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A finite ultraviolet cutoff near a reflecting boundary yields a stress tensor that violates
the basic energy-pressure relation. Therefore, a “soft” wall described by a power-law po-
tential, which needs no ad hoc cutoff, is being investigated by the collaboration centered
at Texas A&M University and the University of Oklahoma. Progress is reported here.
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1. Hard Walls: The Pressure Paradox

1.1. Basic formalism and empty space

We model the electromagnetic vacuum-energy problem by a massless scalar field in

three space dimensions, subjected to the Dirichlet boundary condition on the “con-

ducting” boundaries. The vacuum energy can be calculated from a Green function,

such as the “cylinder kernel,”1–3

T (t, r, r′) = −
∞
∑

n=1

1

ωn
φn(r)φn(r

′)∗e−tωn , (1)

where the φn are the normalized eigenfunctions with frequencies ωn. The classical

formulas for the components of the vacuum expectation value of the stress-energy
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tensor are

E = T00 = − 1

2

∂2T

∂t2
+ β∇r ·

[

∇r′T
]

r′=r
, (2)

pj = Tjj =
1

8

(

∂2T

∂xj
2
+

∂2T

∂x′
j
2 − 2

∂2T

∂xj ∂x′
j

)

r′=r

+ β





∂2T

∂t2
+

1

2

∂2T

∂xj
2
+

1

2

∂2T

∂x′
j
2 −

∑

k 6=j

∂2T

∂xk ∂x′
k





r′=r

. (3)

Here β = ξ− 1
4 is the curvature-coupling parameter (β = − 1

4 for minimal coupling,

β = − 1
12 for conformal coupling). In this exposition we normally take β = 0 (ξ = 1

4 )

and describe the minor changes needed for other values of ξ as afterthoughts.

In infinite empty space the cylinder kernel is

T 0(t− t′, r, r′) = − 1

2π2

1

(t− t′)2 + ‖r− r′‖2 . (4)

Note that t is playing a dual role: It may be thought of as the parameter of

an ultraviolet cutoff as in (1), or as a Wick rotation of the time coordinate:

t − t′ = −i(x0 − x′0). Indeed, the ultraviolet cutoff can be generalized to “point-

splitting” regularization, where T (or, historically more often, a Green function for

the wave equation) and its derivatives in (2) and (3) are expanded in powers of the

displacement tuν ≡ xν − x′ν (historically, its generalization to curved space–time

as a tangent vector). The result in curved space–time (with signature g00 < 0) is4

Tµν =
1

2π2t4

(

gµν − 4
uµuν

uρuρ

)

(5)

for the leading term, which is the entirety when T = T 0. Equation (5) reduces to

Tµν =
1

2π2t4
diag(3, 1, 1, 1) (6)

if one returns to the original, purely temporal cutoff. On the other hand, if the

direction-dependent term in (5) is simply ignored, the result is

Tµν =
1

2π2t4
diag(−1, 1, 1, 1) . (7)

In studies of vacuum energy it is customary to discard all of (6) on the grounds

that it is ubiquitous and, therefore, unobservable. In quantum theory in curved

space–time, however, one can argue that it is more in keeping with standard renor-

malization theory to retain (7) with the divergent prefactor replaced by an arbitrary

but finite renormalized constant; this is the result that would be produced by Pauli–

Villars regularization.5 This term amounts to a renormalization of the cosmological

constant in Einstein’s equation.
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1.2. Flat hard walls

When a plane boundary is present, the kernel can be constructed by the method of

images. Since T 0 contributes only the zero-point energy of infinite space, which is

either unobservable or interpretable as a cosmological constant, the term relevant

to the calculation is the image term, and we henceforth understand T to mean this

“renormalized” kernel. If the perfectly reflecting boundary is at z = 0, it is

T =
1

2π2

1

t2 + (r⊥ − r′⊥)
2 + (z + z′)2

(r⊥ = (x, y)) . (8)

There is no loss of generality in assuming r′⊥ = 0 (and t′ = 0). At present t, r⊥ ,

and z − z′ are all still available as cutoff parameters. Let

M = t2 + x2 + y2 + (z + z′)2 . (9)

