Section 11.7: Arc Length and Curvature

Theorem: (Arc Length)
Consider the curve C defined by $\vec{R}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$. If C is traversed exactly once as t increases from a to b, then its length is

$$L = \int_a^b ||\vec{R}'(t)|| \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt.$$

Example: Find the length of the curve defined by $\vec{R}(t) = \langle 6t, 3\sqrt{2}t^2, 2t^3 \rangle$, $0 \leq t \leq 1$.

Since $\vec{R}'(t) = \langle 6, 6\sqrt{2}t, 6t^2 \rangle$, we have

$$||\vec{R}'(t)|| = \sqrt{36 + 72t^2 + 36t^4} = \sqrt{36(1 + 2t^2 + t^4)} = \sqrt{36(1 + t^2)^2} = 6(1 + t^2).$$

Then

$$L = \int_0^1 6(1 + t^2) \, dt = (6t + 2t^3)|_0^1 = 4.$$

Definition: Suppose C is a space curve defined by $\vec{R}(t) = \langle x(t), y(t), z(t) \rangle$, $a \leq t \leq b$. Then its **arc length function** is defined by

$$s(t) = \int_a^t ||\vec{R}'(u)|| \, du = \int_a^t \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} \, du.$$

Thus, $s(t)$ is the length of the part of C between $\vec{R}(a)$ and $\vec{R}(t)$.

Note: A single curve C can be represented by more than one vector function. Different representations of curves are called **parameterizations** of the curve C. It is often useful to parameterize a curve with respect to arc length.

Example: Reparameterize the helix $\vec{R}(t) = \langle 3\sin t, 4t, 3\cos t \rangle$ with respect to arc length measured from the point where $t = 0$ in the direction of increasing t.

Since $\vec{R}'(t) = \langle 3\cos t, 4, -3\sin t \rangle$, we have

$$||\vec{R}'(t)|| = \sqrt{9\cos^2 t + 16 + 9\sin^2 t} = \sqrt{9(\sin^2 t + \cos^2 t) + 16} = \sqrt{25} = 5.$$
The arc length function is

\[s = s(t) = \int_0^t 5du = 5t. \]

Thus, \(t = s/5 \) and the reparameterization is given by

\[\vec{R}(s) = \left\langle 3 \sin \left(\frac{s}{5} \right) , \frac{4s}{5} , 3 \cos \left(\frac{s}{5} \right) \right\rangle. \]

Definition: The **curvature** of a curve defined by \(\vec{R}(t) \) is

\[\kappa(t) = \frac{||\vec{T}'(t)||}{||\vec{R}'(t)||} = \frac{||\vec{R}'(t) \times \vec{R}''(t)||}{||\vec{R}'(t)||^2}, \]

where \(\vec{T} \) is the unit tangent vector.

Note: The curvature of a curve \(C \) at a given point is a measure of how quickly the curve changes direction at that point. Specifically, it measures the rate of change of the unit tangent vector (which indicates the direction of \(C \)) with respect to arc length.

![Figure 1: Unit tangent vectors for a space curve \(C \).](image-url)
Example: Find the curvature of the twisted cubic $\tilde{R}(t) = \langle t, t^2, t^3 \rangle$ at a general point and at $(0, 0, 0)$.

First,

\[\tilde{R}'(t) = \langle 1, 2t, 3t^2 \rangle \]
\[\tilde{R}''(t) = \langle 0, 2, 6t \rangle \]
\[||\tilde{R}'(t)|| = \sqrt{1 + 4t^2 + 9t^4} \]
\[\tilde{R}'(t) \times \tilde{R}''(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix} = \langle 6t^2, -6t, 2 \rangle. \]

Then

\[||\tilde{R}'(t) \times \tilde{R}''(t)|| = \sqrt{36t^4 + 36t^2 + 4} = 2\sqrt{9t^4 + 9t^2 + 1}. \]

Thus, the curvature is

\[\kappa(t) = \frac{||\tilde{R}'(t) \times \tilde{R}''(t)||}{||\tilde{R}'(t)||^3} = \frac{2\sqrt{1 + 9t^2 + 9t^4}}{(1 + 4t^2 + 9t^4)^{3/2}}. \]

At the origin the curvature is $\kappa(0) = 2$.

