

kernel analysis.

Let’s recall the differential equation which the reduced Green’s function satisfies:

(ω2 + ∇2)G(r, r′, ω) = −δ(D)(r − r′) (2.34)

As mentioned in (2.7), reduced Green’s function and Green’s function are related by Fourier
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transform (with respect to ω). Starting from the reduced Green’s function, we can get

more information besides the corresponding Green’s function. As we see above, taking the

Laplace transform (with respect to ω) of the reduced Green’s function leads to the cylinder

kernel (Poisson kernel),

T (r, t; r′, t′) =

∫ ∞

0
dω e−ω(t−t′)G(r, r′, ω) (2.35)

which is the 4-D Green’s function of the inhomogeneous Laplace equation

(
∂2

∂t2 + ∇2)T (r, t; r′, t′) = −δ(D)(r − r′)δ(t − t′) (2.36)

The term e−ω(t−t′) is understood as a cut off function, and the parameter t is a manifestation

of cut off frequency; that is, 1
t ∼ Λ with Λ the cut-off frequency [12, 23].

3. Application to 3-D parallel Plates

For the parallel plates, we can build the cylinder kernel from the free cylinder kernel by the

method of images. It is helpful if we define an operator Da as

DaT (t, x, r⊥, x′, r′⊥) = −T (t, 2a − x, r⊥, x′, r′⊥) (2.37)

the cylinder kernel satisfying both Dirichlet boundary conditions at x = 0 and x = a is

T DD(t, x, r⊥, x′, r′⊥) = T
f
+ D0T + DaT + D0DaT + DaD0T + ... (2.38)

the cylinder kernel is organized by number of reflections:

T DD(t, x, r⊥, x′, r′⊥) = − 1
2π2

∞∑

−∞

1
t2 + (2la)2 +

1
2π2

∞∑

−∞

1
t2 + (2la + 2x)2 (2.39)

The corresponding energy density is:

εDD(r, t; r, t′) = −1
2
∂2

∂t2 T DD(r, t; r, t′) = − 1
2π2

∞∑

−∞
[

1
(2la)4 −

1
(2la + 2x)4 ] (2.40)
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The vacuum energy density derived from cylinder kernel using methods of images in (2.40)

recovers the expression in (2.20) which is derived from the Green’s function of K-G equa-

tion. Integrate the vacuum energy density in (2.40) over space to get the total energy, it will

definitely recover the result in (2.21):

EDD =

∫
εDD(r, t; r, t′) d3r = − a

2π2

∞∑

n=−∞

1
(2na)4 = − π2

1440
1
a3 (2.41)

4. Heat Kernel Analysis

If instead we take Laplace transform of the reduced Green’s function with respect to E =

ω2, we will get the heat kernel [9],

K(r, t; r′, t′) =

∫ ∞

0
dE e−E(t−t′)G(r, r′, ω) = t−

3
2 e−

|r−r′ |2
4t (2.42)

which is the Green’s function of the inhomogeneous heat equation

(
∂

∂t
− ∇2)K(r, t; r′, t′) = −δ(D)(r − r′)δ(t − t′) (2.43)

C. Optical Approximation Analysis

Let’s land our discussion on the free propagator one more time.

T f
00(r, r′, ω) =

1
2

[ω2 + ∂1∂1′ + ∂2∂2′ + ∂3∂3′]
G f (r, r′, ω)

ı
=
ω2

ı
G f (r, r′, ω) (2.44)

The energy density is thus

T f
00(r, r′) =

∫ ∞

−∞

dω
2π

T f
00(r, r′, ω) =

∫ ∞

0
dω

ω2

πı
G f (r, r′, ω)

=

∫ ∞

0

1
2
ωdω[

2ωG(r, r′, ω)
πı

] =

∫ ∞

0

1
2
ωdω[

2ω
π
ImG(r, r′, ω)]

(2.45)

where
2ω
π
ImG(r, r′, ω) = ρ(r, r′, ω) (2.46)
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is the density of states.

For the parallel plates, we can build the corresponding Green’s function by method of

images as we did in (2.18). As we already argued, the Green’s function is a summation

over number of reflections, n. The nth Green’s function is related to a length of path, dn:

G f lat(r, r′, ω) =
∑

n

(−1)n Gn(r, r′, ω) =
∑

n

(−1)n eıωdn

4πdn
(2.47)

(−1)n marks the difference between odd and even numbers of reflections. The energy den-

sity is therefore:

T f lat
00 (r, r′) =

∫ ∞

0

dω
πı

ω2G f lat(r, r′, ω) =
∑

n

(−1)n
∫ ∞

0

dω
πı

eıωdn

4πdn

= − 1
2π2

∑

n

(−1)n 1
d4

n

(2.48)

The optical approximation developed by Scardicchio and Jaffe [12] provides a formula

for Casimir energy density for general surfaces [12],

T00(r, r′) = − 1
2π2

∑

r

(−1)r

√4r(x)
d3

r (x) (2.49)

where the parameter 4r is called ‘enlargement factor’ in [12], which is the modification

of the inverse-square law of radiation intensity caused by the curvature of a boundary.

Determining the enlargement factor is the key part of the optical approximation and that is

not easy. We will investigate the enlargement factor for a spherical surface in Chapter V.

However, for a flat surface, the enlargement factor is simple, 4r = 1/d2
r . Therefore, for flat

surface case, the optical approximation reduces to (2.48) which is derived from method of

images. From the point of view of the cylinder kernel, for a flat surface, if we construct the

cylinder kernel by method of images and express the cylinder kernel as a summation over

number of reflections, we can reproduce the optical approximation’s result for flat surface

and it turns out that the energy density varies inversely as the fourth power of the lengths
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of the closed paths as the optical approximation.
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CHAPTER III

3-D PISTON WITH MIXED BOUNDARY CONDITIONS FOR SCALAR FIELD

Since R. M. Cavalcanti introduced a 2-dimensional piston model obeying Dirichlet bound-

ary condition (B.C.) for massless scalar field [18], the piston geometry has attracted more

and more interest and been generalized to higher dimension, different B.C. (Neumann B.C.

or mixed B.C.) and even different kind of field (Electromagnetic field) [24, 25, 26, 27, 28,

29, 30, 31, 32, 33]. A 3-dimensional piston has a movable partition inside a rectangular

cylinder as shown in Fig.1. A great advantage of piston geometry is the cancelation of sur-

face divergent terms of region A and region B [18] in the force calculation. When it comes

to the B.C., the movable partition and the 6 faces of the rectangular cylinder may obey dif-

ferent B.C.. Edery studied the scalar piston with purely Dirichlet B.C. and purely Neumann

B.C. on all faces and the partition [27, 28]. Zhai&Li studied the scalar piston with hybrid

B.C. (Neumann B.C. on partition and Dirichlet B.C. elsewhere) [29]. Lim&Teo studied

both scalar piston with purely Dirichlet/Neumann B.C. and electromagnetic piston with

perfect electric conductor/perfect magnetic conductor [30, 31, 32]. Jaffe’s group studied

the electromagnetic piston with perfect conductor conditions using their optical approxi-

Fig. 1. 3-dimensional piston model. The freely moving partition divides the rectangular
cylinder into 2 regions: A and B.
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mation method [24, 26]. Electromagnetic pistons with cross sections other than rectangular

are considered by Marachevsky [34, 35].

In this chapter, we will investigate the 3-Dimensional piston obeying general B.C. for

scalar field. For a rectangular cavity, the B.C. on each pair of opposite faces could be both

Dirichlet B.C., both Neumann B.C. or mixed B.C., where mixed B.C. means Dirichlet B.C.

on one face and Neumann B.C. on another for a pair of opposite faces. Therefore there are

3 × 3 × 3 = 27 possible B.C. for a rectangular cavity. For the purpose of studying piston

geometry, we fix the movable piston plate (partition) at x = a, and after considering the

symmetry of interchanging y with z, only 18 B.C. are essentially different. They can be

classified into 4 kinds, listed in Table I:

Table I. Table of 4 kinds of B.C.

B.C. kind Description/Examples

B.C. of 1st kind: no mixed B.C. included

Examples: NN-NN-NN, NN-NN-DD, NN-DD-DD,

DD-NN-NN, DD-DD-NN, DD-DD-DD

B.C. of 2nd kind: one mixed B.C. included

Examples: DN-NN-NN, DN-NN-DD, DN-DD-DD,

NN-DN-NN, NN-DN-DD, DD-DN-NN, DD-DN-DD

B.C. of 3rd kind: two mixed B.C. included

Examples: DN-DN-NN, DN-DN-DD, NN-DN-DN, DD-DN-DN

B.C. of 4th kind: three mixed B.C. included

Examples: DN-DN-DN
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We will provide a general method for the scalar piston with B.C. of each kind. Starting

from the cylinder kernels, we can find out the Casimir energy for an individual rectangular

cavity. To obtain Casimir energy of a piston, we need to sum up Casimir energy of two

rectangular cavities. It is straightforward to go from piston energy to piston force. Next we

will analyze the piston force in detail for the 4 kinds of B.C. one by one.

A. Scalar Piston with B.C. of 1st Kind

1. Cylinder Kernel for a Rectangular Cavity

a. Cylinder Kernel for Dirichlet Rectangular Cavity Constructed By the Method of Im-

ages

To construct the cylinder kernel is always our starting point. Knowing the cylinder kernel

we can derive vacuum energy and then Casimir force. To find the corresponding cylinder

kernel for 3-D rectangular cavity which satisfies Dirichlet B.C. on each face of the cavity,

say T
DD−DD−DD

, we start with the free cylinder kernel T
f

and then construct T
DD−DD−DD

by

the method of images.

Let’s start from a simpler problem: how to construct the cylinder kernel which satisfies

Dirichlet B.C. on just one face of the cavity, say x = a. By the method of images, it is

T
D
x=a(t, r, r′) = T

f
(t, x, r⊥, x′, r′⊥) − T

f
(t, 2a − x, r⊥, x′, r′⊥)

= − 1
2π2

1
t2 + (x − x′)2 + (y − y′)2 + (z − z′)2 +

1
2π2

1
t2 + (2a − x − x′)2 + (y − y′)2 + (z − z′)2

(3.1)

It will be helpful if we define a Dirichlet reflection operator Da
x as [36, 37]

Da
x f (x) = − f (2a − x) (3.2)
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The cylinder kernel can then be simplified as

T
D
x=a(t, r, r′) = T

f
(t, x, r⊥, x′, r′⊥) + Da

xT
f
(t, 2a − x, r⊥, x′, r′⊥) (3.3)

The next problem would naturally be: how to construct the cylinder kernel which

satisfies Dirichlet B.C. on both the face x = 0 and the face x = a, say the slab (0, a)×R2. It

turns out to be [37]

T
DD
x (t, x, r⊥, x′, r′⊥) =

∞∑

n=0

(Da
xD0

x)
nT

f
+

∞∑

n=1

(D0
xDa

x)
nT

f
+

∞∑

n=0

(Da
xD0

x)
nDa

xT
f
+

∞∑

n=0

(D0
xDa

x)
nD0

xT
f

(3.4)

The first two terms represent even numbers of reflections and the last two terms represent

odd numbers of reflections. So (3.4) can be reorganized by number of reflections:

T
DD
x (t, x, r⊥, x′, r′⊥) = T

f
+ D0

xT
f
+ Da

xT
f
+ D0

xDa
xT

f
+ Da

xD0
xT

f
+ ... (3.5)

all odd number reflections on either x = 0 or x = a are summed up as Dodd
x T

f
, all even

number reflections are summed up as Deven
x T

f
.

T
DD
x (t, r, r′) =Deven

x T
f
+ Dodd

x T
f

= − 1
2π2

∞∑

n=−∞

1
t2 + (2na + x − x′)2 + (y − y′)2 + (z − z′)2

+
1

2π2

∞∑

n=−∞

1
t2 + (2na − x − x′)2 + (y − y′)2 + (z − z′)2

(3.6)

Now we get the cylinder kernel T
DD
x which satisfies Dirichlet B.C. on both the face x = 0

and the face x = a.

Go further to the next problem: how to construct the cylinder kernel which satisfies

Dirichlet B.C. on both the face y = 0 and the face y = b and at the same time it satisfies

Dirichlet B.C. on both the face x = 0 and the face x = a as well. If we build the cylinder

kernel from T
DD
x , the B.C. along x direction is naturally satisfied. For the tube (0, a) ×
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(0, b) × R1, we got a similar expression to 3.4

T
DD−DD
xy (t, x, r⊥, x′, r′⊥) =

∞∑

n=0

(Db
yD0

y)nT
DD
x +

∞∑

n=1

(D0
yDb

y)nT
DD
x +

∞∑

n=0

(Db
yD0

y)nD0
yT

DD
x +

∞∑

n=0

(D0
yDb

y)nD0
yT

DD
x

(3.7)

Rewrite by number of reflections:

T
DD−DD
xy (t, r, r′) =D[even][even]

xy T
f
+ D[even][odd]

xy T
f
+ D[odd][even]

xy T
f
+ D[odd][odd]

xy T
f

= − 1
2π2

∞∑

l,m=−∞

1
t2 + (2na + x − x′)2 + (2mb + y − y′)2)2

+
1

2π2

∞∑

n=−∞

1
t2 + (2na − x − x′)2 + (2mb + y + y′)2

+
1

2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x + x′)2 + (2mb − y − y′)2

− 1
2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x + x′)2 + (2mb + y + y′)2

(3.8)

Finally we are on the problem for 3-D rectangular cavity: how to construct the cylinder

kernel T
DD−DD−DD
xyz which satisfies Dirichlet B.C. on each face of the cavity. Based on

T
DD−DD
xy ,

T
DD−DD−DD
xyz (t, x, r⊥, x′, r′⊥) =

∞∑

n=0

(Dc
zD0

z )nT
DD−DD
xy +

∞∑

n=1

(D0
z Dc

z)
nT

DD−DD
xy +

∞∑

n=0

(Dc
zD0

z )nDz:cT
DD−DD
xy +

∞∑

n=0

(D0
z Dc

z)
nD0

z T
DD−DD
xy

(3.9)
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We can rewrite (3.9) as a summation over number of reflections:

T
DD−DD−DD
xyz (t, r, r′) =D[even][even][even]

xyz T
f
+ D[even][even][odd]

xyz T
f
+ D[even][odd][even]

xyz T
f
+ D[odd][even][even]

xyz T
f

+ D[even][odd][odd]
xyz T

f
+ D[odd][even][odd]

xyz T
f
+ D[odd][odd][even]

xyz T
f
+ D[odd][odd][odd]

xyz T
f

= − 1
2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x − x′)2 + (2mb + y − y′)2 + (2lc + z − z′)2 )