From (2) and (3) one finds the energy density and pressure for ξ = 1
4 ,

2π2E = M−3[−3t2 + x2 + y2 + (z + z′)2] , (10)

2π2p1 = M−3[−t2 + 3x2 − y2 − (z + z′)2] , (11)

and the correction terms for ξ 6= 1
4 ,

2π2∆E = βM−3[−4t2 − 4x2 − 4y2 + 12(z + z′)2] , (12)

2π2∆p1 = βM−3[4t2 + 4x2 + 4y2 − 12(z + z′)2] . (13)

Of course, the formulas for p2 and ∆p2 are precisely analogous. The formulas for

p3 and ∆p3 are identically 0, as they should be because a rigid displacement of the

wall perpendicularly to itself would not change the total energy (even when only

one side of the wall is considered).

The interesting question arises when one imagines another planar boundary per-

pendicular to the first, say at x = 0, and calculates the pressure on that boundary

from (11), considering one side of the boundary only (Fig. 1). For definiteness con-

sider the case that the energy density is positive. If we think of the entire system

as enclosed in a large stationary box, then a displacement of the test boundary

........................................................

.....
....
...
...
..
..

. . . . . . .

. . . . . . .

x

z

Fig. 1. The total energy in the dotted region created by the horizontal wall depends linearly on
the position of the movable vertical wall. (The surface energy of the vertical wall, and the edge

energy of the corner junction, are irrelevant to the calculation. The energies on the right side of
the vertical wall are not considered here, but see Subsec. 1.4.)

1260009-3



June 1, 2012 17:6 WSPC/Guidelines-IJMPA S0217751X12600093

S. A. Fulling, K. A. Milton & J. Wagner

to x > 0 would enlarge the volume of space occupied by the energy density (10),

and hence the total energy would increase. This energy change must come from

the force on the boundary associated with the pressure p1. In accordance with the

principle of energy balance, or virtual work, one therefore expects

F =

∫ ∞

0

T 11 dz = −E = −
∫ ∞

0

T 00 dz . (14)

(E is an energy per unit area in the (x, y) plane; F is a force per unit distance

in the y direction. The minus sign appears because F is the force exerted by the

quadrant of space considered, not on it. In other words, the region wants to shrink,

so the pressure is negative.)

We observe that ∆p = −∆E already at the integrand level. (Furthermore, their

integrals are individually zero, as naively expected since that part of T 00 is a total

divergence.) In the main terms, (10) and (11), if one removes the cutoffs by setting

t = x = y = 0, z′ = z, then the integrands are again equal,

E =
1

32π2z4
= −p1 , (15)

so (14) is formally satisfied, but the integrals are divergent.

The traditional ultraviolet cutoff corresponds to x = y = 0, z′ = z, but t > 0.

Thus M = t2 + 4z2 and

2π2E = M−3(−3t2 + 4z2), 2π2p1 = M−3(−t2 − 4z2) = −(t2 + 4z2)−2.

If one integrates over z from 0 to ∞ before removing the cutoff, one finds

F = + 1
2E

instead of (14). This is the “pressure paradox.”6

Remark. (i) The numerical value of E in this calculation is negative and is

the same as one would get from the Laurent series of the total energy sum with

ultraviolet cutoff,

E =
1

2

∑

n

ωne
−tωn ,

normalized to unit area in the infinite-volume limit. (ii) If the wall at x = 0 is itself

a conductor, the full Green function of the problem contains two additional image

terms, but they do not affect the conclusions. (iii) If one attempted this calculation

with the wave kernel, it would fail at an even earlier stage, since the supposedly

regularized energy density would have a singularity in the physical region (at z = t
2 ).

(iv) Equation (14) is not an automatic consequence of the local energy-momentum

conservation law, ∂µT
µν = 0, inside the cavity. The latter is satisfied, even in the

presence of a finite cutoff.7

Whatever the case may have been for the original spectral sum (1), in the

explicit Green function (8) point separation in any direction is an equally effective
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regularization.We therefore examine the effects of varying the direction. If t = 0 = y

and z′ = z, but x 6= 0, then t and x exchange roles in the foregoing calculation, and

F = 2E .

