Random Matrices with Independent Columns

Radosław Adamczak

University of Warsaw

College Station, July 2009

Based on joint work with
O. Guedon, A. Litvak, A. Pajor, N. Tomczak-Jaegermann
Outline

1 Introduction
 - Basic definitions
Outline

1 Introduction
 - Basic definitions

2 Motivations
 - Sampling convex bodies
 - Properties of random polytopes
 - Smallest singular value

Radoslaw Adamczak (MIM UW) Random Matrices with Independent Columns College Station, July 2009
1 Introduction
 • Basic definitions

2 Motivations
 • Sampling convex bodies
 • Properties of random polytopes
 • Smallest singular value

3 Operator Norm
Outline

1. Introduction
 - Basic definitions

2. Motivations
 - Sampling convex bodies
 - Properties of random polytopes
 - Smallest singular value

3. Operator Norm

4. Kannan-Lovasz-Simonovits Question
Outline

1. Introduction
 - Basic definitions

2. Motivations
 - Sampling convex bodies
 - Properties of random polytopes
 - Smallest singular value

3. Operator Norm

4. Kannan-Lovasz-Simonovits Question

5. Neighbourliness of random polytopes
Outline

1. Introduction
 - Basic definitions

2. Motivations
 - Sampling convex bodies
 - Properties of random polytopes
 - Smallest singular value

3. Operator Norm

4. Kannan-Lovasz-Simonovits Question

5. Neighbourliness of random polytopes

6. Smallest Singular Value
The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N, where X_i’s are independent random vectors with values in \mathbb{R}^n.

Questions

What is the operator norm of Γ: $\ell^2_{\mathbb{N}} \rightarrow \ell^2_{\mathbb{N}}$?

When is Γ^T close to a multiple of isometry?

How does Γ act on sparse vectors?

What is the smallest singular value of Γ?
The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N, where X_i's are independent random vectors with values in \mathbb{R}^n.

Questions

- What is the operator norm of $\Gamma : \ell_2^N \to \ell_2^n$?
The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N, where X_i’s are independent random vectors with values in \mathbb{R}^n.

Questions

- What is the operator norm of $\Gamma : \ell_2^N \rightarrow \ell_2^n$?
- When is Γ^T close to a multiple of isometry?
The basic model

Definition
Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N, where X_i's are independent random vectors with values in \mathbb{R}^n.

Questions
- What is the operator norm of $\Gamma: \ell_2^N \to \ell_2^n$?
- When is Γ^T close to a multiple of isometry?
- How does Γ act on sparse vectors?
The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N, where X_i's are independent random vectors with values in \mathbb{R}^n.

Questions

- What is the operator norm of Γ: $\ell_2^N \rightarrow \ell_2^n$?
- When is Γ^T close to a multiple of isometry?
- How does Γ act on sparse vectors?
- What is the smallest singular value of Γ?
Assumptions on X_i

- X_i's are isotropic, i.e.
 \[\mathbb{E} X_i = 0 \]
Assumptions on X_i

- X_i's are isotropic, i.e.
 \[\mathbb{E}X_i = 0 \]
 and
 \[\mathbb{E}X_i \otimes X_i = \text{Id} \]
Assumptions on X_i

- X_i’s are **isotropic**, i.e.
 \[\mathbb{E} X_i = 0 \]
 and
 \[\mathbb{E} X_i \otimes X_i = \text{Id} \]
 or equivalently for all $y \in \mathbb{R}^n$,
 \[\mathbb{E} \langle X_i, y \rangle^2 = |y|^2. \]
Assumptions on X_i

- X_i’s are **isotropic**, i.e.
 $$\mathbb{E} X_i = 0$$

 and
 $$\mathbb{E} X_i \otimes X_i = \text{Id}$$

 or equivalently for all $y \in \mathbb{R}^n$,
 $$\mathbb{E} \langle X_i, y \rangle^2 = |y|^2.$$