+
1

2π2

∞∑

n=−∞

1
t2 + (2na − x − x′)2 + (2mb + y − y′)2 + (2lc + z − z′)2 )

+
1

2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x − x′)2 + (2mb − y − y′)2 + (2lc + z − z′)2 )

+
1

2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x − x′)2 + (2mb + y − y′)2 + (2lc − z − z′)2 )

− 1
2π2

∞∑

l,m,n=−∞

1
t2 + (2na − x − x′)2 + (2mb − y − y′)2 + (2lc + z − z′)2 )

− 1
2π2

∞∑

l,m,n=−∞

1
t2 + (2na − x − x′)2 + (2mb + y − y′)2 + (2lc − z − z′)2 )

− 1
2π2

∞∑

l,m,n=−∞

1
t2 + (2na + x − x′)2 + (2mb − y − y′)2 + (2lc − z − z′)2 )

+
1

2π2

∞∑

l,m,n=−∞

1
t2 + (2na − x − x′)2 + (2mb − y − y′)2 + (2lc − z − z′)2 )

(3.10)

For abbreviation, define

Vε1ε2ε3
1 = − 1

2π2

∞∑

l,m,n=−∞

1
t2 + (2la + x + ε1x′)2 + (2mb + y + ε2y′)2 + (2nc + z + ε3z′)2

(3.11)

Values for εi (i = 1, 2, 3) are either ‘−’ or ‘+’, where ‘−’ means even number of reflections

and ‘+’ means odd number of reflections. The cylinder kernel which satisfies Dirichlet
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B.C. on each face of the cavity is therefore

T
DD−DD−DD

= V−−−1 − V+−−
1 − V−+−

1 − V−−+
1 + V++−

1 + V−++
1 + V+−+

1 − V+++
1 (3.12)

b. An Alternate Way to Construct the Cylinder Kernel T
DD−DD−DD

We can write down the explicit expression of the normalized normal modes of the scalar

field φ(r) for 3-D cavity with Dirichlet B.C. on each face as

φlmn(x, y, z) =
2
√

2√
abc

sin
lπ
a

x sin
mπ
b

y sin
nπ
c

z (3.13)

By the definition of the cylinder kernel in (2.24), we have:

T
DD−DD−DD

(t, r, r′) = −
∞∑

l,m,n=1

8
ωlmnabc

φlmn(r)φ∗lmn(r′)e−tωlmn

= −
∞∑

l,m,n=1

8
ωlmnabc

sin
lπ
a

x sin
mπ
b

y sin
nπ
c

z sin
lπ
a

x′ sin
mπ
b

y′ sin
nπ
c

z′e−tωlmn

(3.14)

where ω2
lmn = π2[( l

a )2 + (m
b )2 + ( n

c )2]. We can then rewrite (3.14) as

T
DD−DD−DD

(t, r, r′)

= −
∞∑

l,m,n=−∞

1
ωlmnabc

sin
lπ
a

x sin
mπ
b

y sin
nπ
c

z sin
lπ
a

x′ sin
mπ
b

y′ sin
nπ
c

z′e−tωlmn

= −
∞∑

l,m,n=−∞

1
8ωlmnabc

[eık1(x−x′) − eık1(x+x′)][eık2(y−y′) − eık2(y+y′)][eık3(z−z′) − eık3(z+z′)]e−tωlmn

= −
∞∑

l,m,n=−∞

1
8ωlmnabc

[eık1(x−x′)eık2(y−y′)eık3(z−z′)

− eık1(x+x′)eık2(y−y′)eık3(z−z′) − eık1(x−x′)eık2(y+y′)eık3(z−z′) − eık1(x−x′)eık2(y−y′)eık3(z+z′)

+ eık1(x+x′)eık2(y+y′)eık3(z−z′) + eık1(x+x′)eık2(y−y′)eık3(z+z′) + eık1(x+x′)eık2(y−y′)eık3(z+z′)

− eık1(x+x′)eık2(y+y′)eık3(z+z′)]e−tωlmn

(3.15)
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Bear in mind the free cylinder kernel is defined as

T (t, r, r′) = −
∫

1
ω

eıω(r−r′)e−ωtdω = − 1
2π2

1
t2 + |r − r′|2 (3.16)

Apply the Poisson summation formula, getting

−
∞∑

l,m,n=−∞

e−tωlmn

8ωlmnabc
eık1(x−x′)eık2(y−y′)eık3(z−z′)

= − 1
(2a)(2b)(2c)

∞∑

l,m,n=−∞

e−tωlmn

ωlmn
e2πı( lπ

2a ,
mπ
2b ,

nπ
2c )(x−x′,y−y′,z−z′)

= − 1
2π2

∞∑

i, j,k=−∞

1
t2 + (x − x′ + 2ia)2 + (y − y′ + 2 jb)2 + (z − z′ + 2kc)2 = V−−−1

(3.17)

so the cylinder kernel becomes to

T
DD−DD−DD

(t, r, r′) = V−−−1 − V+−−
1 − V−+−

1 − V−−+
1 + V++−

1 + V−++
1 + V+−+

1 − V+++
1 (3.18)

Now we have reproduced previous result (3.15) in an alternate way.

c. General Expression of Cylinder Kernel For Rectangular Cavity with B.C. of 1st Kind

Firstly let’s see another special case: purely Neumann B.C. (NN-NN-NN). Define a Neu-

mann Reflection Operator Na
x as

Na
x f (x) = f (2a − x) (3.19)

which is different from Dx by a ‘−’ sign. In the derivation of cylinder kernel, replace all

Dx with Nx; it will be straightforward to obtain the cylinder kernel for purely Neumann

rectangular cavity T
NN−NN−NN

T
NNN

(t, r, r′) == V−−−1 + V+−−
1 + V−+−

1 + V−−+
1 + V++−

1 + V−++
1 + V+−+

1 + V+++
1 (3.20)

where Vε1ε2ε3
1 is defined as in (3.11).
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It’s possible to generalize these results to more general cases, say B.C. of 1st kind. If

we represent a general cylinder kernel of 1st kind T
αβγ

, where α, β, γ are restricted to either

DD or NN, indicating 2 Dirichlet or Neumann B.C. on opposite faces, and define ηDD = −1

and ηNN = 1, the the cylinder kernels for rectangular cavity with B.C. of 1st kind are,

T
αβγ

= V−−−1 +ηαV+−−
1 +ηβV−+−

1 +ηγV−−+
1 +ηαηβV++−

1 +ηβηγV−++
1 +ηαηγV+−+

1 +ηαηβηγV+++
1

(3.21)

2. Energy Density and Total Energy of Rectangular Cavity with B.C. of 1st Kind

In our analysis, the expression of the cylinder kernel contains 8 parts; each part is related

to one kind of path length and all 8 parts can be classified into 4 kinds in Table II:

Table II. Table of 4 kinds of closed paths

Path Type Path Length Number of reflections at

[x = 0, a][y = 0, b][z = 0, c]

Periodic Path d−−− =
√

(2la)2 + (2mb)2 + (2nc)2 [even] [even] [even]

Side Paths d+−− =
√

(2la + 2x)2 + (2mb)2 + (2nc)2 [odd] [even] [even]

d−+− =
√

(2la)2 + (2mb + 2y)2 + (2nc)2 [even] [odd] [even]

d−−+ =
√

(2la)2 + (2mb)2 + (2nc + 2z)2 [even] [even] [odd]

Edge Paths d++− =
√

(2la + 2x)2 + (2mb + 2y)2 + (2nc)2 [odd] [odd] [even]

d−++ =
√

(2la)2 + (2mb + 2y)2 + (2nc + 2z)2 [even] [odd] [odd]

d+−+ =
√

(2la + 2x)2 + (2mb)2 + (2nc + 2z)2 [odd] [even] [odd]

Corner Path d+++ =
√

(2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2 [odd] [odd] [odd]
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When we are interested in the Casimir energy, which is the integral of energy density

over the cavity (which was studied by [38, 39, 40]), we find that all paths except corner

paths contribute to the Casimir energy.

a. Contribution from Periodic Paths

The energy density contributed by periodic paths is:

ε−−−1 = −1
2

lim
t→0

∂2

∂t2 V−−−1 = − 1
2π2 lim

t→0

∞∑

l,m,n

d2
P − 3t2

(t2 + d2
P)3

= − 1
2π2 lim

t→0
[

3
2π2t4 +

∞∑

l,m,n

′
d2

P − 3t2

(t2 + d2
P)3

]

(3.22)

where dP = d−−− is the length of periodic paths and the primed sum
∑′ means the term

with (l,m, n) = (0, 0, 0) is to be omitted. The divergent term, 3
2π2t4 , is just coming from

(l,m, n) = (0, 0, 0) and is a universal leading divergent term. Since dP is position indepen-

dent, when integrating the energy density over the space to get the total energy, there will

be a corresponding cutoff-dependent term 3V
2π2t4 and for all other terms we can take the limit

t → 0 now.

The total energy coming from the periodic paths is thus

EP
1 =

∫
ε−−−1 dV =

3V
2π2t4 −

V
2π2

∞∑

l,m,n

′
1

[(2la)2 + (2mb)2 + (2nc)2]2

= − abc
32π2 Z3(a, b, c; 4) +

3V
2π2t4

(3.23)

where Zn(a1, ..., ad; s) is the Epstein zeta function.

b. Contribution from Side Paths

There are three kinds of side paths: dS x , dS y and dS z . Their corresponding cylinder kernels

are V+−−
1 , V−+−

1 and V−−+
1 . Let’s take side paths dS x as example to obtain the total energy

coming from side paths.
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The energy density contributed by side paths type dS X is

ε+−−
1 = −1

2
lim
t→0

∂2

∂t2 V+−−
1 = − 1

2π2 lim
t→0

∞∑

l,m,n

d2
S x
− 3t2

(t2 + d2
S x

)3

= − 1
2π2

∞∑

l=−∞

(2la + 2x)2 − 3t2

[t2 + (2la + 2x)2]3 |(m,n)=(0,0) − 1
2π2

∞∑

m,n

′ ∞∑

l=−∞

1
d4

S x

(3.24)

Since the side path length dS x is only x-dependent, integrating the energy density over

space to get the total energy is easy:

ES x
1 = bc

∫
ε+−−

1 dx = − bc
2π2

∫ a

0

∞∑

m,n

′ ∞∑

l=−∞

1
[(2la + 2x)2 + (2mb)2 + (2nc)2]2 dx

− bc
2π2

∫ a

0

∞∑

l=−∞

(2la + 2x)2 − 3t2

[t2 + (2la + 2x)2]3 dx

= − bc
64π

Z2(b, c; 3) +
bc

4πt3

(3.25)

Again bc
4πt3 is a divergent, cutoff dependent term.

Similar formulas hold for the other two side paths types, dS y and dS z:

ES y

1 = − ac
64π

Z2(a, c; 3) +
ac

4πt3

ES z
1 = − ab

64π
Z2(a, b; 3) +

ab
4πt3

(3.26)

c. Contribution from Edge Paths

Let’s first consider the edge path dExy and then generalize it to the other 2 kinds of edge

paths, dEyz and dEzx .

Energy density contributed by edge paths dExy is

ε++−
1 = − 1

2
lim
t→0

∂2

∂t2 V++−
1 = − 1

2π2 lim
t→0

∞∑

l,m,n

d2
Exy
− 3t2

(t2 + d2
Exy

)3

= − 1
2π2

∞∑

l,m=−∞

d2
Exy
− 3t2

(t2 + d2
Exy

)3
|n=0 − 1

2π2

∞∑

l,m=−∞

∞∑

n=−∞

′
1

d4
Exy

(3.27)

The edge path dExy is both x−dependent and y−dependent, so the integration over space
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includes double integrals. Evaluate this integral to obtain the total energy from the edge

path dExy is [15]

EExy

1 = c
∫ ∫

ε++−
1 dxdy = − c

2π2

∫ a

0

∫ b

0

∞∑

l,m=−∞

∞∑

n=−∞

′
1

[(2la + 2x)2 + (2mb + 2y)2 + (2nc)2]2 dxdy

− c
2π2

∫ a

0

∫ b

0

∞∑

l,m

(2la + 2x)2 + (2mb + 2y)2 − 3t2

[t2 + (2la + 2x)2 + (2mb + 2y)2]3 dxdy

= − ζ(2)
16πc

+
c

8πt2 = − π

96c
+

c
8πt2

(3.28)

Similar formulas hold for the other two edge path types dEyz

lmn and dEzx
lmn:

EEyz

1 = − ζ(2)
16πa

+
a

8πt2 = − π

96a
+

a
8πt2

EEzx
1 = − ζ(2)

16πb
+

b
8πt2 = − π

96b
+

b
8πt2

(3.29)

d. Contribution from Corner Paths

The energy density contributed by corner paths dC is

ε+++
1 = −1

2
lim
t→0

∂2

∂t2 V+++
1 = − 1

2π2 lim
t→0

∞∑

l,m,n

d2
C − 3t2

[t2 + d2
C]3 (3.30)

The total energy contributed by corner paths is:

EC
1 =

∫
ε+++

1 dxdydz

= − 1
2π2

∫ a

0

∫ b

0

∫ c

0

∞∑

l,m,n=−∞

(2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2 − 3t2

[t2 + (2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2]3 dxdydz

= 0

(3.31)

We summarize the total energy contributed from 8 parts of 4 kinds in Table III. It’s

straightforward to give the general total energy expression for rectangular cavity with B.C.
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of 1st kind:

Eαβγ
1 = EP

1 + ηαES x
1 + ηβE

S y

1 + ηγES z
1 + ηαηβE

Exy

1 + ηβηγEEyz

1 + ηαηγEEzx
1 + ηαηβηγEC

1 (3.32)

where ηDD = −1 and ηNN = 1 as defined before.

Table III. Table of total energy by path types, 1st kind B.C.