If the points are separated in the neutral (y) direction, t = 0 = x, z′ = z, we get

M = y2 + 4z2,

2π2E = (y2 + 4z2)−2 , 2π2p1 = −(y2 + 4z2)−2 . (16)

After integrating, therefore, we have F = −E (with a positive value for E), which is

what should happen (14). (Separation in the z direction leads to some pathologies

and ambiguities, so we do not consider it.)

1.3. Possible responses to the pressure paradox

(i) It can be argued that divergent terms are so cutoff-dependent that they have

no physical meaning whatsoever, and the only meaningful calculations are those in

which such terms can be canceled out (e.g. forces between rigid bodies).

(ii) In Ref. 7 we argued that expressions with finite cutoff, such as 2π2E =

(y2+4z2)−2 (where y is now a cutoff parameter, not a coordinate) can be regarded

as ad hoc models of real materials, more physical and instructive than their limiting

values, such as E = 1/32π2z4. But the paradox casts some doubt on the viability of

this point of view. It now appears that physically plausible results can be obtained

only by using different cutoffs for different parts of the stress tensor. For the leading

divergence (and higher-order divergences in the bulk that occur in curved space–

time or external potentials) the preferred ansatz is “covariant point-splitting”4

based on the wave kernel, treating all directions in space–time equivalently, and

removing the cutoff-dependent terms in such a way that the only ambiguity re-

maining can be regarded as a renormalization of the cosmological constant. For

the divergences at boundaries, it appears that the points must be separated paral-

lel to the boundary, but in a direction orthogonal to the component of the stress

tensor being calculated. Moreover, if the separation has a time component, a Wick

rotation seems mandatory. This situation cannot be regarded as a logically sound,

long-term solution; its sole justification is that, unlike less contrived alternatives, it

does not immediately produce results that are obviously wrong.

(iii) One should find a better model! That is the approach followed in the rest of

this presentation. We seek to modify the simple linear Dirichlet theory in a minimal

way that will replace the divergent energies and pressures with finite ones, without

introducing any ad hoc cutoffs that can disrupt the proper relationship between

energy and pressure. The original theory should be recovered in some limit, and we

hope that improved physical understanding of the divergences will result.

1.4. Curved hard walls

It may be objected that the discussion above is entirely “scholastic”, because there is

an equal and opposite force from the other side of the movable wall that renders the
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paradoxical force unobservable even in principle. However, recall that the paradox

was discovered6,8 in calculations for a spherical boundary. There also the ultraviolet

cutoff gave F = + 1
2E. But in that case the inside and outside energy layers have the

same sign; there is a total energy proportional to surface area, and no cancellation.

Therefore, the pressure paradox cannot be dismissed. Presumably the same thing

happens for a cylindrical boundary; that case is under investigation.9

2. Flat Soft Walls

2.1. Precursors

An ambitious approach to a realistic theory of a conductor is the plasma model

of Barton.10–13 There the charges in the conducting medium are quantized as a

separate physical system interacting nonlinearly with the quantized field. Here we

prefer to remain within the more elementary framework of linear quantum field

theory, at the cost of lesser empirical relevance, in hopes of casting light on the

original hard-boundary theory — perhaps salvaging it in some way.

The closest work that we know of in previous literature is that of Actor and

Bender,14 in which the perfectly reflecting wall is replaced by a harmonic-oscillator

potential. That paper was written before the modern critiques of formal renormal-

ization15,16 and the modern emphasis on local quantities (such as energy density).

It deals with total energies calculated by zeta-function regularization.

Other similar work includes a paper of Bordag17 and the large number of papers

by Graham, Jaffe, Olum, and coworkers (such as Refs. 16 and 18–20) culminating

in the book of Graham, Quandt, and Weigel.21 The latter program differs from ours

superficially by dealing with a high, narrow potential hill (instead of a one-sided

wall), and more fundamentally in the choice of calculational methods (techniques

of scattering theory instead of local, differential-equation analyses), which results

in a rather different point of view.

2.2. The power wall

We consider a scalar wave equation

�ϕ = vϕ (17)

on all of three-dimensional space, with a potential (or spatially varying Klein–

Gordon mass-squared) of the form

v(r) =

{

0, z < 0 ,

zα, z > 0 .
(18)

Note that v(1) = 1 for all α. The potential represents an increasingly steep wall

near z = 1 as α increases to ∞.