- X_i are ψ_α random vectors ($\alpha \in [1, 2]$), i.e. for some C and all $y \in \mathbb{R}^n$,
 $$\| \langle X_i, y \rangle \|_{\psi_\alpha} \leq C |y|,$$

 where
 $$\| Y \|_{\psi_\alpha} = \inf\{ a > 0 : \mathbb{E} \exp((X/a)^\alpha) \leq 2\}$$
Consequences
Consequences

\[\mathbb{E}|X_i|^2 = \sum_{j=1}^{n} \mathbb{E}(X_i, e_j)^2 = n \]
Consequences

- $\mathbb{E}|X_i|^2 = \sum_{j=1}^{n} \mathbb{E}(X_i, e_j)^2 = n$
- For any $y \in S^{n-1}$ and $t \geq 0$,
 \[
 \mathbb{P}(|\langle X_i, y \rangle| \geq t) \leq 2 \exp\left(-\frac{t}{C^\alpha}\right).
 \]
Consequences

- $\mathbb{E}|X_i|^2 = \sum_{j=1}^{n} \mathbb{E}\langle X_i, e_j \rangle^2 = n$
- For any $y \in S^{n-1}$ and $t \geq 0$,

$$\mathbb{P}(\|\langle X_i, y \rangle\| \geq t) \leq 2 \exp(-t/(C\alpha)).$$

Fact

For every random vector X not supported on any $n-1$ dimensional hyperplane, there exists an affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that TX is isotropic.
Consequences

- $E|X_i|^2 = \sum_{j=1}^{n} E\langle X_i, e_j \rangle^2 = n$
- For any $y \in S^{n-1}$ and $t \geq 0$,

 $$P(|\langle X_i, y \rangle| \geq t) \leq 2 \exp\left(-\left(\frac{t}{C}\right)^\alpha\right).$$

Fact

For every random vector X not supported on any $n-1$ dimensional hyperplane, there exists an affine map $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that TX is isotropic.

If for a set $K \subseteq \mathbb{R}^n$ the random vector distributed uniformly on K is isotropic, we say that K is isotropic.
Examples

- $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$, is ψ_2 and isotropic,
- $R = (\varepsilon_1, \ldots, \varepsilon_n)$, where ε_i are i.i.d., $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$, is ψ_2 and isotropic,
Examples

- $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$, is ψ_2 and isotropic,
- $R = (\varepsilon_1, \ldots, \varepsilon_n)$, where ε_i are i.i.d., $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$, is ψ_2 and isotropic,
- a vector drawn from the uniform distribution on $\sqrt{n}S^{n-1}$ is ψ_2 and isotropic,
Examples

- $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$, is ψ_2 and isotropic,
- $R = (\varepsilon_1, \ldots, \varepsilon_n)$, where ε_i are i.i.d., $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$, is ψ_2 and isotropic,
- a vector drawn from the uniform distribution on $\sqrt{n}S^{n-1}$ is ψ_2 and isotropic,
- a random vector distributed uniformly in an isotropic convex body is ψ_1 (C. Borell)
Examples

- $G = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0, 1)$, is ψ_2 and isotropic,
- $R = (\varepsilon_1, \ldots, \varepsilon_n)$, where ε_i are i.i.d., $\mathbb{P}(\varepsilon_i = \pm 1) = 1/2$, is ψ_2 and isotropic,
- a vector drawn from the uniform distribution on $\sqrt{n}S^{n-1}$ is ψ_2 and isotropic,
- a random vector distributed uniformly in an isotropic convex body is ψ_1 (C. Borell)
- more generally an isotropic random vector with log-concave density f is ψ_1
Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_2^n \subseteq K \subseteq R B_2^n$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K?

How to compute the volume of K?

This can be done by using Markov chains. Their speed of convergence depends on the position of the convex body.