Theorem: (Curvature of a Plane Curve)

The curvature of the plane curve $y = f(x)$ is given by

\[\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}. \]

Example: Find the curvature of $y = \sin x$ at a general point and at $\left(\frac{\pi}{2}, 0 \right)$.

Since $y' = \cos x$ and $y'' = -\sin x$,

\[\kappa(x) = \frac{|y''|}{[1 + (y')^2]^{3/2}} = \frac{|\sin x|}{(1 + \cos^2 x)^{3/2}}. \]

At $\left(\frac{\pi}{2}, 0 \right)$ the curvature is $\kappa(1) = 1$.

Definition: Consider the curve defined by $\tilde{R}(t)$. The **principal unit normal vector** is given by

\[\tilde{N}(t) = \frac{\tilde{T}'(t)}{||\tilde{T}'(t)||}, \]
and the **binormal vector** is given by

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t).$$

Note: The vectors $\vec{T}(t)$, $\vec{N}(t)$, and $\vec{B}(t)$ form a set of orthogonal vectors, called a frame, that moves along the curve as t varies. This frame has applications in differential geometry and motion of spacecraft.

Figure 2: Illustration of the frame formed by the unit tangent, unit normal, and binormal vectors.

Example: Find the unit normal and binormal vectors for the helix $\vec{R}(t) = (\sin t, \cos t, t)$.

Since $\vec{R}'(t) = (\cos t, -\sin t, 1)$,

$$||\vec{R}'(t)|| = \sqrt{\cos^2 t + \sin^2 t + 1} = \sqrt{2}.$$

Thus, the unit tangent vector is

$$\vec{T}(t) = \frac{\vec{R}'(t)}{||\vec{R}'(t)||} = \frac{1}{\sqrt{2}}(\cos t, -\sin t, 1).$$

Therefore,

$$\vec{T}'(t) = \frac{1}{\sqrt{2}}(-\sin t, -\cos t, 0), \quad \text{and} \quad ||\vec{T}'(t)|| = \frac{1}{\sqrt{2}}.$$

The unit normal vector is

$$\vec{N}(t) = \frac{\vec{T}'(t)}{||\vec{T}'(t)||} = (-\sin t, -\cos t, 0).$$
Now the binormal vector is
\[\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \frac{1}{\sqrt{2}} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos t & -\sin t & 1 \\ -\sin t & -\cos t & 0 \end{vmatrix} = \frac{1}{\sqrt{2}}(\cos t, -\sin t, -1). \]

Definition: The plane determined by the unit normal and binormal vectors \(\vec{N} \) and \(\vec{B} \) at a point \(P \) on the curve \(C \) is called the **normal plane** of \(C \) at \(P \). The unit tangent vector is orthogonal to the normal plane. Similarly, the plane determined by the unit tangent and unit normal vectors \(\vec{T} \) and \(\vec{N} \) is called the **osculating plane** of \(C \) at \(P \). The binormal vector is orthogonal to the osculating plane.

Example: Find equations for the normal and osculating planes of the helix \(\vec{R}(t) = \langle \sin t, \cos t, t \rangle \) at the point \(P = (0, -1, \pi) \).

The tangent vector \(\vec{R}'(t) = \langle \cos t, -\sin t, 1 \rangle \) is normal to the normal plane. At the point \(P \), \(\vec{R}'(\pi) = \langle -1, 0, 1 \rangle \). Thus, an equation of the normal plane is
\[
-1(x - 0) + 0(y + 1) + 1(z - \pi) = 0
\]
\[
-x + z = \pi.
\]

The binormal vector is normal to the osculating plane. From the previous example,
\[
\vec{B}(t) = \frac{1}{\sqrt{2}}(\cos t, -\sin t, -1)
\]
and so \(\vec{B}(\pi) = \frac{1}{\sqrt{2}}(-1, 0, -1) \).

An easier normal vector is \(\langle -1, 0, 1 \rangle \). So an equation of the osculating plane is
\[
-1(x - 0) + 0(y + 1) - 1(z - \pi) = 0
\]
\[
z - x = -\pi
\]
\[
x - z = \pi.
\]