The problem can be solved by separation of variables. The eigenfunctions are

φ(k⊥,p) = (2π)−1eik⊥·r⊥φp(z) , (19)
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where
(

− ∂2

∂z2
+ v(z)− p2

)

φp(z) = 0 . (20)

Thus, with ω2 = k⊥
2 + p2 and φp properly normalized, we have

T (t, r⊥, z, z
′) =

−1

(2π)2

∫

R2

dk⊥

∫ ∞

0

dp
e−ωt

ω
eik⊥·r⊥φp(z)φp(z

′) (21)

=
−2

(2π)3

∫

R3

dω dk⊥

∫ ∞

0

dp
ei(ωt+k⊥·r⊥)φp(z)φp(z

′)

ω2 + k⊥
2 + p2

. (22)

Here r⊥ may be replaced by r⊥ − r′⊥ whenever r′⊥ derivatives are needed.

When z < 0, one has

φp(z) =

√

2

π
sin[pz − δ(p)] (23)

for some real phase shift, δ(p). When z > 0, the solution can be expressed in terms

of standard special functions in at least two cases:

φp(z) ∝
{

Ai(z − p2), α = 1 ,

D 1

2
(p2−1)(

√
2 z), α = 2 .

(24)

The solutions on the two sides are related by

tan
(

δ(p)
)

= −p
φp(0)

φ′
p(0)

(25)

and a complicated formula for the normalization constant in Eq. (24) that need not

concern us now.

2.3. The Texas approach

The construction of a Green function in a separable problem depends on the order

in which the separated variables are tackled. Details of our first approach have been

given in Ref. 22, so we shall be brief here.

The asymptotic behaviors of δ(p) are easily determined. For example, for α = 1

(the Airy function).

δ(p) ∼
{

p 32/3Γ(43 )/Γ(
2
3 ), p → 0 ,

2p3

3 + π
4 , p → +∞ .

(26)

In general, δ(p) ∝ p1+2/α as p → +∞ and δ(p) ∼ c1p+ c2p
3 as p → 0.

Remark. The power wall potential is of no particular experimental interest;

it was chosen for analytical convenience. Any potential with similar qualitative

properties would do as well for our purposes. Since the induced stress outside the

wall depends only on δ, the possibility arises of parametrizing wall models by δ(p)

instead of v(z). Unfortunately, we do not yet know what conditions to impose on δ

to ensure that it arises from a steeply rising potential (or any potential at all).

1260009-7



June 1, 2012 17:6 WSPC/Guidelines-IJMPA S0217751X12600093

S. A. Fulling, K. A. Milton & J. Wagner

After integration over the transverse Fourier dimensions in (21), one arrives at

T ren =
1

2π2

∫ ∞

0

dp
e−sp

s
cos
(

p(z + z′)− 2δ(p)
)

(27)

in the potential-free region (z < 0). Here s ≡
√

t2 + |r⊥|2. The components of T µν

are second derivatives of T ren .

The convergence of integral (27) is extremely delicate when s → 0, which is

precisely where we need it. (In fact, the convergence is only in a distributional

sense.) A slight improvement is attained by going to polar coordinates in Fourier

space:

T ren =
1

π3

∫ ∞

0

dρ

∫ 1

0

du s−1 sin(sρ
√

1− u2 ) cos
(

(z + z′)ρu− 2δ(ρu)
)

. (28)

The differentiated integrals for T µν are, of course, even worse. Such integrals are

being investigated with Riesz–Cesàro summation and modern methods for oscil-

latory quadrature (see, e.g. Ref. 23), and preliminary results (for α = 1) look

plausible.24

2.4. The Oklahoma approach

The Texas approach in effect did a generalized Fourier analysis in z to get to the

problem of a reduced Green function in the (t, r⊥) coordinates. (Note that

e−sp

s
, s =

√

t2 + |r⊥|2 , (29)

is a Yukawa potential.) The oscillations in the eigenfunctions φp(z) are the source

of the bad integral behavior.