Preprocessing: First put K in the isotropic position (again by randomized algorithms).
Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_n^2 \subseteq K \subseteq R B_n^2$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K?
How to compute the volume of K?
Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_2^n \subseteq K \subseteq R B_2^n$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K?
How to compute the volume of K?

- This can be done by using Markov chains.
- Their speed of convergence depends on the position of the convex body.
- Preprocessing: First put K in the isotropic position (again by randomized algorithms).
Centering the body is not comp. difficult – takes $O(n)$ steps.

The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$\frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i.$$

or (after a linear transformation)
Centering the body is not comp. difficult – takes $O(n)$ steps.

The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$\frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i.$$

or (after a linear transformation)

Given an isotropic convex body in \mathbb{R}^n, how large N should we take so that

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - Id \right\|_{\ell_2 \to \ell_2} \leq \varepsilon$$

with high probability?
Interpretation in terms of Γ.

We have

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - \text{Id} \right\|_{\ell_2 \rightarrow \ell_2} = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right|$$

$$= \sup_{y \in S^{n-1}} \left| \frac{1}{N} |\Gamma^T y|^2 - 1 \right|$$
Interpretation in terms of Γ.

We have

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - Id \right\|_{\ell_2 \to \ell_2} = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right|$$

$$= \sup_{y \in S^{n-1}} \left| \frac{1}{N} |\Gamma^T y|^2 - 1 \right|$$

So the (geometric) question is
Interpretation in terms of Γ.

We have

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - Id \right\|_{\ell_2 \rightarrow \ell_2} = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right|$$

$$= \sup_{y \in S^{n-1}} \left| \frac{1}{N} |\Gamma^T y|^2 - 1 \right|$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_1, \ldots, X_N drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^n.

Let Γ be a matrix with independent columns X_1, \ldots, X_N drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^n.

Radosław Adamczak (MIM UW) Random Matrices with Independent Columns College Station, July 2009 9 / 41
Interpretation in terms of Γ.

We have

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - \text{Id} \right\|_{\ell_2 \to \ell_2} = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right|$$

$$= \sup_{y \in S^{n-1}} \left| \frac{1}{N} |\Gamma^T y|^2 - 1 \right|$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_1, \ldots, X_N drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^n.

How large should N be so that $N^{-1/2} \Gamma^T : \mathbb{R}^n \to \mathbb{R}^N$ was an almost isometry?
Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
- Bourgain (1996) – $N = \mathcal{O}(n \log^3 n)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = O(n^2)$
- Bourgain (1996) – $N = O(n \log^3 n)$
- Rudelson (1999) – $N = O(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) – unconditional bodies: $N = O(n \log n)$
- Aubrun (2006) – unconditional bodies: $N = O(n)$
- Paouris (2006) – $N = O(n \log n)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
- Bourgain (1996) – $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) – $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) – unconditional bodies: $N = \mathcal{O}(n \log n)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
- Bourgain (1996) – $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) – $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) – unconditional bodies: $N = \mathcal{O}(n \log n)$
- Aubrun (2006) – unconditional bodies: $N = \mathcal{O}(n)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
- Bourgain (1996) – $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) – $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) – unconditional bodies: $N = \mathcal{O}(n \log n)$
- Aubrun (2006) – unconditional bodies: $N = \mathcal{O}(n)$
- Paouris (2006) – $N = \mathcal{O}(n \log n)$
History of the problem

- Kannan, Lovasz, Simonovits (1995) – $N = \mathcal{O}(n^2)$
- Bourgain (1996) – $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) – $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsofomitis (2005) – unconditional bodies: $N = \mathcal{O}(n \log n)$
- Aubrun (2006) – unconditional bodies: $N = \mathcal{O}(n)$
- Paouris (2006) – $N = \mathcal{O}(n \log n)$
Remark

If $\frac{1}{\sqrt{N}} \Gamma^T$ is an almost isometry then obviously $\|\Gamma\| \leq C\sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.
Remark

If \(\frac{1}{\sqrt{N}} \Gamma^T \) is an almost isometry then obviously \(\| \Gamma \| \leq C \sqrt{N} \), so the KLS question and the question about \(\| \Gamma \| \) are related.