Path Type Path Length Total Energy

Periodic Path dP =
√

(2la)2 + (2mb)2 + (2nc)2 EP
1 = − abc

32π2 Z3(a, b, c; 4) + 3abc
2π2t4

Side Paths dS x =
√

(2la + 2x)2 + (2mb)2 + (2nc)2 ES x
1 = − bc

64πZ2(b, c; 3) + bc
4πt3

dS y =
√

(2la)2 + (2mb + 2y)2 + (2nc)2 ES y

1 = − ac
64πZ2(a, c; 3) + ac

4πt3

dS z =
√

(2la)2 + (2mb)2 + (2nc + 2z)2 ES z
1 = − ab

64πZ2(a, b; 3) + ab
4πt3

Edge Paths dExy =
√

(2la + 2x)2 + (2mb + 2y)2 + (2nc)2 EExy

1 = − π
96c + c

8πt2

dEyz =
√

(2la)2 + (2mb + 2y)2 + (2nc + 2z)2 EEyz

1 = − π
96a + a

8πt2

dExz =
√

(2la + 2x)2 + (2mb)2 + (2nc + 2z)2 EEzx
1 = − π

96b + b
8πt2

Corner Path dC =
√

(2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2 EC
1 = 0

3. Casimir Force for Scalar Pistons of 1st Kind

a. Casimir Force for Neumann Scalar Piston

For a rectangular cavity a × b × c with Neumann B.C. on each face, the total energy is:

ENNN
abc = EP

abc + ES x
abc + ES y

abc + ES z
abc + EExy

abc + EEyz

abc + EExz
abc + EC

abc
(3.33)
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If we consider only a−dependent terms,

ENNN
abc (a) =EP

abc + ES y

abc + ES z
abc + EEyz

abc

= − abc
32π2

∞∑

l,m,n=−∞

′
1

[(la)2 + (mb)2 + (nc)2]2 −
ab

64π

∞∑

l,m=−∞

′
1

[(la)2 + (mb)2]
3
2

− ac
64π

∞∑

l,n=−∞

′
1

[(la)2 + (nc)2]
3
2

− π

96
1
a

+ [
3abc
2π2t4 +

ac
4πt3 +

ab
4πt3 +

a
8πt2 ]

(3.34)

Before talking about piston, let’s consider just a rectangular cavity. If we would like to

calculate the force on the face x = a, we need to take derivative of E with respect to a. For

the 4 a−dependent parts of E, we get the corresponding force

FP
cavity = − ∂

∂a
EP

cavity =
bc

32π2

∞∑

l,m,n=−∞

′
[

1
[(la)2 + (mb)2 + (nc)2]2 −

4l2a2

[(la)2 + (mb)2 + (nc)2]3 ]

FS y

cavity = − ∂
∂a

ES y

cavity =
b

64π

∞∑

l,m=−∞

′
[

1

[(la)2 + (mb)2]
3
2

− 3l2a2

[(la)2 + (mb)2]
5
2

]

FS z
cavity = − ∂

∂a
ES z

cavity =
c

64π

∞∑

l,n=−∞

′
[

1

[(la)2 + (nc)2]
3
2

− 3l2a2

[(la)2 + (nc)2]
5
2

]

FEyz

cavity = − ∂
∂a

EEyz

cavity = − π

96
1
a2

(3.35)

Notice that here we operate on only the finite parts of EP, ES y , ES y and EEyz , the divergent

parts of them are discarded since when another rectangular cavity is introduced they will

be canceled exactly. Then the force on the face x = a for the cavity with Neumann B.C. on

each face is

FNNN
cavity = FP

cavity + FS y

cavity + FS z
cavity + FEyz

cavity
(3.36)

Next we extend the rectangular cavity along the x direction to form a piston with the

face at x = a as the partition.
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The total energy of the the second rectangular cavity (L − a) × b × c is

ENNN
L−a,b,c = EP

L−a,b,c + ES y

L−a,b,c + ES z
L−a,b,c + EEyz

L−a,b,c
(3.37)

Take the limit L→ ∞ and bearing in mind that Zd(a1, ...ad; s)|a1→∞ → Zd−1(a2, ...ad; s)

ENNN
L−a,b,c = − (L − a)bc

32π2 Z2(b, c; 4) − (L − a)b
64π

Z1(b; 3) − (L − a)c
64π

Z1(c; 3)

=
abc
32π2 Z2(b, c; 4) +

ab
64π

Z1(b; 3) +
ac

64π
Z1(c; 3)

=
abc
32π2

∞∑

m,n=−∞

′
1

[(mb)2 + (nc)2]2 +
ab

64π

∞∑

m=−∞

′
1

(m|b|)3 +
ac

64π

∞∑

n=−∞

′
1

(n|c|)3

(3.38)

Here Z1(b; 3) is just the Riemann Zeta function ζ(b; 3) and we’ve discarded the a−independent

terms. The force on partition x = a contributed by the second rectangular cavity (L−a)×b×c

is

FNNN
L−a,b,c = − bc

32π2

∞∑

m,n=−∞

′
1

[((mb)2 + (nc)2]2 −
b

64π

∞∑

m=−∞

′
1

(m|b|)3 −
c

64π

∞∑

n=−∞

′
1

(n|c|)3 (3.39)

This part of the force is a−independent; therefore, it is a constant term. Observing the

relation between ENNN
L−a,b,c and ENNN

a,b,c , we find

ENNN
L−a,b,c = −ENNN

a,b,c |l=0 (3.40)

So we conclude that the sum of ENNN
L−a,b,c and ENNN

a,b,c will be just ENNN
a,b,c with all l = 0 terms

excluded. The total energy of the whole piston is the sum of the total energy of two rectan-

gular cavities with B.C. of 1st kind (a-dependent parts only):

ENNN
1 =ENNN

abc + ENNN
L−a,b,c|L→∞ = ENNN

abc |l,0 = EP
piston + ES y

piston + ES z
piston + EEyz

piston

= − abc
32π2

∞∑

l,m,n=−∞;l,0

1
[(la)2 + (mb)2 + (nc)2]2 −

ab
64π

∞∑

l,m=−∞;l,0

1

[(la)2 + (mb)2]
3
2

− ac
64π

∞∑

l,n=−∞;l,0

1

[(la)2 + (nc)2]
3
2

− π

96
1
a

(3.41)
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We are ready for evaluating the piston force on the partition x = a. EP
1 , ES y

1 , ES y

1 and EEyz

1

stand for the corresponding combined energy of the a × b × c and (L − a) × b × c cavities

with B.C. of 1st kind.

FP
1 = − ∂

∂a
EP

1 =
bc

32π2

∑

l,0,m,n

[
1

[(la)2 + (mb)2 + (nc)2]2 −
4l2a2

[(la)2 + (mb)2 + (nc)2]3 ]

FS y

1 = − ∂
∂a

ES y

1 =
b

64π

∑

l,0,m

[
1

[(la)2 + (mb)2]
3
2

− 3l2a2

[(la)2 + (mb)2]
5
2

]

FS z
1 = − ∂

∂a
ES z

1 =
c

64π

∑

l,0,n

[
1

[(la)2 + (nc)2]
3
2

− 3l2a2

[(la)2 + (nc)2]
5
2

]

FEyz

1 = − ∂
∂a

EEyz

1 = − π

96
1
a2

(3.42)

If we let the piston bottom be the face x = 0 and the partition be the face x = a and let

b = c and η = a
b , then FS y

1 = FS z
1 and we can write down the Neumann piston force as

FNNN
1 =FP

1 + FS y

1 + FS z
1 + FEyz

1

=
1

32π2b2

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

+
1

32πb2

∑

l,0,n

[
1

[l2η2 + n2]
3
2

− 3l2η2

[l2η2 + n2]
5
2

] − π

96b2

1
η2

(3.43)

Notice that
∑

l,0,m,n

=
∑

l,0

[
∑

m,0,n,0

+
∑

m=0,n,0

+
∑

m,0,n=0

+
∑

m=0,n=0

]

=8
∞∑

l=1,m=1,n=1

+8
∞∑

l=1,n=1

+2
∞∑

l=1

(3.44)

and

∑

l,0,n

=
∑

l,0

[
∑

n,0

+
∑

n=0

] = 4
∞∑

l=1,n=1

+2
∞∑

l=1

(3.45)
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So we can rewrite FP
piston, FS y

piston and FS z
piston as

FP
1 =

1
32π2b2

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

=
1

32π2b2 (8
∞∑

l=1,m=1,n=1

+8
∞∑

l=1,n=1

+2
∞∑

l=1

)[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

=
1

4π2b2

∞∑

l=1,m=1,n=1

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

+
1

4π2b2

∞∑

l=1,n=1

[
1

[l2η2 + n2]2 −
4l2η2

[l2η2 + n2]3 ] − π2

480b2η4

(3.46)

FS y

1 = FS z
1 =

1
64πb2

∑

l,0,n

[
1

[l2η2 + n2]
3
2

− 3l2η2

[l2η2 + n2]
5
2

]

=
1

64πb2 (4
∞∑

l=1,n=1

+2
∞∑

l=1

)[
1

[l2η2 + n2]
3
2

− 3l2η2

[l2η2 + n2]
5
2

]

=
1

16πb2

∞∑

l=1,n=1

[
1

[l2η2 + n2]
3
2

− 3l2η2

[l2η2 + n2]
5
2

] − ζ(3)
16πb2η3

(3.47)

FEyz

1 = − π

96b2

1
η2 (3.48)

In unit of 1/b2, we plot FNNN
1 , FP

1 , F
S y

1 , F
Eyz

1 ∼ η and FNNN
cavity, F

P
cavity, F

S y

cavity, F
Eyz

cavity ∼ η

in the Fig. 2. Notice that the difference between FNNN
1 and FNNN

cavity is just a constant term

FNNN
L−a,b,c. We can see from Fig. 2 that for the piston geometry, | FP

1 |>| F
S y

1 |>| F
Eyz

1 |, so the

contributions from periodic paths FP
1 are dominant. At the limit η → ∞, FNNN

1 → 0 while

FNNN
cavity → [Z2(1,1;4)

8π2 + π2

720 +
ζ(3)
32π ]. The force for the piston of infinite length is always attractive,

while there is a turning point for the cavity where the force changes from attractive to

repulsive.
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F

Fig. 2. The force F on a Neumann piston with square cross section (b = c) as functions of
η = a/b, rescaled as 480F/π2 . The solid black line is total force FNNN

1 considering
the piston and the dashed black line is total force FNNN

cavity considering only the rectan-
gular cavity a× b× c. Solid red, solid blue and solid green stand for the contribution
from periodic paths, side paths and edge paths for piston respectively, while their
dashed counterparts are for the rectangular cavity a × b × c.
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b. Casimir Force for General Scalar Piston with B.C. of 1st Kind

We have analyzed the piston force for the NN −NN −NN type piston; it is straightforward

to extend our analysis to other pistons with B.C. of 1st kind. Based on the formula of total

energy in (3.32) the formula of piston force in (3.42), the piston force for general piston

with B.C. of 1st kind is

Fαβγ
1 = FP

1 + ηβF
S y

1 + ηγFS z
1 + ηβηγFEyz

1 (3.49)

Note that the cutoff divergent terms of two rectangular cavities are canceled. The 1st term

is a universal term standing for contribution from periodic paths; 2nd and 3rd terms are

contributions from side paths, their sign are determined by the B.C. on sides, NN for ‘+’and

DD for ‘-’; the last term stands for the contribution from edge path Eyz and its sign is the

product of ηβ and ηγ, determined by B.C. on sides as well. Overall, we see the B.C. on the

base x = 0 and the partition x = a does not affect the force, that is, for either NN or DD at

x = 0, a, the force does not change. So we conclude that the piston forces are the same for

piston NN −NN −NN and DD−NN −NN. Among the other 4 kinds of pistons with B.C.

of 1st kind, NN − DD − DD is the same as DD − DD − DD and NN − DD − NN is the

same as DD − DD − NN. So it will be adequate to study 3 pistons with B.C. of 1st kind:

NN−NN−NN, NN−DD−DD and NN−DD−NN. The piston forces for these 3 pistons

are

FNNN
1 = FP

1 + FS y

1 + FS z
1 + FEyz

1

FNDD
1 = FP

1 − FS y

1 − FS z
1 + FEyz

1

FNDN
1 = FP

1 − FS y

1 + FS z
1 − FEyz

1

(3.50)

Recall that the force for two parallel plates on unit area with separation a is

F N
plates = − π2

480a4
(3.51)
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If we would like to compare the piston force with the force of parallel plates, a natural way

is to divide the piston by F N
plates. The force from periodic paths FP

1 is (for b = c),

FP
1 =

1
32π2b2

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

=
b2η4

32π2a4

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]
(3.52)

so the force per unit area is

F P
1 =

FP
1

b2 = − 15η4

π4 [− π2

480a4 ]
∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]

= − 15η4

π4 F N
1

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ]
(3.53)

Other forces per unit area are

F S y

1 = F S z
1 = − 15η4

2π3 F N
1

∑

l,0,n

[
1

[l2η2 + n2]
3
2

− 3l2η2

[l2η2 + n2]
5
2

]

F Eyz

1 =
5η2

π
F N

1

(3.54)

With these forces per unit area, we can convert the piston forces in (3.50) to

F NNN
1 =F P

1 + F S y

1 + F S z
1 + F Eyz

1

F NDD
1 =F P

1 − F S y

1 − F S z
1 + F Eyz

1

F NDN
1 =F P

1 − F Eyz

1

(3.55)

We plot these 3 forces before and after division by F N
1 in Fig. 3 and 4. At the limit

η → 0, or a � b = c, the piston force is the same as the parallel plates force. Since

the difference between piston and parallel plates is the sides, when a � b = c, the sides’

effect is small enough to be ignored. However, with η increasing, the sides’ effect become

visible and cannot be ignored any more. When comparing with parallel plates force, we

can understand the piston force as being based on the dominant term FP
1 ; periodic paths’
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Fig. 3. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FNNN

1 , solid blue= FNDD
1 and solid green= FNDN

1 .
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F

Fig. 4. The force F on a piston with square cross section (b = c) as functions of η = a/b,
normalized to the parallel plates force F N

plates = − π2

480a4 . Solid red= FNNN
1 , solid

blue= FNDD
1 and solid green= FNDN

1
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contribution provides an attractive force which reduces to the parallel-plate force at the

limit η → 0. It is augmented by side path contribution (ηyFS y

1 and ηzF
S z
1 ) and edge path

contribution (ηyηzF
Eyz

1 ). For NN − NN − NN piston, the two side path contributions and

the edge path contribution all have ‘+’ sign; they provide a contribution with same sign as

the dominant term and make the attractive force’s magnitude greater. Thus in the figure

4, we see FNNN
1 start from 1 and then increase. For NN − DD − DD piston, two side

paths contribute negatively (with ‘-’ sign) and edge path still contributes positively (with

‘+’ sign). With the knowledge that the side-path contribution is greater than the edge-path

contribution, we conclude that FNDD
1 will decrease and be below 1. For NN − DD − NN

piston, the two side path contributions cancel each other and the edge path term contributes

negatively (with ‘-’ sign), so FNDD
1 will be slightly below 1. Based on these arguments, we

conclude that FNNN
1 damps more slowly than the parallel-plate force F N

plates, while FNDD
1

and FNDN
1 damp more quickly than F N

plates, with FNDD
1 the most quickly. We can also see

this from Fig. 3: FNDD
1 damps most quickly and FNNN

1 has greatest magnitude.