Instead, let us do a Fourier analysis in the transverse dimensions (including t)

to define a reduced Green function in the z direction.25 It will vanish at infinity,

not oscillate. In other words, in place of (21) we arrive at

T (t, r⊥, z, z
′) =

−2

(2π)3

∫

R3

dω dk⊥ ei(ωt+k⊥·r⊥)gω,k⊥
(z, z′) . (30)

(The notation in Ref. 25 is slightly different.)

For α = 1, in the region z, z′ < 0, and with

κ ≡
√

k⊥
2 − ω2 , (31)

one finds

gω,k⊥
(z, z′) =

1

2κ
e−κ|z−z′| +

1

2κ
eκ(z+z′) 1 + Ai′(κ2)/κAi(κ2)

1−Ai′(κ2)/κAi(κ2)
, (32)

and hence, after subtraction of the leading vacuum divergence,

Eren =
1− 6ξ

6π2

∫ ∞

0

dκ κ3e2κz
1 + Ai′(κ2)/κAi(κ2)

1−Ai′(κ2)/κAi(κ2)
. (33)

(Note that the energy vanishes if ξ = 1
6 .)

1260009-8



June 1, 2012 17:6 WSPC/Guidelines-IJMPA S0217751X12600093

Energy Density and Pressure in Power-Wall Models

The integral for Eren can be computed without incident. It displays a weak

divergence as z → 0−:

E ∼ − 1

192π2

1

z
(for ξ = 1

4 ) . (34)

It corresponds to a z ln z singularity in T . This effect is attributable to diffraction

off the singularity of the potential at z = 0; it goes away for larger α, as we will

see.

Calculations have also been done inside the wall (z, z′ > 0):

gω,k⊥
(z, z′) = πAi(κ2 + z>)Bi(κ

2 + z<)−
(κBi−Bi′)(κ2)

(κAi−Ai′)(κ2)
πAi(κ2 + z)Ai(κ2+ z′) .

(35)

Before renormalization, with a temporary ultraviolet cutoff (arising naturally from

point-splitting regularization), the energy density has the asymptotics

E ∼ 3

2π2

1

t4
− z

8π2t2
+

z2

32π2
ln t , (36)

showing the expected “Weyl” terms correlating with the heat kernel expansion in

presence of a potential v(z) = z (but no wall). This formula displays two new

divergences, but these “bulk” divergences are comparatively well understood in

quantum field theory.

Removal of those terms has a physical interpretation. Include the dynamics of

the v field in the theory, so that the total Lagrangian is (with m = 0)

L =
1

2

[

(∂tϕ)
2 − (∇ϕ)2 −m2ϕ2 − ϕ2v + (∂tv)

2 − (∇v)2 −M2v2 − Jv
]

. (37)

The equations of motion are then

�ϕ = m2ϕ+ vϕ , � v = M2v + 1
2ϕ

2 + 1
2J . (38)

(The external source J is whatever it takes to support our static v.) The stress

tensor can be defined and calculated by the Belinfante prescription; T00 acquires

new terms proportional to M2v2 and Jv. Now recall (from heat-kernel theory) that

the cut-off T00 contains terms of the types t−2v, ln t v2, and ln t v′′. Thus t−2v and

ln t v2 renormalize M and J . A v′′ term in the action is formally a total divergence,

so it does not contribute to the v equation of motion. (But it will not integrate to

0 in the total energy, since v has noncompact support.) When α = 1 this last term

is a delta function that does not show up in the Oklahoma calculation.

Remark. Instead of ϕ2v, the interaction ϕ2v2 could be used. A detailed dis-

cussion of renormalization in that model, with a motivation very similar to ours,

has been given very recently by Mazzitelli et al.26

Calculations can be done for a general α (and general ξ) via a WKB approxi-

mation for the reduced Green function. The solutions of

(−∂z
2 + κ2 + zα)F±(z) = 0 (39)
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are approximately

F± ∼ Q−1/4 exp

[

±
∫

dz

(

Q1/2 +
v′′

8Q3/2

)]

, (40)

with

Q ≡ κ2 + v(z) , κ =
√

k⊥
2 − ω2 , v(z) = zα (for z > 0) . (41)

From this input we find that inside the wall,

E ≈ 3

2π2

1

t4
− v

8π2t2
+

1

32π2

(

v2 + 2
3 (1− 6ξ)v′′

)

ln t , (42)

exhibiting the Weyl structure of divergences.