It turns out that to answer KLS it is enough to have good bounds on

\[
A_m := \sup_{z \in S^{N-1}, |\text{supp } z| \leq m} |\Gamma z|
\]

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A.)

If \(N \leq \exp(\sqrt{n}) \) and the vectors \(X_i \) are log-concave then for \(t > 1 \), with probability at least \(1 - \exp(-ct \sqrt{n}) \),

\[
A_m \leq C t (\sqrt{n} + \sqrt{m \log(2N/m)})
\]

In particular, with high probability \(\| \Gamma \| \leq C (\sqrt{n} + \sqrt{N}) \).
Remark

If \(\frac{1}{\sqrt{N}} \Gamma^T \) is an almost isometry then obviously \(\| \Gamma \| \leq C \sqrt{N} \), so the KLS question and the question about \(\| \Gamma \| \) are related.

It turns out that to answer KLS it is enough to have good bounds on

\[
A_m := \sup_{\substack{z \in S^{N-1} \setminus \text{supp } z \leq m}} |\Gamma z|
\]

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A.)

*If \(N \leq \exp(c \sqrt{n}) \) and the vectors \(X_i \) are log-concave then for \(t > 1 \), with probability at least \(1 - \exp(-ct \sqrt{n}) \),

\[
\forall m \leq N \ A_m \leq Ct \left(\sqrt{n} + \sqrt{m} \log \left(\frac{2N}{m} \right) \right).
\]

In particular, with high probability \(\| \Gamma \| \leq C(\sqrt{n} + \sqrt{N}) \).
Imagine we have a vector \(x \in \mathbb{R}^N \) (\(N \) large), which is supported on a small number of coordinates (say \(|\text{supp } x| = m \ll N \)).
Imagine we have a vector \(x \in \mathbb{R}^N \) (\(N \) large), which is supported on a small number of coordinates (say \(|\text{supp } x| = m \ll N \)).

If we knew the support of \(x \), to determine \(x \) it would be enough to take \(m \) measurements along basis vectors.
Imagine we have a vector $x \in \mathbb{R}^N$ (N large), which is supported on a small number of coordinates (say $|\text{supp } x| = m \ll N$).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

What if we don’t know the support?
Imagine we have a vector \(x \in \mathbb{R}^N \) (\(N \) large), which is supported on a small number of coordinates (say \(|\text{supp } x| = m \ll N \)).

If we knew the support of \(x \), to determine \(x \) it would be enough to take \(m \) measurements along basis vectors.

What if we don’t know the support?

Answer (Donoho, Candes, Tao, Romberg) Take measurements in random directions \(Y_1, \ldots, Y_n \) and set

\[
\hat{x} = \arg\min \{ \|y\|_1 : \langle Y_i, y \rangle = \langle Y_i, x \rangle \}
\]
Compressed sensing and neighbourly polytopes

Definition

A polytope $K \subseteq \mathbb{R}^n$ is called m-neighbourly if any set of vertices of K of cardinality at most $m + 1$ is the vertex set of a face.

Theorem (Donoho)

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N. The following conditions are equivalent

(i) For any $x \in \mathbb{R}^N$ with $|\text{supp } x| \leq m$, x is the unique solution of the minimization problem

\[
\min \|t\|_1, \Gamma t = \Gamma x.
\]

(ii) The polytope $K(\Gamma) = \text{conv}(\pm X_1, \ldots, \pm X_N)$ has $2N$ vertices and is m-symmetric-neighbourly.
A (centrally symmetric) polytope $K \subseteq \mathbb{R}^n$ is called m-(symmetric)-neighbourly if any set of vertices of K of cardinality at most $m + 1$ (containing no opposite pairs) is the vertex set of a face.
Compressed sensing and neighbourly polytopes

Definition

A (centrally symmetric) polytope $K \subseteq \mathbb{R}^n$ is called \textit{m-(symmetric)-neighbourly} if any set of vertices of K of cardinality at most $m + 1$ (containing no opposite pairs) is the vertex set of a face.