B. Cylinder Kernel for Rectangular Cavity with 2nd Kind of B.C.

The 2nd kind of B.C. includes one mixed B.C.. DN − DD − DD, DN − DD − NN and

DN−NN−NN have the mixed B.C. on base and partition (x = 0, a) while DD−DN−DD,

NN−DN−DD, DD−DN−NN and NN−DN−NN have the mixed B.C. on sides y = 0, b.

We will take DN − DD − DD as an example first, which is studied in [29] and is called

hybrid B.C.

1. Cylinder Kernel for a Rectangular Cavity with Hybrid B.C.

Suppose the only Neumann B.C. is imposed at x = a and Dirichlet B.C. elsewhere for

the rectangular cavity. Our notation for the cylinder kernel with hybrid B.C. is T
MDD

,
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where M means mixed B.C. at two faces x = 0, a and D means Dirichlet B.C.. Similar

to the definition of Dirichlet Reflection Operator Da
x f (x) = − f (2a − x), we could define a

Neumann Reflection Operator as Na
x as

Na
x f (x) = f (2a − x) (3.56)

Following the procedure for the derivation of cylinder kernel of purely Dirichlet B.C. but

replacing the Dirichlet Reflection Operator Da
x at x = a with Neumann Reflection Operator

Na
x , we will get the cylinder kernel for hybrid B.C. as:

T
MDD

= V−−−2 + V+−−
2 − V−+−

2 − V−−+
2 − V++−

2 + V−++
2 − V+−+

2 + V+++
2 (3.57)

where

Vε1ε2ε3
2 = − 1

2π2

∞∑

l,m,n=−∞

(−1)l

t2 + (2la + x + ε1x′)2 + (2mb + y + ε2y′)2 + (2nc + z + ε3z′)2

(3.58)

It is different from Vε1ε2ε3
1 by including an extra term (−1)l inside the summation.

For general cases of 2nd kind of B.C., define ηDD = −1, ηNN = 1 and ηM = 1; we have:

T
αβγ

= V−−−2 +ηαV+−−
2 +ηβV−+−

2 +ηγV−−+
2 +ηαηβV++−

2 +ηβηγV−++
2 +ηαηγV+−+

2 +ηαηβηγV+++
2

(3.59)

2. Energy Density and Total Energy for Rectangular Cavity

In the following calculation, we will ignore the universal divergent terms since the scheme

of analysis is the same as before.
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a. Contribution from Periodic Paths

The energy density contributed by periodic paths is:

ε−−−2 = −1
2

lim
t→0

∂2

∂t2 V−−−2 = − 1
2π2 lim

t→0

∞∑

l,m,n

(−1)l(d2
P − 3t2)

(t2 + d2
P)3

= − 1
2π2

∞∑

l,m,n

′
(−1)l

d4
P

(3.60)

The total energy coming from the periodic paths is:

EP
2 =

∫
ε−−−2 dV = − abc

32π2

∞∑

l,m,n

′
(−1)l

[(la)2 + (mb)2 + (nc)2]2 (3.61)

b. Contribution from Side Paths S z

The energy density contributed by side paths of lengths dS z is

ε−−+
2 = −1

2
lim
t→0

∂2

∂t2 V−−+
2 = − 1

2π2 lim
t→0

∞∑

l,m,n

(−1)l(d2
S z
− 3t2)

(t2 + d2
S z

)3

= − 1
2π2

∞∑

l,m

′ ∞∑

n=−∞

(−1)l

d4
S z

(3.62)

Since the side path dS z
lmn is only z-dependent, the total energy is:

ES z
2 = ab

∫
ε−−+

2 dz = − ab
2π2

∫ c

0

∞∑

l,m

′ ∞∑

n=−∞

(−1)l

[(2la)2 + (2mb)2 + (2nc + 2z)2]2 dz

= − ab
64π

∞∑

l,m

′
(−1)l

[(la)2 + (mb)2]
3
2

(3.63)

Similarly for side paths of type S y we get,

ES y

2 = − ac
64π

∞∑

l,n

′
(−1)l

[(la)2 + (nc)2]
3
2

(3.64)



42

c. Contribution from Side Paths S x

The energy density contributed by the S x side path is

ε+−−
2 = −1

2
lim
t→0

∂2

∂t2 V+−−
2 = − 1

2π2 lim
t→0

∞∑

l,m,n

(−1)l(d2
S x
− 3t2)

(t2 + d2
S x

)3

= − 1
2π2

∞∑

m,n

′ ∞∑

l=−∞

(−1)l

d4
S x

(3.65)

The total energy is

ES x
2 = ab

∫
ε+−−

2 dx = − bc
2π2

∫ c

0

∞∑

m,n

′ ∞∑

l=−∞

(−1)l

[(2la + 2x)2 + (2mb)2 + (2nc)2]2 dx = 0 (3.66)

This is the significant difference: the contribution from side paths where mixed B.C. occur

is zero.

d. Contribution from Edge Paths Eyz

The energy density contributed by edge paths is

ε−++
2 = − 1

2
lim
t→0

∂2

∂t2 V−++
2 = − 1

2π2 lim
t→0

∞∑

l,m,n

(−1)l(d2
Eyz
− 3t2)

(t2 + d2
Eyz

)3

= − 1
2π2

∞∑

m,n=−∞

∞∑

l=−∞

′
(−1)l

d4
Eyz

(3.67)

The total energy is

EEyz

2 = a
∫

ε−++
2 dydz = − a

2π2

∫ b

0

∫ c

0

∞∑

m,n=−∞

∞∑

l=−∞

′
(−1)l

[(2la)2 + (2mb + 2y)2 + (2nc + 2z)2]2 dydz

=
π

192a

(3.68)
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e. Contribution from Edge Paths Exz

The energy density contributed by edge path dExz
lmn is

ε+−+
2 = − 1

2
lim
t→0

∂2

∂t2 V+−+
2 = − 1

2π2 lim
t→0

∞∑

l,m,n

(−1)l(d2
Exz
− 3t2)

(t2 + d2
Exz

)3

= − 1
2π2

∞∑

l,n=−∞

∞∑

m=−∞

′
(−1)l

d4
Exz

(3.69)

The total energy is

EExz
2 = b

∫
ε+−+

2 dxdz = − b
2π2

∫ a

0

∫ c

0

∞∑

l,n=−∞

∞∑

m=−∞

′
(−1)l

[(2la + 2x)2 + (2mb)2 + (2nc + 2z)2]2 dxdz = 0

(3.70)

Same property holds for edge paths Exy:

EExz
2 = 0 (3.71)

f. Contribution from Corner Paths

The energy density contributed by corner path dC is:

ε+++
2 = −1

2
lim
t→0

∂2

∂t2 V+++
2 = − 1

2π2 lim
t→0

∞∑

l,m,n=−∞

′
(−1)l(d2

C − 3t2)
[t2 + d2

C]3 (3.72)

The total energy contributed by corner path is:

EC
2 =

∫
ε+++

2 dxdydz

= − 1
2π2

∫ a

0

∫ b

0

∫ c

0

∞∑

l,m,n=−∞

′
(−1)l((2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2 − 3t2)

[t2 + (2la + 2x)2 + (2mb + 2y)2 + (2nc + 2z)2]3 dxdydz = 0

(3.73)

Thus we have obtained the total energy contributed from all paths, listed in Table IV:
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Table IV. Table of total energy by path types for 2nd kind B.C., mixed B.C. on base and
partition

Path Type Total Energy

Periodic Path EP
2 = − abc

32π2

∑′ (−1)l

[(la)2+(mb)2+(nc)2]2

Side Paths ES x
2 = 0

ES y

2 = − ac
64π

∑′ (−1)l

[(la)2+(nc)2]
3
2

ES z
2 = − ab

64π

∑′ (−1)l

[(la)2+(mb)2]
3
2

Edge Paths EExy

2 = 0

EEyz

2 = π
192a

EExz
2 = 0

Corner Path EC
2 = 0

The total energy for a general rectangular cavity with 2nd kind B.C. is

Eαβγ
2 =EP

2 + ηαES x
2 + ηβE

S y

2 + ηγES z
2 + ηαηβE

Exy

2 + ηβηγEEyz

2 + ηαηγEExz
2 + ηαηβηγEC

2
(3.74)

where ηDD = −1, ηNN = 1 and ηM = 1 as defined before.

For the purpose of studying the piston with hybrid B.C. (Neumann B.C. at x = a and

Dirichlet B.C. elsewhere)

EMDD
2 =EP

2 + ES x
2 − ES y

2 − ES z
2 − EExy

2 + EEyz

2 − EExz
2

(3.75)
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3. Casimir force for Hybrid Scalar Piston

The total energy of a rectangular cavity a×b× c with Neumann B.C. at x = a and Dirichlet

B.C. elsewhere is written in (3.75). Since our concern is the a−dependent terms, we shorten

this to

EMDD
abc = EP

abc − ES y

abc − ES z
abc + EEyz

abc
(3.76)

Next we extend the rectangular cavity along the x direction to form a piston with the x = a

face as the partition; the total energy of the the second rectangular cavity (L − a) × b × c is

EMDD
L−a,b,c = EP

L−a,b,c − ES y

L−a,b,c − ES z
L−a,b,c + EEyz

L−a,b,c
(3.77)

The total energy of the whole piston is the sum of the total energy of two rectangular

cavities with B.C. of 2nd kind:

EMDD
2 =EMDD

abc + EMDD
L−a,b,c|L→∞

= − abc
32π2

∑

l,0,m,n

(−1)l

[(la)2 + (mb)2 + (nc)2]2 +
ab

64π

∑

l,0,m

(−1)l

[(la)2 + (mb)2]
3
2

+
ac

64π

∑

l,0,n

(−1)l

[(la)2 + (nc)2]
3
2

+
π

192
1
a

(3.78)

Taking the derivative of E with respect to a, we can get the force,

FMDD
2 =FP

2 − FS y

2 − FS z
2 + FEyz

2
(3.79)
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where

FP
2 = − ∂

∂a
EP

2 =
bc

32π2

∑

l,0,m,n

[
(−1)l

[(la)2 + (mb)2 + (nc)2]2 −
(−1)l4l2a2

[(la)2 + (mb)2 + (nc)2]3 ]

FS y = − ∂
∂a

ES y

2 =
b

64π

∑

l,0,m

[
(−1)l

[(la)2 + (mb)2]
3
2

− (−1)l3l2a2

[(la)2 + (mb)2]
5
2

]

FS z = − ∂
∂a

ES z
2 =

c
64π

∑

l,0,n

[
(−1)l

[(la)2 + (nc)2]
3
2

− (−1)l3l2a2

[(la)2 + (nc)2]
5
2

]

FEyz

2 = − ∂
∂a

EEyz

2 =
π

192
1
a2

(3.80)

Letting b = c and η = a
c , we can rewrite the piston force as

FP
2 =

1
32π2b2

∑

l,0,m,n

[
(−1)l

[l2η2 + m2 + n2]2 −
(−1)l4l2η2

[l2η2 + m2 + n2]3 ]

FS y

2 = FS z
2 =

1
64πb2

∑

l,0,n

[
(−1)l

[l2η2 + n2]
3
2

− (−1)l3l2η2

[l2η2 + n2]
5
2

]

FEyz

2 =
π

192b2

1
η2

(3.81)

We can easily extend our argument to more general cases such as DN − DD − NN

and DN − NN − NN. From (3.74) the Casimir force FMDN
2 for DN − DD − NN piston

(ηα = 1, ηβ = −1, ηγ=1) and FMNN
2 for DN − NN − NN piston (ηα = 1, ηβ = 1, ηγ = 1) are

FMNN
2 =FP

2 + FS y

2 + FS z
2 + FEyz

2

FMDN
2 =FP

2 − FS y

2 + FS z
2 − FEyz

2 = FP
2 − FEyz

2

(3.82)

In Fig.5, we plot FMNN
2 , FMDN

2 and FMDD
2 . At the limit η → 0, the piston force is the same

as the parallel-plate force with Dirichlet B.C. on one plate and Neumann B.C. on the other

plate. The periodic paths’ contribution FP
2 is still the dominant term, so the force is always

repulsive. The sides’ effect are brought in with η increasing. For side paths and edge

paths, when they have same sign as the periodic paths, we call it contributing positively,

otherwise negatively. For FMNN
2 , side paths and edge paths all contribute positively, so it
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Fig. 5. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Red=FDN−NN−NN

2 , Blue=FDN−DD−DD
2 and Green=FDN−DD−NN

2 .

has the greatest magnitude. For FMDD
2 , side paths and contribute negatively and edge path

contribute positively, so it has the least magnitude and damps most quickly. FMDN
2 is in the

middle since side paths’ contribution is greater than edges’.

4. Casimir Force for Scalar Piston with the Mixed B.C. on Sides

There is another kind of B.C. for the piston with the partition at x = a, which has both

Dirichlet/Neumann B.C. at x = 0, a, but mixed B.C. at y = 0, b or z = 0, c, such as

NN − DN − NN and NN − DN − DD. We fix the mixed B.C. at y = 0, b, that is, Dirichlet

B.C. at y = 0 and Neumann at y = b. The total energy for each kind of path will differ from

the previous cases; we have to make some adaptations for the position change of mixed

B.C. as in Table V.

Since the partition is still at x = a, for the Casimir force, we need only the a-dependent

terms; there are only 2 such now, EP
2 and ES z

2 . The corresponding piston forces from these
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Table V. Table of total energy by path types for 2nd kind B.C., mixed B.C. on sides

Path Type Total Energy

Periodic Path EP
2 = − abc

32π2

∑′ (−1)m

[(la)2+(mb)2+(nc)2]2

Side Paths ES x
2 = − bc

64π

∑′ (−1)m

[(mb)2+(nc)2]
3
2

ES y

2 = 0

ES z
2 = − ab

64π

∑′ (−1)m

[(la)2+(mb)2]
3
2

Edge Paths EExy

2 = 0

EEyz

2 = 0

EExz
2 = π

192b

Corner Path EC
2 = 0

two energies are

FP
2 =

1
32π2b2

∑

l,0,m,n

[
(−1)m

[l2η2 + m2 + n2]2 −
(−1)m4l2η2

[l2η2 + m2 + n2]3 ]

FS z
2 =

1
64πb2

∑

l,0,n

[
(−1)m

[l2η2 + n2]
3
2

− (−1)m3l2η2

[l2η2 + n2]
5
2

]
(3.83)

So the Casimir force becomes

FDMN
2 = FNMN

2 = FP
2 + FS z

2

FDMD
2 = FNMD

2 = FP
2 − FS z

2

(3.84)

These two forces are plotted in Fig. 6. At the limit η→ 0, the piston force is the same

as the force between two Neumann parallel plates. The force is always attractive. There is

no edge effect. FNMD
2 damps more quickly than FNMN

2 .
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Fig. 6. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Red=FNMD

2 and Green=FNMN
2

C. Casimir Force for Scalar Piston with B.C. of 3rd Kind

The 3rd kind of B.C. means, there are two pair of faces with mixed B.C. and the other pair

have both Dirichlet B.C. or both Neumann B.C. on the opposite faces. This kind of B.C.

includes: DN − DN − DD, DN − DN − NN, DD − DN − DN, NN − DN − DN.