Outside (but near) the wall, we have

Eren(z) ∼
6ξ − 1

96π2
Γ(1 + α) |z|α−2Γ(2− α, 2|z|) . (43)

The singularity at z = 0 disappears for α > 2 :

Eren(0) ≈
1− 6ξ

96π2

Γ(1 + α)22−α

2− α
. (44)

For α < 2,

Eren(z) ∼
6ξ − 1

96π2
Γ(1 + α)

(

|z|α−2Γ(2− α)− 22−α

2− α

)

∼ 1− 6ξ

48π2
(γ + ln 2|z|) as α ↑ 2 . (45)

A numerical calculation of Eren was done in Ref. 25 for α = 2, for which the exact

F± are parabolic cylinder functions.

2.5. Pressure

The obvious next step is to calculate the other components of the stress tensor and

then to verify that the energy-balance equation (14) is satisfied. This research is still

in progress, but a few simple observations indicate that it is quite likely to succeed.

In this preliminary skirmish we consider only the region outside the potential (z <

0), so that formulas (2) and (3) apply and the nontrivial renormalizations associated

with v are not involved.

Consider first the terms independent of β. Because T in this problem is a func-

tion of |r⊥−r′⊥|, the three terms of that type in (3) collapse to 1
2 ∂

2T/∂xj
2 for j = 1

or 2 (and we resume taking r′⊥ = 0 without loss). Next, from (27) or indirectly from

(30) one sees that T depends on t and xj only through s2 = t2 + |r⊥|2. A short

calculation then shows that ∂2T/∂t2 and ∂2T/∂xj
2 are equal and opposite, apart

from terms that vanish when all cutoffs are removed (in particular, t = 0, xj = 0).

Therefore, E + pj = 0 when β = 0.
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For the terms proportional to β, the calculation is a bit more involved but the

conclusion is simpler: The equation E + pj = 0 (j = 1, 2) holds for those terms by

virtue of the equation of motion (�ϕ = 0), even when the points are separated,

just as for the hard wall.

Thus the integrands in (14) are pointwise equal, as they were for the hard wall

(15). The violation of the principle of virtual work in the theory of the hard wall is

entirely a consequence of direction-dependent terms introduced by the point sepa-

ration. The point of the soft-wall model is that no such cutoff should be necessary

at the end of the calculation. The remaining issue (besides treating the inside of

the potential) is whether the energy density and pressure in this model are in-

deed integrable when the points are no longer separated. As we have seen, this is

false in the simplest case, α = 1, because of a new (relatively mild) divergence

inadvertently introduced by the nonsmoothness of the potential at z = 0, but it

seems to be true for all larger alpha, certainly for α > 2. Detailed calculations are

ongoing.

3. Conclusions

• Understanding local energy density and pressure is essential for general relativity

and clarifies the physics of global energy and force calculations.

• For hard (Dirichlet) walls, an ultraviolet cutoff yields physically inconsistent re-

sults for energy and pressure.

• Modifying the cutoff to point separation in a “neutral” direction yields physically

plausible results, but logical justification is lacking.

• We seek to model a wall by a soft but rapidly increasing potential barrier, such

as the power wall.

• Outside the potential, the effect of the soft wall is parametrized by the scattering

phase shift, δ(p), whose asymptotics can be calculated at low and high frequency.

• We have “exact” formulas for 〈T µν〉 in terms of the phase shift, but evaluating

them is numerically challenging.

• Reorganizing the power-wall calculation gives rapidly converging integrals in

terms of the eigenfunctions. Computations have been extended to the “inside” of

the wall (0 < z).

• “Bulk” divergences inside the wall renormalize the equation of motion of the

potential itself.

• Numerical computations have been done for α = 1 (linear potential), but there

are analytical results for general α. (Taking α → ∞ best approximates a hard

wall (at z = 1).)

• The calculations are easily extended to general ξ. As usual, conformal coupling

(ξ = 1
6 ) yields the least singular results.

• Preliminary calculations of the pressures indicate that the expected energy bal-

ance (principle of virtual work) holds when α is sufficiently large to make the

integrals for total energy and force converge.
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