Theorem (Donoho)

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N. The following conditions are equivalent

(i) For any $x \in \mathbb{R}^N$ with $|\text{supp } x| \leq m$, x is the unique solution of the minimization problem

$$\min \|t\|_1, \quad \Gamma t = \Gamma x.$$

(ii) The polytope $K(\Gamma) = \text{conv}(\pm X_1, \ldots, \pm X_N)$ has $2N$ vertices and is \textit{m-symmetric-neighbourly}.

Definition (Restricted Isometry Property (Candès, Tao))

For an $n \times N$ matrix Γ define the **isometry constant** $\delta_m = \delta_m(\Gamma)$ as the smallest number such that

$$(1 - \delta_m) |x|^2 \leq |\Gamma x|^2 \leq (1 + \delta_m) |x|^2$$

for all m-sparse vectors $x \in \mathbb{R}^N$.

Theorem (Candès)

If $\delta_2 m(\Gamma) < \sqrt{2 - 1}$ then for every m-sparse $x \in \mathbb{R}^n$, x is the unique solution to

$$\min \|t\|_1, \quad \Gamma t = \Gamma x.$$

In consequence, the polytope $K(\Gamma)$ (resp. $K(\Gamma) = \text{conv}(X_1, \ldots, X_N)$) is m-symmetric-neighbourly (resp. m-neighbourly).
Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candès, Tao))

For an \(n \times N \) matrix \(\Gamma \) define the **isometry constant** \(\delta_m = \delta_m(\Gamma) \) as the smallest number such that

\[
(1 - \delta_m) |x|^2 \leq |\Gamma x|^2 \leq (1 + \delta_m) |x|^2
\]

for all \(m \)-sparse vectors \(x \in \mathbb{R}^N \).

Theorem (Candès)

If \(\delta_{2m}(\Gamma) < \sqrt{2} - 1 \) then for every \(m \)-sparse \(x \in \mathbb{R}^n \), \(x \) is the unique solution to

\[
\min \| t \|_1, \quad \Gamma t = \Gamma x.
\]

In consequence, the polytope \(K(\Gamma) \) (resp. \(K_+(\Gamma) = \text{conv}(X_1, \ldots, X_N) \)) is \(m \)-symmetric-neighbourly (resp. \(m \)-neighbourly)
History

The following matrices satisfy RIP

- Gaussian matrices (Candes, Tao), $m \sim n / \log(2N/n)$
- Matrices with rows selected randomly from the Fourier matrix (Candes & Tao, Rudelson & Vershynin), $m \sim n / \log^4(2N/n)$
- Matrices with independent subgaussian isotropic rows (Mendelson, Pajor, Tomczak-Jaegermann), $m \sim n / \log(2N/n)$
- Matrices with independent log-concave isotropic columns (LPTA), $m \sim n / \log^2(2N/n)$
Neighbourly polytopes

Theorem (LPTA)

Let \(\theta \in (0, 1) \) and assume that \(N \leq \exp(c\theta^C n^c) \) and
\[
C m \log^2 \left(\frac{2N}{\theta m} \right) \leq \theta^2 n.
\]
Then, with probability at least \(1 - \exp(-c\theta^C n^c) \)
\[
\delta_m \left(\frac{1}{\sqrt{n}} \Gamma \right) \leq \theta.
\]

Corollary (LPTA)

Let \(X_1, \ldots, X_N \) be random vectors drawn from an isotropic convex body in \(\mathbb{R}^n \). Then, for \(N \leq \exp(cn^c) \), with probability at least \(1 - \exp(-cn^c) \), the polytope \(K(\Gamma) \) (resp. \(K_+(\Gamma) \)) is \(m \)-symmetric-neighbourly (resp. \(m \)-neighbourly) with
\[
m = \left\lfloor c \frac{n}{\log^2(CN/n)} \right\rfloor.
\]
Smallest singular value