1. Cylinder Kernel for Scalar Piston with 3rd Kind of B.C.

T
αβγ

= V−−−3 +ηαV+−−
3 +ηβV−+−

3 +ηγV−−+
3 +ηαηβV++−

3 +ηβηγV−++
3 +ηαηγV+−+

3 +ηαηβηγV+++
3

(3.85)

where

Vε1ε2ε3
3 = − 1

2π2

∞∑

l,m,n=−∞

(−1)l(−1)m

t2 + (2la + x + ε1x)2 + (2mb + y + ε2y)2 + (2nc + z + ε3z)2 (3.86)
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2. Casimir Force for Scalar Piston with 3rd Kind of B.C.

a. When Mixed B.C. Are on Base and Partition x = 0, a

When the two mixed B.C. are imposed at x = 0, a and y = 0, b, such as DN − DN − DD,

DN − DN − NN, the total energy contributed by different kinds of paths is listed in Table

VI:

Table VI. Table of total energy by path types for 3rd B.C., mixed B.C. on base and partition

Path Type Total Energy

Periodic Path EP
3 = − abc

32π2

∑′ (−1)l(−1)m

[(la)2+(mb)2+(nc)2]2

Side Paths ES x
3 = 0

ES y

3 = 0

ES z
3 = − ab

64π

∑′ (−1)l(−1)m

[(la)2+(mb)2]
3
2

Edge Paths EExy

3 = 0

EEyz

3 = 0

EExz

3 = 0

Corner Path EC
3 = 0

There are only two nonzero terms EP
3 and ES z

3 ; they are both a−dependent. The corre-

sponding piston forces from these two energies are

FP
3 =

1
32π2b2

∑

l,0,m,n

[
(−1)l(−1)m

[l2η2 + m2 + n2]2 −
(−1)l(−1)m4l2η2

[l2η2 + m2 + n2]3 ]

FS z
3 =

1
64πb2

∑

l,0,n

[
(−1)l(−1)m

[l2η2 + n2]
3
2

− (−1)l(−1)m3l2η2

[l2η2 + n2]
5
2

]
(3.87)
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Fig. 7. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Red=FMMD

3 and Green=FMMN
3

So the Casimir force becomes

FMMN
3 = FP

3 + FS z
3

FMMD
3 = FP

3 − FS z
3

(3.88)

These two force are plotted in Fig. 7. They are both repulsive and reduce to the force

between two parallel plates with Dirichlet B.C. on one plate and Neumann B.C. on another

as η→ 0.

b. When Mixed B.C. Are Not on Base and Partition x = 0, a

When the two mixed B.C. are imposed at y = 0, b and z = 0, c, the cases DD − DN − DN

and NN − DN − DN, we have both Dirichlet or both Neumann B.C. on base and partition.

The total energy contributed by different kinds of paths is listed in Table VII:
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Table VII. Table of total energy by path types for 3rd B.C., mixed B.C. on sides

Path Type Total Energy

Periodic Path EP
3 = − abc

32π2

∑′ (−1)m(−1)n

[(la)2+(mb)2+(nc)2]2

Side Paths ES x
3 = − bc

64π

∑′ (−1)m(−1)n

[(mb)2+(nc)2]
3
2

ES y

3 = 0

ES z
3 = 0

Edge Paths EExy

3 = 0

EEyz

3 = 0

EExz
3 = 0

Corner Path EC
3 = 0

The only a−dependent term is EP
3 , so the piston force is

FNMM
3 = FDMM

3 = FP
3 =

1
32π2b2

∑

l,0,m,n

[
(−1)m(−1)n

[l2η2 + m2 + n2]2 −
(−1)m(−1)n4l2η2

[l2η2 + m2 + n2]3 ] (3.89)

This force are plotted in Fig. 8. It is attractive and reduces to the Neumann parallel-plate

force as η→ 0.

D. Casimir Force for Scalar Piston with 4th Kind of B.C.

The 4th kind of B.C. means, the three pair of faces are all equipped with mixed B.C. on the

opposite faces: DN − DN − DN.



53

0 0.5 1 1.5 2
Η

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0
F

Fig. 8. The force FNMM
3 on a piston with square cross section (b = c) as functions of η = a/b.

1. Cylinder Kernel for Scalar Piston with 4th Kind of B.C.

T
αβγ

= V−−−4 +ηαV+−−
4 +ηβV−+−

4 +ηγV−−+
4 +ηαηβV++−

4 +ηβηγV−++
4 +ηαηγV+−+

4 +ηαηβηγV+++
4

(3.90)

where

Vε1ε2ε3
4 = − 1

2π2

∞∑

l,m,n=−∞

(−1)l(−1)m(−1)n

t2 + (2la + x + ε1x)2 + (2mb + y + ε2y)2 + (2nc + z + ε3z)2 (3.91)

2. Casimir Force for Scalar Piston with 4th Kind of B.C.

The only nonzero a−dependent term is EP
4 = − abc

32π2

∑′ (−1)l(−1)m(−1)n

[(la)2+(mb)2+(nc)2]2 . So the piston force

is

FMMM
4 = FP

4 =
1

32π2b2

∑

l,0,m,n

[
(−1)l(−1)m(−1)n

[l2η2 + m2 + n2]2 −
(−1)l(−1)m(−1)n4l2η2

[l2η2 + m2 + n2]3 ] (3.92)

This force is plotted in Fig. 9.
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Fig. 9. The force FMMM
4 on a piston with square cross section (b = c) as function of η = a/b.

E. Conclusion

For a rectangular piston geometry, which includes 2 rectangular cavities a × b × c and

(L − a) × b × c, if we fix the partition on the x = a face, there are 4 kinds of possible B.C.

for the cavity a× b× c; the B.C. for the cavity (L− a)× b× c will be the same. The general

properties for each kind of B.C. are: (1) There are only 4 a−dependent terms, which are

contributed by periodic paths, side paths S y and S z and edge paths Eyz. For some kinds

of B.C., side paths’ contribution and edge paths’ contribution might be absent; however,

periodic paths’ contribution always stays and dominates. (2) The relative weight from

different kinds of paths is different; the contribution from periodic path always dominates,

then that of the side paths, then that of edge paths the least if it exists. (3) When the mixed

B.C. are at x = 0, a, the piston force on the partition is always repulsive with the parallel-

plate force as the a→ 0 limit. But when DD or NN B.C. are at x = 0, a, the piston force is

always attractive. Let’s rewrite the general formula for piston force as

Fαβγ = FP + ηβFS y + ηγFS z + ηβηγFEyz (3.93)
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Fig. 10. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FMNN

2 , dashed red= FMMN
3 , solid black= FMMM

4 , solid green= FMDN
2 ,

dashed green= FMMD
3 and solid blue= FMDD

2 .

Again α, β, γ take a value from DD, NN and M and ηDD = −1, ηNN = 1 and ηM = 1.

Notice that ηα does not appear in this formula; ηβ and ηγ determine the sign of side paths

and the product of ηβ and ηγ determines the sign of edge paths. (4) When no mixed B.C. is

included on sides (y = 0, b; z = 0, c), we have a contribution from each kind of path. When

1 mixed B.C. is included on the sides, the energy from edge paths will be zero and hence

FEyz is absent; furthermore, when the mixed B.C. are at y = 0, b, then ES y is zero and FS y

will be absent and similarly FS z = 0 when the mixed B.C. are at z = 0, c. When the B.C.

on sides are both mixed B.C., we see that the contributions from side paths and edge paths

are all absent and only periodic paths contribute.

We plot the piston force for all cases with mixed B.C. at x = 0, a in Fig. 10. Neumann

B.C. on sides make a positive contribution to the force since ηNN = 1, while Dirichlet B.C.

on sides make a negative contribution due to ηDD = −1. For mixed B.C. on sides, although

ηM = 1 the corresponding energy is absent so there is no side-path contribution; that is why
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Fig. 11. The force F on a piston with square cross section (b = c) as functions of η = a/b.
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the mixed B.C. effect is intermediate in strength between Neumann and Dirichlet B.C.. The

same argument applies for the piston with Neumann B.C. at both x = 0 and x = a , the

forces are plotted in Fig. 11. Since ηα does not affect the piston force, if we switch NN

on x = 0, a to DD, the piston force will stay unchanged for corresponding B.C.. At the

limit η → 0, we can omit the effect from sides and the piston will reduce to corresponding

parallel plates. As η increases, the piston force damps rapidly but the effect from sides

becomes greater.
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CHAPTER IV

3D PISTON FOR ELECTROMAGNETIC FIELD—HERTZ POTENTIAL APPROACH

We have studied the 3D piston thoroughly for a scalar field, with general B.C. considered.

If we can relate the Electromagnetic (EM) piston problem to corresponding scalar piston

problems, it will be significantly convenient. A candidate to do so is Hertz potentials,

which represent the EM field by 2 scalar fields. The essential equation of EM field is the

Maxwell’s equation:

∇ · E = 0; ∇ × B = 0 (4.1)

We can obtain E and B from the 4-vector (Φ,A) under Lorentz gauge ∇ · A + ∂tΦ = 0

E = −∇Φ − ∂tA

B = ∇ × A
(4.2)

However, that is not the only way to express the EM field. Let us define two vectors as

below [41, 42, 43]:

(Φ,A) = (−∇ ·Πe, ∂tΠe + ∇ ×Πm) (4.3)

We can rewrite the Maxwell’s equation and get E and B expressed in terms of Πe and

Πm; they are the so called Hertz potentials. For a highly symmetric geometry such as a

rectangular cavity, it turns out very convenient to express the EM field by two scalar fields,

also called Hertz potentials. We can single out one particular direction, say ~e3, and choose

the Hertz potentials as Πe = ϕ~e3 and Πm = ψ~e3; then [42]

(Φ,A) = (−∂3φ, ∂2ψ,−∂1ψ, ∂0ϕ) (4.4)

It’s straightforward that if φ and ψ satisfy the wave equation themselves, ¤φ = 0 and

¤ψ = 0, then the Maxwell’s equation is satisfied. We can always obtain E and B expressed
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by these 2 Hertz potentials:

E = −∇Φ − ∂tA = (∂1∂3φ − ∂0∂2ψ, ∂2∂3φ + ∂0∂1ψ, ∂
2
3φ − ∂2

0φ)

B = ∇ × A = (∂0∂2φ − ∂1∂3ψ,−∂0∂1φ + ∂2∂3ψ, ∂
2
3ψ − ∂2

0ψ)
(4.5)

For a surface, there are 2 typical boundary conditions for the EM field: Conducting Bound-

ary Condition (CBC) indicates Et = 0, Bn = 0 on the boundary and Permeable Boundary

Condition (PBC) requires En = 0, Bt = 0 on the boundary. We investigate the piston with

all faces CBC as our first example and then generalize to other kind of B.C..

A. Purely Conducting Piston

1. Implication of B.C.

A purely conducting piston is an extension of a rectangular cavity with CBC on each face.

So we start our argument from a rectangular cavity. The CBC on each face requires that E

and B have to satisfy the following equations

Bx|x=0,a =0 Ey = Ez|x=0,a = 0

By|y=0,b =0 Ex = Ez|y=0,b = 0

Bz|z=0,c =0 Ex = Ey|z=0,c = 0

(4.6)

Substituting (4.6) to (4.5), we obtain the corresponding constraints on the 2 scalar fields φ

and ψ:

φx|x=0,a =0 ∂xψx|x=0,a = 0

φy|y=0,b =0 ∂yψy|y=0,b = 0

∂zφz|z=0,c =0 ψz|z=0,c = 0

(4.7)
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Therefore the appropriate normal modes of the Hertz potentials for the conducting cavity

are

φlmn(x, y, z) = Dlmn
sin lπ

a x sin mπ
b y cos nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos lπ

a x cos mπ
b y sin nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.8)

where ω2
lmn = k2

1 + k2
2 + k2

3, k2
⊥ = k2

1 + k2
2 and k1 = lπ

a , k2 = mπ
b , k3 = nπ

c . It follows from the

canonical normalization conditions for E and B that:

|Dlmn|2 =
ε0lε0mε0n

abc
(4.9)

where ε0i = 1 for i = 0 and ε0i = 2 otherwise. Now we can go forward to give the

expressions for the vacuum expectation value (VEV) of each components of E and B.

E2
3(t − t′, r, r′) =

∞∑

l,m,n=1

|Dlmn|2(k2
1 + k2

2)
2ωlmn

sin k1x sin k2y cos k3z sin k1x′ sin k2y′ cos k3z′eiωlmn(t−t′)

(4.10)

E2
⊥(t − t′, r, r′) =

∞∑

l,m,n=1

|Dlmn|2(k2
2 + k2

3)
2ωlmn

cos k1x sin k2y sin k3z cos k1x′ sin k2y′ sin k3z′eiωlmn(t−t′)

+

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

3)
2ωlmn

sin k1x cos k2y sin k3z sin k1x′ cos k2y′ sin k3z′eiωlmn(t−t′)

(4.11)

B2
3(t − t′, r, r′) =

∞∑

l,m,n=1

|Dlmn|2(k2
1 + k2

2)
2ωlmn

cos k1x cos k2y sin k3z cos k1x′ cos k2y′ sin k3z′eiωlmn(t−t′)

(4.12)
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B2
⊥(t − t′, r, r′) =

∞∑

l,m,n=1

|Dlmn|2(k2
2 + k2

3)
2ωlmn

sin k1x cos k2y cos k3z sin k1x′ cos k2y′ cos k3z′eiωlmn(t−t′)

+

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

3)
2ωlmn

cos k1x sin k2y cos k3z cos k1x′ sin k2y′ cos k3z′eiωlmn(t−t′)

(4.13)

If we define iωlmn(t − t′) as −ωlmnτ and convert (k2
1, k

2
2, k

2
3) to (−∂2

1,−∂2
2,−∂2

3), recalling the

cylinder kernel definition in (3.15), we can relate the expressions above to cylinder kernels

of the scalar field with various B.C.:

E2
3(t, r, r′) =

1
2

(∂2
1 + ∂2

2)T
DDN

(t, r, r′) (4.14)

E2
⊥(t, r, r′) =

1
2

(∂2
2 + ∂2

3)T
NDD

(t, r, r′) +
1
2

(∂2
1 + ∂2

3)T
DND

(t, r, r′) (4.15)

B2
3(t, r, r′) =

1
2

(∂2
1 + ∂2

2)T
NND

(t, r, r′) (4.16)

B2
⊥(t, r, r′) =

1
2

(∂2
2 + ∂2

3)T
DNN

(t, r, r′) +
1
2

(∂2
1 + ∂2

3)T
NDN

(t, r, r′) (4.17)

2. Energy Density and Total Energy

The energy density of EM field can be read from the stress tensor of the 00 component.

εCCC(τ, r, r) =T00(τ, r, r) =
1
2

(E2 + B2)

=
1
4

[(∂2
1 + ∂2

2)(T
DDN

+ T
NND

) + (∂2
2 + ∂2

3)(T
NDD

+ T
DNN

) + (∂2
1 + ∂2

3)(T
DND

+ T
NDN

)]

(4.18)

Notice that the cylinder kernel T satisfies Laplace Equation:

(∂2
1 + ∂2

2 + ∂2
3)T = ∂2

0T = −∂2
τT (4.19)

so the energy density can be simplified to

εCCC(τ, r, r) = −∂2
τV
−−−
1 − ∂2

1V−++
1 − ∂2

2V+−+
1 − ∂2

3V++−
1 (4.20)
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ecause that

∂2
1V−++

1 = ∂2
τV
−++
1 − 4

π2

∞∑

lmn

(2la)2 − t2

(dEyz

lmn)6

∂2
2V+−+

1 = ∂2
τV

+−+
1 − 4

π2

∞∑

lmn

(2mb)2 − t2

(dExz
lmn)6

∂2
3V++−

1 = ∂2
τV

++−
1 − 4

π2

∞∑

lmn

(2nc)2 − t2

(dExy

lmn)6

(4.21)

he energy density for a rectangular cavity with CBC on each face is

εCCC(τ, r, r) = − ∂2
τ[V

−−−
1 + V−++

1 + V+−+
1 + V++−

1 ]

+
4
π2

∞∑

lmn

[
(2la)2 − t2

(dEyz

lmn)6
+

(2mb)2 − t2

(dExz
lmn)6

+
(2nc)2 − t2

(dExy

lmn)6
]

(4.22)

Integrate over the cavity to get the total energy:

ECCC
abc =2[EP

1 + EEyz

1 + EExz
1 + EExy

1 ] +
π

24a
+

π

24b
+

π

24c

=EDDD
1 + ENNN

1 +
π

24a
+

π

24b
+

π

24c

= − abc
16π2 Z3(a, b, c; 4) +

π

48a
+

π

48b
+

π

48c

(4.23)

3. Casimir Force for Purely Conducting Piston

We extend the rectangular cavity along the x direction to form a piston with the partition at

x = a. The energy of the second rectangular cavity (L − a) × b × c is

ECCC
(L−a)bc|L→∞ = − (L − a)bc

16π2

∞∑

l,m,n=−∞

′
1

[(l(L − a))2 + (mb)2 + (nc)2]2 +
π

48(L − a)

=
abc
16π2

∞∑

m,n=−∞

′
1

[(mb)2 + (nc)2]2

(4.24)
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Here we discard the a−independent terms. The total energy of the piston is the sum of

energies from two rectangular cavities: a × b × c and (L − a) × b × c.

ECCC =ECCC
abc + ECCC

L−a,b,c|L→∞

= − abc
16π2

∞∑

l,m,n=−∞

′
1

[(la)2 + (mb)2 + (nc)2]2 +
π

48a
+

abc
16π2

∞∑

m,n=−∞

′
1

[((mb)2 + (nc)2]2

= − abc
16π2

∞∑

l,m,n=−∞;l,0

1
[(la)2 + (mb)2 + (nc)2]2 +

π

48a

(4.25)

We are ready to evaluate the piston force on the partition x = a.

FCCC = − ∂
∂a

ECCC =
bc

16π2

∑

l,0,m,n

[
1

[(la)2 + (mb)2 + (nc)2]2 −
4l2a2

[(la)2 + (mb)2 + (nc)2]3 ] +
π

48
1
a2

(4.26)

Let b = c and η = a
b ; the piston force for a purely conducting piston can be rewritten as

FCCC =
1

16π2b2

∑

l,0,m,n

[
1

[l2η2 + m2 + n2]2 −
4l2η2

[l2η2 + m2 + n2]3 ] +
π

48b2

1
η2 (4.27)

It is plotted in Fig. 12 as function of η. From (4.23), we see the relation between the force

for purely conducting piston and the force for purely Dirichlet/Neumann piston:

FCCC = FDDD + FNNN +
π

24η2 = FDDN + FDND (4.28)

The piston force is always attractive and the piston force FCCC |η→∞ = 0 at the limit η→ ∞.
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Fig. 12. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FCCC, solid blue= FNNN and solid green= FDDD.

4. Purely Permeable Piston

A purely permeable piston is extended by a rectangular cavity with PBC on each face. The

CBC on each face requires that E and B to satisfy

By = Bz|x=0,a =0 Ex|x=0,a = 0

Bx = Bz|y=0,b =0 Ey|y=0,b = 0

Bx = By|z=0,c =0 Ez|z=0,c = 0

(4.29)

Correspondingly, the 2 scalar fields φ and ψ satisfy

∂xφx|x=0,a =0 ψx|x=0,a = 0

∂yφy|y=0,b =0 ψy|y=0,b = 0

∂zφz|z=0,c =0 ∂zψz|z=0,c = 0

(4.30)
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Therefore the appropriate normal modes for a purely permeable cavity are

φlmn(x, y, z) = Dlmn
cos lπ

a x cos mπ
b y sin nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
sin lπ

a x sin mπ
b y cos nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.31)

Comparing with the purely conducting cavity, the 2 scalar fields just exchange their val-

ues, φ ­ ψ, which results in the exchange between E and B; however, the energy density

ε = 1
2 (E2 + B2) stays unchanged. In other words, εCCC = εPPP. Therefore for the purely

permeable piston, the piston force FPPP will be exactly the same as FCCC. The similar con-

clusion applies to other situations as well, such as FPCC = FCPP. We call this phenomenon

“B.C. Duality”:

For a rectangular cavity with CBC and PBC on all 6 faces, if we replace CBC by PBC

and replace PBC by CBC, then the two scalar field exchange to each other, (φ, ψ)→ (ψ, φ),

which makes E and B exchange their values but maintains the energy density ε = 1
2 (E2+B2)

unchanged.

5. Piston with PBC at x = 0, a and CBC at y = 0, b; z = 0, c (PCC)

The normal modes for this kind of piston are

φlmn(x, y, z) = Dlmn
cos lπ

a x sin mπ
b y cos nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
sin lπ

a x cos mπ
b y sin nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.32)
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The energy density is

εPCC =
1
4

[(∂2
1 + ∂2

2)(T
NDN

+ T
DND

) + (∂2
2 + ∂2

3)(T
DDD

+ T
NNN

) + (∂2
1 + ∂2

3)(T
NND

+ T
DDN

)

= − ∂2
τV
−−−
1 − ∂2

1V−++
1 + ∂2

2V+−+
1 + ∂2

3V++−
1

= − ∂2
τ[V

−−−
1 + V−++

1 − V+−+
1 − V++−

1 ] +
4
π2

∞∑

lmn

[
(2la)2 − t2

(dEyz

lmn)6
− (2mb)2 − t2

(dExz
lmn)6

− (2nc)2 − t2

(dExy

lmn)6
]

(4.33)

The total energy for the cavity a × b × c is

EPCC
abc =2[EP

1 + EEyz

1 − EExz
1 − EExy

1 ] +
π

24a
− π

24b
− π

24c

= − abc
16π2 Z3(a, b, c; 4) +

π

48a
− π

48b
− π

48c

(4.34)

The a−dependent parts in EPCC
abc are the same as in ECCC

abc :

EPCC
abc (a) = ECCC

abc (a) = − abc
16π2 Z3(a, b, c; 4) +

π

48a
(4.35)

Therefore the piston force FPCC is the same as FCCC as well. To summarize, we have found

4 equivalent cases:

FCCC = FPPP = FCPP = FPCC (4.36)

6. Piston with CBC at x = 0, a; z = 0, c and PBC at y = 0, b (CPC)

The total energy for the cavity a × b × c can be obtained by rotating the PCC cavity along

z-axis

ECPC
abc =2[EP

1 − EEyz

1 + EExz
1 − EExy

1 ] − π

24a
+

π

24b
− π

24c

= − abc
16π2 Z3(a, b, c; 4) − π

48a
+

π

48b
− π

48c

(4.37)
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Fig. 13. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FPCC and solid blue= FCPC.

The a−dependent parts in ECPC
abc are

ECPC
abc = − abc

16π2 Z3(a, b, c; 4) − π

48a

=[− abc
16π2 Z3(a, b, c; 4) +

π

48a
] − π

24a

=EPCC
abc −

π

24a

(4.38)

Therefore the relation between FCPC and FPCC is

FCPC = FPCC − π

24η2 = FDDD + FNNN (4.39)

The piston force FCPC is plotted in Fig. 13 along with FPCC; they are both attractive.
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B. Permeable Piston with a PBC Partition

1. Implication of B.C.

We investigate the cavity with PBC at x = a and CBC elsewhere. The appropriate normal

modes for the cavity are:

φlmn(x, y, z) = Dlmn
sin (l+ 1

2 )π
a x sin mπ

b y cos nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos (l+ 1

2 )π
a x cos mπ

b y sin nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.40)

where ω2
lmn = k2

1 + k2
2 + k2

3, k2
⊥ = k2

1 + k2
2 and k1 =

(l+ 1
2 )π

a , k2 = mπ
b , k3 = nπ

c . Now we can go

forward to give the expressions for each component of E and B.

E2
3(t − t′, r, r′) =

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

2)
2ωlmn

cos k1x sin k2y cos k3z cos k1x′ sin k2y′ cos k3z′eiωlmn(t−t′)

(4.41)

E2
⊥(t − t′, r, r′) =

∞∑

l,m,n

|Dlmn|2(k2
2 + k2

3)
2ωlmn

sin k1x sin k2y sin k3z sin k1x′ sin k2y′ sin k3z′eiωlmn(t−t′)

+

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

3)
2ωlmn

cos k1x cos k2y sin k3z cos k1x′ cos k2y′ sin k3z′eiωlmn(t−t′)

(4.42)

B2
3(t − t′, r, r′) =

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

2)
2ωlmn

sin k1x cos k2y sin k3z sin k1x′ cos k2y′ sin k3z′eiωlmn(t−t′)

(4.43)

B2
⊥(t − t′, r, r′) =

∞∑

l,m,n

|Dlmn|2(k2
2 + k2

3)
2ωlmn

cos k1x cos k2y cos k3z cos k1x′ cos k2y′ cos k3z′eiωlmn(t−t′)

+

∞∑

l,m,n

|Dlmn|2(k2
1 + k2

3)
2ωlmn

sin k1x sin k2y cos k3z sin k1x′ sin k2y′ cos k3z′eiωlmn(t−t′)

(4.44)
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Recall from Chapter III that k1 =
(l+ 1

2 )π
a is related to the mixed B.C. on the scalar field.

Therefore with the cylinder kernels defined in chapter III, we can rewrite E2
i and B2

i as

E2
3(t, r, r′) =

1
4

(∂2
1 + ∂2

2)T
MDN

(t, r, r′) (4.45)

E2
⊥(t, r, r′) =

1
4

(∂2
2 + ∂2

3)T
MDD

(t, r, r′) +
1
4

(∂2
1 + ∂2

3)T
MND

(t, r, r′) (4.46)

B2
3(t, r, r′) =

1
4

(∂2
1 + ∂2

2)T
MND

(t, r, r′) (4.47)

B2
⊥(t, r, r′) =

1
4

(∂2
2 + ∂2

3)T
MNN

(t, r, r′) +
1
4

(∂2
1 + ∂2

3)T
MDN

(t, r, r′) (4.48)

2. Energy Density and Total Energy

The energy density is

εMCC =
1
4

[(∂2
1 + ∂2

2)(T
MDN

+ T
MND

) + (∂2
2 + ∂2

3)(T
MDD

+ T
MNN

) + (∂2
1 + ∂2

3)(T
MND

+ T
MDN

)]

(4.49)

Notice that T satisfies the Laplace equation,

(∂2
1 + ∂2

2 + ∂2
3)T = ∂2

0T = −∂2
τT (4.50)

so the energy density can be simplified to:

εMCC = − ∂2
τV
−−−
2 − ∂2

τV
+−−
2 − ∂2

1V−++
2 − ∂2

1V+++
2

= − ∂2
τ[V

−−−
2 + V+−−

2 + V−++
2 + V+++

2 ] +
4
π2

∞∑

lmn

(−1)l[
(2la)2

(dEyz

lmn)6
+

(2la + 2x)2

(dC
lmn)6

(4.51)

Integrate over the cavity to get the total energy:

EMCC =2[EP
2 + ES x

2 + EEyz

2 + EC
2 ] − π

48a

=2EP
2 − 2EEyz

2 = EMDN
2 + EMND

2

(4.52)

Note that ES x
2 = 0, EC

2 = 0 and EEyz

2 = π
192a .
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Fig. 14. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FMCC = FMPP.

3. Piston Force

By the B.C. duality, for the piston with CBC at the partition x = 0 and PBC elsewhere, the

piston force FMCC will be the same as FMPP. It is plotted in Fig. 14.