Definition

For an $n \times n$ matrix Γ let $s_1(\Gamma) \geq s_2(\Gamma) \geq \ldots \geq s_n(\Gamma)$ be the singular values of Γ, i.e. eigenvalues of $\sqrt{\Gamma \Gamma^T}$. In particular

$$s_1(\Gamma) = \|A\|, \quad s_n(\Gamma) = \inf_{x \in S^{n-1}} |\Gamma x| = \frac{1}{\|A^{-1}\|}$$

Theorem (Edelman, Szarek)

Let Γ be an $n \times n$ random matrix with independent $\mathcal{N}(0, 1)$ entries. Let s_n denote the smallest singular values of Γ. Then, for every $\varepsilon > 0$,

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2} \leq C\varepsilon,$$

where C is a universal constant.
Theorem (Rudelson, Vershynin)

Let Γ be a random matrix with independent entries X_{ij}, satisfying $\mathbb{E} X_{ij} = 0$, $\mathbb{E} X_{ij}^2 = 1$, $\|X_{ij}\|_{\psi_2} \leq B$. Then for any $\varepsilon \in (0, 1)$,

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + c^n,$$

where $C > 0$, $c \in (0, 1)$ depend only on B.

Theorem (Guedon, Litvak, Pajor, Tomczak-Jaegermann, R.A.)

Let Γ be an $n \times n$ random matrix with independent isotropic log-concave rows. Then, for any $\varepsilon \in (0, 1)$,

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + C \exp(-cn^c)$$

and

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(2/\varepsilon).$$
Corollary

For any $\delta \in (0, 1)$ there exists C_δ such that for any n and $\varepsilon \in (0, 1)$,

$$
\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C_\delta \varepsilon^{1-\delta}.
$$

Definition

For an $n \times n$ matrix Γ define the **condition number** $\kappa(\Gamma)$ as

$$
\kappa(\Gamma) = \|\Gamma\| \cdot \|\Gamma^{-1}\| = \frac{s_1(\Gamma)}{s_n(\Gamma)}.
$$

Corollary

If Γ has independent isotropic log-concave columns, then for any $\delta > 0$, $t > 0$,

$$
\mathbb{P}(\kappa(\Gamma) \geq nt) \leq \frac{C_\delta}{t^{1-\delta}}.
$$
Recall: \(\Gamma \) - an \(n \times N \) matrix with independent columns \(X_1, \ldots, X_N \).

\[
A_m := \sup_{z \in S^{N-1}} |\Gamma z|, \quad |\text{supp } z| \leq m
\]

We are going to prove

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A.)

If \(N \leq \exp(c\sqrt{n}) \) and the vectors \(X_i \) are log-concave then for \(t > 1 \), with probability at least \(1 - \exp(-ct \sqrt{n}) \),

\[
\forall m \leq N \quad A_m \leq C t \left(\sqrt{n} + \sqrt{m \log \left(\frac{2N}{m} \right)} \right).
\]

In particular, with high probability \(\| \Gamma \| \leq C (\sqrt{n} + \sqrt{N}) \).
An easy decoupling lemma

Lemma

Let $x_1, \ldots, x_N \in \mathbb{R}^n$. There exists a set $E \subset \{1, \ldots, N\}$, such that

$$\sum_{i \neq j} \langle x_i, x_j \rangle \leq 4 \sum_{i \in E} \sum_{j \in E^c} \langle x_i, x_j \rangle.$$

Proof.

$$2^{N-2} \sum_{i \neq j} \langle x_i, x_j \rangle = \sum_{E \subset \{1, \ldots, N\}} \sum_{i \in E} \sum_{j \in E^c} \langle x_i, x_j \rangle \leq 2^N \max_{E \subset \{1, \ldots, N\}} \sum_{i \in E} \sum_{j \in E^c} \langle x_i, x_j \rangle$$
Lemma

Let $m \leq N$, $\varepsilon, \alpha \in (0, 1]$ and $L \geq 2m \log \frac{12eN}{m\varepsilon}$. Then

$$
\mathbb{P} \left(\sup_{F \subset \{1, \ldots, N\}} \sup_{E \subset F} \sup_{z \in \mathcal{N}(F, \alpha, \varepsilon)} \left| \sum_{i \in E} \left\langle z_i X_i, \sum_{j \in F \setminus E} z_j X_j \right\rangle \right| > C_{\alpha} L A_m \right) \leq e^{-L/2}
$$

Lemma

Let $1 \leq k$, $m \leq N$, $\varepsilon, \alpha \in (0, 1]$, $\beta > 0$, and $L > 0$. Let $B(m, \beta)$ denote the set of vectors $x \in \beta B_2^N$ with $|\text{supp} x| \leq m$ and let B be a subset of $B(m, \beta)$ of cardinality M. Then

$$
\mathbb{P} \left(\sup_{F \subset \{1, \ldots, N\}} \sup_{x \in B} \sup_{z \in \mathcal{N}(F, \alpha, \varepsilon)} \left| \sum_{i \in F} \left\langle z_i X_i, \sum_{j \notin F} x_j X_j \right\rangle \right| > C_{\alpha \beta} L A_m \right)
\leq M \left(\frac{6eN}{k\varepsilon} \right)^k e^{-L}.
$$
Proof of the first lemma

- Fix $F, E \subseteq F, z \in \mathcal{N}(F, \alpha, \varepsilon)$.
- Set $y = \sum_{j \in F \setminus E} z_j X_j$.

The statement follows from the union bound.
Proof of the first lemma

- Fix $F, E \subset F, z \in \mathcal{N}(F, \alpha, \varepsilon)$.
- Set $y = \sum_{j \in F \setminus E} z_j X_j$.
- $|y| \leq A_m, \|z\|_\infty \leq \alpha$, hence

\[
\sum_{i \in E} \left| \langle z_i X_i, \sum_{j \in F \setminus E} z_j X_j \rangle \right| \leq \alpha A_m \sum_{i \in E} \left| \langle X_i, y/|y| \rangle \right|.
\]
Proof of the first lemma

- Fix $F, E \subset F, z \in \mathcal{N}(F, \alpha, \varepsilon)$.
- Set $y = \sum_{j \in F \setminus E} z_j X_j$.
- $|y| \leq A_m, \|z\|_\infty \leq \alpha$, hence

$$
\sum_{i \in E} \left| \langle z_i X_i, \sum_{j \in F \setminus E} z_j X_j \rangle \right| \leq \alpha A_m \sum_{i \in E} \left| \langle X_i, y / |y| \rangle \right|.
$$

- $y, (X_i)_{i \in E}$ independent, so Chebyshev’s inequality & ψ_1-property yield

$$
P\left(\sum_{i \in E} \left| \langle X_i, y / |y| \rangle \right| \geq CL \right) \leq e^{-L \mathbb{E}} \exp \left(\sum_{i \in E} \frac{|\langle X_i, y / |y| \rangle|}{C} \right)
\leq 2^{|E|} e^{-L} \leq 2^m e^{-L}.
$$

- The statement follows from the union bound.
Theorem (LPTA)

Let X_1, \ldots, X_N be i.i.d. isotropic log-concave vectors in \mathbb{R}^n. For every $\varepsilon \in (0, 1)$ and $t \geq 1$ there exists $C(\varepsilon, t)$ s.t. if $N \geq C(\varepsilon, t)n$, then with probability at least $1 - \exp(-ct\sqrt{n})$,

$$
\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - \text{Id} \right\| = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right| \leq \varepsilon.
$$

Moreover one can take $C(\varepsilon, t) = Ct^4 \varepsilon^{-2} \log(2t^2\varepsilon^{-2})$.