FMCC = FMPP = FMDN
2 + FMND

2
(4.53)

4. CP-PP-CC

When the B.C. on sides are not all CBC, but rather PBC at y = 0, b and CBC at z = 0, c,

the normal modes are

φlmn(x, y, z) = Dlmn
sin (l+ 1

2 )π
a x cos mπ

b y cos nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos (l+ 1

2 )π
a x sin mπ

b y sin nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.54)
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Total energy for a cavity is

εMPC =
1
4

[(∂2
1 + ∂2

2)(T
MDD

+ T
MNN

) + (∂2
2 + ∂2

3)(T
MND

+ T
MDN

) + (∂2
1 + ∂2

3)(T
MND

+ T
MDN

)

= − ∂2
τV
−−−
2 − ∂2

τV
+−−
2 − ∂2

3V−++
2 − ∂2

3V+++
2

= − ∂2
τ[V

−−−
2 + V+−−

2 + V−++
2 + V+++

2 ] +
4
π2

∞∑

lmn

(−1)l[
(2nc + 2z)2

(dEyz

lmn)6
+

(2nc + 2z)2

(dC
lmn)6

]

=2[EP
2 + ES x

2 + EEyz

2 + EC
2 ] − π

96a

=2(EP
2 + 0 +

π

192a
+ 0) − π

96a
= 2EP

2

(4.55)

Note that ES x
2 = 0 and EC

2 = 0, so the total energy

EMPC = 2EP
2 = 2EMND

2 − π

96a
(4.56)

FMPC = 2FMND
2 − π

96a2 =
FMDD + FNN

2
+ FMDN (4.57)

It is plotted in Fig. 15 along with FMCC; they are both repulsive.

C. Piston with mixed B.C.

There are various B.C. for a piston with mixed B.C. on some sides: CC-CP-CC (PP-CP-

PP), CC-CP-PP (PP-CP-CC); CC-CP-CP, PP-CP-CP, CP-CP-CC, CP-CP-PP; CP-CP-CP.

1. CC-CP-CC

The normal modes are

φlmn(x, y, z) = Dlmn
sin lπ

a x sin (m+ 1
2 )π

b y cos nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos lπ

a x cos (m+ 1
2 )π

b y sin nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.58)
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Fig. 15. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FMCC = FMPP, solid blue= FMPC.

Total energy for a cavity is

εCMC(τ, r, r) =
1
4

[(∂2
1 + ∂2

2)(T
DMD

+ T
NMN

) + (∂2
2 + ∂2

3)(T
DMD

+ T
NMN

) + (∂2
1 + ∂2

3)(T
DMN

+ T
NMD

)]

(4.59)

The a−dependent terms are V−−−2 , V+−+
2 , V++−

2 and V−++
2 .

εCMC =
1
4

[(∂2
1 + ∂2

2)(T
DMD

+ T
NMN

) + (∂2
2 + ∂2

3)(T
DMD

+ T
NMN

) + (∂2
1 + ∂2

3)(T
NMD

+ T
DMN

)]

= − ∂2
τV
−−−
2 − ∂2

τV
−+−
2

ECMC =2[EP
2 + ES y

2 ] = 2EP
2 = ENMN + EDMD

(4.60)

Note that ES y

2 = 0. Then the piston force can be related to scalar piston forces as

FCMC = FNMN + FDMD (4.61)
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2. CC-CP-PP

The normal modes are

φlmn(x, y, z) = Dlmn
sin lπ

a x sin (m+ 1
2 )π

b y sin nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos lπ

a x cos (m+ 1
2 )π

b y cos nπ
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.62)

Total energy for a cavity is

εCMP(τ, r, r) =
1
4

[(∂2
1 + ∂2

2)(T
DMD

+ T
NMN

) + (∂2
2 + ∂2

3)(T
DMD

+ T
NMN

) + (∂2
1 + ∂2

3)(T
NMD

+ T
DMN

)]

(4.63)

The a−dependent terms are V−−−2 , V+−+
2 , V++−

2 and V−++
2 .

εCMP =
1
4

[(∂2
1 + ∂2

2)(T
DMD

+ T
NMN

) + (∂2
2 + ∂2

3)(T
DMD

+ T
NMN

) + (∂2
1 + ∂2

3)(T
NMD

+ T
DMN

)]

= − ∂2
τV
−−−
2 − ∂2

τV
−+−
2

ECMP =2[EP
2 + ES y

2 ] = 2EP
2

(4.64)

This is the same as εCMC, so the piston force is again FCMP = FCMC = FNMN + FDMD.

3. CC-CP-CP

The normal modes are

φlmn(x, y, z) =

∞∑

l,m,n

Dlmn
sin lπ

a x sin (m+ 1
2 )π

b y sin (n+ 1
2 )π

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) =

∞∑

l,m,n

Dlmn
cos lπ

a x cos (m+ 1
2 )π

b y cos (n+ 1
2 )π

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.65)
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Total energy for a cavity is

εCMM(τ, r, r) =
1
4

[(∂2
1 + ∂2

2)(T
DMM

+ T
NMM

) + (∂2
2 + ∂2

3)(T
DMM

+ T
NMM

) + (∂2
1 + ∂2

3)(T
NMM

+ T
DMM

)]

=
1
2

(∂2
1 + ∂2

2 + ∂2
3)(T

DMM
+ T

NMM
) =

1
2
∂2
τ(T

DMM
+ T

NMM
)

(4.66)

The a−dependent terms are V−−−3 , V+−+
3 , V++−

3 and V−++
3 .

εCMM(τ, r, r) = − ∂2
τ[V

−−−
3 + V+−+

3 + V++−
3 + V−++

3 ]

ECMM =2[EP
2 + ES y

3 + ES z
3 + EEyz

3 ]
(4.67)

however, ES y

3 = ES z
3 = EEyz

3 = 0, so

ECMM(τ, r, r) = 2EP
3 = 2FP

3 (4.68)

Therefore, FCMM = 2FNMM.

We plot FCMC and FCMM in Fig. 16; they are both attractive.

4. CP-CP-CC

The normal modes are

φlmn(x, y, z) = Dlmn
sin (l+ 1

2 )π
a x sin (m+ 1

2 )π
b y sin nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos (l+ 1

2 )π
a x cos (m+ 1

2 )π
b y cos nπ

c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.69)

Total energy for a cavity is

εMMC(τ, r, r) =
1
4

[(∂2
1 + ∂2

2)(T
MMN

+ T
MMD

) + (∂2
2 + ∂2

3)(T
MMN

+ T
MMD

) + (∂2
1 + ∂2

3)(T
MMN

+ T
MMD

)]

=
1
2

(∂2
1 + ∂2

2 + ∂2
3)(T

MMN
+ T

MMD
) = −1

2
∂2
τ(T

MMN
+ T

MMD
)

(4.70)
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Fig. 16. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FCMC = FCMP, solid blue= FCMM.

The a−dependent terms are V−−−3 , V+−+
3 , V++−

3 and V−++
3 .

εMMC(τ, r, r) = − ∂2
τ[V

−−−
3 + V+−+

3 − V++−
3 − V−++

3 ]

EMMC =2[EP
3 + ES y

3 − ES z
3 − EEyz

3 ]
(4.71)

however, ES y

3 = ES z
3 = EEyz

3 = 0, so

EMMC(τ, r, r) = 2EP
3 = EMMN + EMMD (4.72)

The piston force is FMMC = FMMN + FMMD.
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5. CP-CP-CP

The normal modes are

φlmn(x, y, z) = Dlmn
sin (l+ 1

2 )π
a x sin (m+ 1

2 )π
b y sin (n+ 1

2 )π
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

ψlmn(x, y, z) = Dlmn
cos (l+ 1

2 )π
a x cos (m+ 1

2 )π
b y cos (n+ 1

2 )π
c ze−iωlmnt

|k⊥lmn|
√

2ωlmn

(4.73)

Total energy for a cavity is

εMMM(τ, r, r) =
1
4

[(∂2
1 + ∂2

2)(T
MMM

+ T
MMM

) + (∂2
2 + ∂2

3)(T
MMM

+ T
MMM

) + (∂2
1 + ∂2

3)(T
MMM

+ T
MMM

)]

=
1
2

(∂2
1 + ∂2

2 + ∂2
3)(T

MMM
+ T

MMM
) = −∂2

τT
MMM

(4.74)

The a−dependent terms are V−−−4 , V+−+
4 , V++−

4 and V−++
4 .

εMMM(τ, r, r) = − ∂2
τ[V

−−−
4 + V+−+

4 + V++−
4 + V−++

4 ]

EMMM =2[EP
4 + ES y

4 + ES z
4 + EEyz

4 ]
(4.75)

however, ES y

4 = ES z
4 = EEyz

4 = 0, so

EMMM(τ, r, r) = 2EP
4 = 2EMMM (4.76)

The piston force is FMMM = 2FMMM. FMMC and FMMM are plotted in Fig. 17; they

are both repulsive.

D. Conclusion

For a piston with partition fixed at x = a, different B.C. yield different piston forces. B.C.

duality provides the symmetry between 2 Hertz potentials φ and ψ when considering to-

tal energy, that makes two pistons with exactly opposite B.C. have identical piston force.
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Fig. 17. The force F on a piston with square cross section (b = c) as functions of η = a/b.
Solid red= FMMC, solid blue= FMMM.

Again the piston force turns out to be determined by a-dependent terms, which are con-

tributed by periodic paths (V−−−), side paths (V+−+ and V++−) and edge paths (V−++). Since

we have related EM piston energy to the scalar cylinder kernel, it is straightforward to re-

late EM piston force to the corresponding scalar piston force as well. We summarize the

equivalent B.C. and the relations between EM pistons and scalar pistons in the table VIII.

Recall that the subscripts 1, 2, 3, 4 represent 1st, 2nd, 3rd and 4th kind B.C. for scalar pis-

ton. When the B.C. at x = 0, a are both CBC/PBC, the piston force is always atractive;

while when mixed B.C. are at x = 0, a, the piston force is always repulsive. Periodic paths’

contribution always stays and dominates, while side paths’ and edge paths’ contribution is

a perturbation to periodic paths’ and might be absent for some cases, we call this part as

side effect. At the limit a → 0, these side effects are relatively small and can be ignored,

so that in essence we have two parallel plates; as a increases, the side effect increases

correspondingly; it could be either positive (same sign as periodic paths’ contribution) or

negative (opposite sign to periodic paths’ contribution). In other words, the side effect be-
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Table VIII. Table of the relations between EM pistons and scalar pistons

B.C. Type Equivalent Cases Total Energy

CC-CC-CC PP-PP-PP; PP-CC-CC; CC-PP-PP FCCC = FDDN
1 + FDND

1

CC-PP-CC PP-CC-PP FCPC = FDDD
1 + FNNN

1

CC-CP-CC CC-CP-PP; PP-PC-PP FCMC = FNMN
2 + FDMD

2

CC-CP-CP PP-CP-CP FCMM = 2FNMM
3

CP-CC-CC PC-PP-PP FMCC = FMDN
2 + FMND

2

CP-PP-CC PC-CC-PP FMPC = FMDD
2 + FMNN

2

CP-CP-CC CP-CP-PP FMMC = FMMN
3 + FMMD

3

CP-CP-CP PC-PC-PC FMMM = 2FMMM
4

comes more and more visible when a increases and as a result, the total energy damps more

quickly or less according to its sign.

In summary, the EM piston has been studied by means of 2 Hertz potentials, thus E

and B have been decomposed into 2 scalar fields. The EM fields E and B are constrained

by either conducting or permeable B.C. and therefore induce corresponding B.C. for the

2 Hertz potentials φ and ψ, so that total energy and piston force of the EM piston can be

represented by corresponding quantities of the scalar piston. It is convenient to use the

known scalar piston results to deduce EM piston results, and that provides a way to analyze

the EM piston from the point of view of classical paths; for a specific EM piston, we can

tell which kinds of paths contribute more, less, or just are absent.
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CHAPTER V

MULTIPLE REFLECTION EXPANSION ANALYSIS

All analysis in previous chapters dealt with flat surfaces, in which cases we can always

apply the method of images to construct the corresponding Green functions such as cylinder

kernel. When it comes to curved surfaces, method of images does not apply; we have to

find an alternate way to construct the cylinder kernel. The multiple reflection expansion

(MRE for short) is the closest counterpart for curved surfaces of the method of images for

flat surfaces. Definitely the mathematics for curved surfaces is much more complicated.

A free Green’s function G f (r, r′) represents the propagation from point x to point x′

directly. However, when boundary conditions are introduced, the Green’s function will be

confined to satisfy them (Dirichlet B.C. or Neumann B.C.). The confined Green’s function

can be developed by summing up the direct propagation: x → x′, propagation with 1

reflection on the boundary S : x→ S → x′, propagation with 2 reflections on the boundary

S : x→ S → S → x′, and all propagations with higher number of reflections [44, 45].

For the whole space, the reduced Green’s function in (2.9) is

G f (r, r′, ω) =
eıω|r−r′ |

4π | r − r′ | (5.1)

This is the Green’s function without any boundary, which encounters a direct propagation

from r to r′. If we are looking for the Green’s function which satisfies Dirichlet B.C. or

Neumann B.C. on an arbitrary smooth surface S , MRE provides (at least formally) the

Green’s function which satisfies the corresponding B.C. as a summation on number of
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reflections over the surface.

GD(r, r′) =G f (r, r′) − − − − − − − − − − − − − − − − − − − − < direct propagation >

− 2
∫

S
dSα

∂G f (r, α)
∂nα

G f (α, r′) − − − − − − − − − − < 1st re f lection >

+ 22
∫

S

∫

S
dSαdSβ

∂G f (r, α)
∂nα

∂G f (α, β)
∂nβ

G f (β, r′) − − < 2nd re f lection >

− 23
∫

S

∫

S

∫

S
dSαdSβdSγ

∂G f (r, α)
∂nα

∂G f (α, β)
∂nβ

∂G f (β, γ)
∂nγ

G f (γ, r′) + ...

(5.2)

where r′ is the starting point, the path reflects on S at points α, β, γ,..., and it finally goes

to r. For Neumann B.C. the ‘−’ sign for odd number reflection terms should be converted

to ‘+’ [11, 44, 45, 46, 47].

A. Reproduction of Method of Images for Flat Surfaces

The relation between the reduced Green’s function for the whole space and the cylinder

kernel for the whole space is

T
f
(r, r′, t) =

2
π

Lω[ImG f (r, r′, ω)] =
2
π

Lω[
sinω|rr′|

4π|rr′| ] = − 1
2π2

1
t2 + |rr′|2 (5.3)

where Lω is the Laplace transform operator with respect to ω. This relation gives a way to

construct the cylinder kernel by Laplace transform of the corresponding reduced Green’s

function. Suppose we are looking for the cylinder kernel satisfying Dirichlet B.C. on a sur-

face S and for now we have known the reduced Green’s function (5.2) satisfying Dirichlet

B.C.. If we take Laplace transform on both sides of (5.2), we will get the proper cylinder

kernel satisfying Dirichlet B.C. T
D

(r, r′). The first term of the reduced Green’s function,

G f (r, r′), corresponds to the direct propagation; after Laplace transform, it will be converted
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into the free cylinder kernel T
f
(r, r′). The second term corresponds to the 1st reflection.

−2
∫

S
dSα

∂G f (r, α)
∂nα

G f (α, r′) = −2
∫

S
dS α cos θ1

∂

∂r1
(
eıωr1

4πr1
)(

eıωr2

4πr2
)

= − 1
8π2

∫

S
dS α cos θ1(

ıω

r1r2
eıω(r1+r2) − 1

r2
1r2

eıω(r1+r2))
(5.4)

where r1 = |rα|, r2 = |αr′| and θ1 is the angle between the vector from r to α and the

normal to the surface at point α. We take the Laplace transform for 1st reflection term

(with l = r1 + r2):

2
π

L[−2
∫

S
dSα

∂G f (r, α)
∂nα

G f (α, r′)] =
2
π

L[− 1
8π2

∫

S
dS α cos θ1(

ıω

r1r2
eıω(r1+r2) − 1

r2
1r2

eıω(r1+r2))]

=
1

4π3

∫

S
dS α cos θ1[

1
r1r2

l2 − t2

(l2 + t2)2 +
1

r2
1r2

l
t2 + l2 ]

(5.5)

For the 2nd and higher orders of reflection more work is needed. Repeated paths and

degenerate paths are involved and divergence analysis has to be made carefully [47]. By

taking Laplace transform of the MRE of the reduced Green’s function, we could apply

numerical approximation for higher order reflections [12, 49, 50].

For the purpose of comparing with method of images, let’s analyze in detail the 1st

reflection term (5.5). If we take the flat surface as example, we should reproduce the results

of the method of images. Consider the case where the surface S stands for two parallel

plates (S 1 + S 2) satisfying Dirichlet boundary conditions at both x = 0 (S 1) and x = a (S 2).

The cylinder kernel constructed by the method of images is

T
D

(r, r′) = T
f
(r, r′) + D0T

f
(r, r′) + DaT

f
(r, r′) + ... (5.6)

Thus the 1st reflection term of cylinder kernel reflected by S 1 from point r : (x, 0, 0)
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to r′ : (x′, 0, 0) is

D0T
f
(r, r′)|r=r′ =

1
2π2

1
t2 + (x + x′)2 |r=r′ =

1
2π2

1
t2 + (2x)2

(5.7)

The other 1st reflection term DaT
f
(r, r′) stands for the 1st reflection term reflected by S 2.

From MRE, the 1st reflection term of cylinder kernel reflected by S 1 is

T
MRE
1 =

1
4π3

∫

S 1

dS α = cos θ1[
1

r1r2

l2 − t2

(l2 + t2)2 +
1

r2
1r2

l
t2 + l2 ] (5.8)

When we put the two points identical; r = r′, we will have r1 = r2 = l
2 , cosθ1 = x

l/2 and

dS = πdy2 = π
4 dl2. Substituting into (5.8) we got

T
MRE
1 =

1
4π3

∫

S 1

π

4
dl2 (

x
l/2

)[
4
l2

l2 − t2

(l2 + t2)2 +
8
l3

l
t2 + l2 ]

=
x

4π2

∫ ∞

lmin

dl [
12
t2 (

1
l2 −

1
l2 + t2 ) − 8t2

l2(l2 + t2)2 ]

=
x

4π2 [
12
t2 (−1

l
− 1

t
arctan

l
t
) + (

12
lt2 −

4
l

l
t2 + l2 +

12
t3 arctan

l
t
)]|∞lmin

= − x
π2

1
l(t2 + l2)

|∞lmin
=

x
π2

1
lmin(t2 + l2

min)

=
1

2π2

1
t2 + (lmin)2 =

1
2π2

1
t2 + (2x)2

(5.9)

where lmin = 2x. The energy density contributed by the 1st reflection term is

ε|MRE
1st = −1

2
lim
t−→0

∂2

∂t2 T
MRE
1 =

1
2π2

1
l4
min

(5.10)

So we conclude that, for flat surfaces, the 1st reflection term from MRE is exactly the

same as D0T from the method of images; higher order reflections are expected to be the

same as well. We could understand the method of images as one special application of

MRE when the surface is flat. For curved surfaces, the method of images fails; however,

MRE can generalize its application to any surface.
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Fig. 18. A classical path starting from A (a from the center of sphere) is reflected off a
sphere (with radius R) to B, the path length l = r1 + r2, the angle between AM and
the normal at M is θ1.

B. Reproduction of the Optical Approach’s Result for a Sphere

We take 2-dimensional sphere in 3-dimensional space as a typical geometry to analyze

how MRE works with curved surfaces. We will start with the MRE of the reduced Green’s

function as in (5.2). Now the boundary S stands for a sphere with radius R. By taking the

Laplace transform of (5.2), the reduced Green’s function satisfying Dirichlet B.C. on the

sphere is converted to the cylinder kernel satisfying the same B.C.. Let’s make a thorough

study of the 1st reflection term of the cylinder kernel,

T
MRE
1 =

1
4π3

∫

S
dS α cos θ1[

1
r1r2

l2 − t2

(l2 + t2)2 +
1

r2
1r2

l
t2 + l2 ] (5.11)
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 22
Ra −

Fig. 19. The surface integral over the whole sphere is divided into 2 parts: visible re-
gion l ∈ (lmin, l′max) and shadow region l ∈ (l′max, lmax), where lmin = 2(a − R),
l′max =

√
a2 − R2 and lmax = 2(a + R).

When putting r = r′,

r1 = r2 =
l
2

cos θ1 = −R2 + r2
1 − a2

2Rr1
= −R2 + l2/4 − a2

Rl

dS =
2πR

a
r1dr1 =

πR
2a

l dl

(5.12)

(5.11) can be written as

T
MRE
1 = − 1

2π2a

∫ lmax

lmin

dl (R2 + l2/4 − a2)[
1
l2

l2 − t2

(l2 + t2)2 +
2
l2

1
t2 + l2 ]

= − 1
2π2a

(
∫ l′max

lmin

dl +

∫ lmax

l′max

dl)(R2 + l2/4 − a2)[
1
l2

l2 − t2

(l2 + t2)2 +
2
l2

1
t2 + l2 ]

(5.13)

where lmax = 2(a + R), l′max = 2
√

a2 − R2, lmin = 2(a − R) and a = R + lmin/2. The integral
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from visible region (l ∈ (lmin, l′max)) gives

T
MRE
1v = − 1

2π2a

∫ l′max

lmin

dl (R2 + l2/4 − a2)[
1
l2

l2 − t2

(l2 + t2)2 +
2
l2

1
t2 + l2 ]

=
R2 − a2

2π2a
1

l(t2 + l2)
|l′max
lmin

+
1

8π2a
l

t2 + l2 |
l′max
lmin
− 1

4π2at
arctan

l
t
|l′max
lmin

=
R
a

1
2π2

1
t2 + l2

min

+
1

4π2at
arctan

lmin

t
− 1

4π2at
arctan

l′max

t

(5.14)

The integral from shadow region (l ∈ (l′max, lmax)) gives

T
MRE
1s = − 1

2π2a

∫ lmax

l′max

dl (R2 + l2/4 − a2)[
1
l2

l2 − t2

(l2 + t2)2 +
2
l2

1
t2 + l2 ]

=
R
a

1
2π2

1
t2 + l2

max
+

1
4π2at

arctan
l′max

t
− 1

4π2at
arctan

lmax

t

(5.15)

Now we add the contributions from visible region and shadow region together, the 1st

reflection term of the cylinder kernel is

T
MRE
1 = T

MRE
1v + T

MRE
1s

=
R
a

1
2π2

1
t2 + l2

max
+

R
a

1
2π2

1
t2 + l2

max
+

1
4π2at

arctan
lmin

t
− 1

4π2at
arctan

lmax

t

(5.16)

The third term can be expanded in the order of t as

1
4π2at

arctan
lmin

t
=

1
4π2a

(− 1
lmin

+
t2

3l3
min

− t4

5l5
min

) + O[t6] (5.17)

Similarly for the fourth term,

1
4π2at

arctan
lmax

t
=

1
4π2a

(− 1
lmax

+
t2

3l3
max
− t4

5l5
max

) + O[t6] (5.18)

Next we consider the energy density contributed by the 1st reflection term,

ε|MRE
1 = −1

2
lim
t−→0

∂2

∂t2 T
MRE
1

=
R
a

1
2π2 (

1
l4
min

+
1

l4
max
− lmin

6R
1

l4
min

+
lmax

6R
1

l4
max

)
(5.19)
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Since lmin � lmax and lmin � 6R, we conclude that the first term R
a

1
2π2

1
l4min

dominates the

energy density in the 1st reflection. This dominant term differs from the energy density

contributed by the 1st reflection on a plate in (5.10) by an extra coefficient R
a , We call this

coefficient “geometrical factor” (g1 = R
a ) as it reflects information on the curved surface.

Correspondingly, the 1st term dominates the 1st reflection term of the cylinder kernel in

(5.16).

The similarity between the formulas for curved and flat surfaces is that they both

correspond to the minimal length lmin with one reflection on the surface; since minimal

length corresponds to the optical ray length between two points when one reflection is

involved, this gives a hint for us to understand the role that the boundary plays in MRE,

that is, the surface integral over boundary is trying to find the minimal length of a closed

path and a coefficient is coming out from the surface integral to reflect the geometrical

effect.

Let’s recall the optical approach’s formula for energy density ,

εoptical = − 1
2π2

∑

r

(−1)r
√4r

l3
r

(5.20)

where 4r is called “enlargement factor” [12, 48, 49, 50]. For the 1st reflection the enlarge-

ment factor is

41 =
1

(lmin +
l2min
2R )2

=
1

l2
min

1

(1 + lmin
2R )2

(5.21)

The energy density contributed by the 1st reflection is,

ε
optical
1 =

1
2π2

√41

l3
min

=
1

1 + lmin
2R

1
2π2

1
l4
min

=
R
a

1
2π2

1
l4
min

(5.22)

The enlargement factor 41 defined in the optical approach and the geometrical factor g1 de-

fined in MRE are exactly the same and energy density in the optical approach corresponds

to the dominant term in MRE approach. Note that MRE involves the whole surface, the
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whole sphere in this case, and it provides an exact solution, while optical approximation,

as it implies, provides an approximate solution. The relation between them lies, the optical

approximation estimates the dominant contriution in MRE.

For higher order reflection, the optical approach needs numerical methods to obtain the

enlargement factors and minimal length for periodic paths [12]; in the MRE method, when

we deal with the minimal length and the geometrical factor (counterpart of enlargement

factor), we did not provide easier math; that is, MRE also needs numerical methods for

higher order reflections. However, in the lowest order we got consistent expression for

energy density as the optical approach from another point of view. By introducing the

MRE of the cylinder kernel, we naturally find connections between energy density and

lengths of closed paths, and explain that the geometrical factor is coming from the surface

integral and is strongly geometry-dependent.
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CHAPTER VI

CONCLUSION

With the relation between cylinder kernel and energy density in (2.27), once we know

the cylinder kernel, we can evaluate the Casimir energy and the Casimir force. There

are two ways basically to construct the cylinder kernel: (1). Base the cylinder kernel on

the summation (integration) of eigenfunctions as in (3.14); (2). Base the cylinder kernel

on the method of images and sum over number of reflections as in (3.10). The cylinder

kernel contains a cutoff parameter t (which should not be understood as physical time)

by including an exponential term e−ωt. We can thus see clearly the cutoff dependence, the

divergent terms resulted by cutoff dependence are easily isolated from the finite terms (∝ t0,

no cutoff dependence).

A typical application to scalar rectangular cavity brings 8 parts for the cylinder kernel,

with the 8 parts classified to 4 kinds by type of classical paths: periodic paths, side paths,

edge paths and corner paths. Therefore the total energy is composed of 8 terms contributed

by different kind of paths. When considering the contribution from each kind of paths to

the total energy, the periodic paths weigh highest and edge paths least; corner paths does

not contribute to the total energy. There are various possible B.C. for a rectangular cavity

by imposing different B.C. on each face. It turns out B.C. makes significant change to the

cylinder kernel thus the total energy. Dirichlet B.C. or Neumann B.C. on each face will

determine the sign of the contribution of side paths with Neumann B.C. + and Dirichlet

B.C. −. Sign of contribution of edge paths are determined by B.C. of 2 faces which join at

that edge, same B.C. on those 2 faces gives + and different B.C. −. The sign of periodic

paths instead keeps unchanged no matter what B.C. are on the 6 faces.

A scalar piston is extended by a rectangular cavity and then composed of the original

cavity and the extended cavity. The total energy of the piston is the summation of the
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total energies of that two cavities. Comparing to a single rectangular cavity, the piston

force converges to 0 at the limit of infinite separation while the cavity force converges to

a nonzero constant, which is not reasonable. Another big change from cavity to piston

lies in, for a cavity, periodic paths, side paths and edge paths always contribute to the total

energy while for a piston only periodic paths always do so; side paths and edge paths may

be absent depending on B.C.. The periodic paths determine the sign of the piston force

and side paths and edge paths’ contribution (if it exists) can be viewed as perturbation to

the periodic paths’. When the B.C. on the partition (the movable face inside the piston)

and the face parallel to the partition are the same, the piston force will be always attractive;

when the B.C. are different, the piston force will be always repulsive. At the limit of small

separation, the piston will be reduced to the parallel plates and perturbation from side paths

and edge paths go to zero.

For the EM piston, we use 2 Hertz potentials φ and ψ to represent the EM field then

the constraint on E and B resulted from the B.C. (CBC or PBC) on boundary are converted

to corresponding constraint on the 2 scalar fields (Hertz potentials). The piston force of EM

piston is closely related to the piston forces of 2 corresponding scalar piston. The piston

force is attractive when the B.C. on the partition and the face parallel to the partition are

the same and repulsive when they are different. The piston force converges to zero as the

separation goes to infinity.

Cylinder kernel analysis from the point of view of classical paths obtains consistent

conclusion as optical approximation did for purely Dirichlet/Neumann piston and purely

conducting piston. For the rectangular cavity and piston (flat surface) they are both exact.

For curved surface, such as sphere, the optical approximation is not exact any more and it

does make some approximation. In comparison with the MRE (which is exact since it con-

structs an exact Green’s function), the optical approach approximates the energy density

by taking into account the enlargement factor and it turns out this approximation covers
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the dominant term in the MRE approach by using surface integral. The MRE approach

provides more accurate results with some correction terms, however, when the points in

concern is close enough to the surface, the correction terms to the dominant term are rela-

tively small, therefore optical approximation provides results with reasonable accuracy.
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