Remark: In the proof we can assume that $N \leq \exp(\sqrt{n})$.

Radosław Adamczak (MIM UW)
Theorem (LPTA)

Let X_1, \ldots, X_N be i.i.d. isotropic log-concave vectors in \mathbb{R}^n. For every $\varepsilon \in (0, 1)$ and $t \geq 1$ there exists $C(\varepsilon, t)$ s.t. if $N \geq C(\varepsilon, t)n$, then with probability at least $1 - \exp(-ct\sqrt{n})$,

$$\left\| \frac{1}{N} \sum_{i=1}^{N} X_i \otimes X_i - \text{Id} \right\| = \sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right| \leq \varepsilon.$$

Moreover one can take $C(\varepsilon, t) = Ct^4 \varepsilon^{-2} \log(2t^2 \varepsilon^{-2})$.

Remark: In the proof we can assume that $N \leq \exp(\sqrt{n})$.
Strategy of the proof

1. Divide the stochastic process into the 'bounded' and 'unbounded' part

2. **Bounded part:**
 - reduce to an ε-net
 - use Bernstein’s inequality for individual vectors

3. **Unbounded part:** use estimates on A_m to
 - show that the unbounded part has 'small support'
 - get estimates on the unbounded part
Sketch of the proof

It is enough to consider \(y \in \mathcal{N}, \mathcal{N} \) - a 1/4-net in \(S^{n-1} \) of card. \(5^n \).

We decompose

\[
\langle X_i, y \rangle^2 = \langle X_i, y \rangle^2 \land R^2 + (\langle X_i, y \rangle^2 - R^2)1_{\{|\langle X_i, y \rangle| > R\}}
\]

We have

\[
\sup_{y \in \mathcal{N}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 - 1 \right| = \sup_{y \in \mathcal{N}} \left| \frac{1}{N} \sum_{i=1}^{N} (\langle X_i, y \rangle^2 - \mathbb{E}(\langle X_i, y \rangle^2)) \right|
\]

\[
\leq \sup_{y \in \mathcal{N}} \left| \frac{1}{N} \sum_{i=1}^{N} (\langle X_i, y \rangle^2 \land R^2 - \mathbb{E}(\langle X_i, y \rangle^2 \land R^2)) \right|
\]

\[
+ \sup_{y \in \mathcal{N}} \frac{1}{N} \sum_{i=1}^{N} \langle X_i, y \rangle^2 1_{\{|\langle X_i, y \rangle| > R\}} + \sup_{y \in \mathcal{N}} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\langle X_i, y \rangle^2 1_{\{|\langle X_i, y \rangle| > R\}}
\]

\[= I + II + III.\]
\[
\mathbb{E}\langle X_1, y \rangle^2 1_{\{\|X_1, y\| > R\}} \leq (\mathbb{E}\langle X_1, y \rangle^4)^{1/2} \mathbb{P}(\|X_i, y\| > R)^{1/2}
\]
\[
\leq C \exp(-R/C).
\]
Theorem (Bernstein’s inequality)

Let Y_1, \ldots, Y_N be i.i.d. centered r.v. with $\mathbb{E}Y_i^2 = \sigma^2$ and $\|Y_i\|_\infty \leq a$. For any $t \geq 0$,

$$\mathbb{P}
\left(\left|\frac{1}{N} \sum_{i=1}^{N} Y_i\right| \geq t\right) \leq 2 \exp \left(-cN \min \left(\frac{t^2}{\sigma^2}, \frac{t}{a}\right)\right).$$

\[\mathbb{E}\langle X_1, y \rangle^2 \mathbb{1}_{\{\langle X_1, y \rangle > R\}} \leq (\mathbb{E}\langle X_1, y \rangle^4)^{1/2} \mathbb{P}(\langle X_i, y \rangle > R)^{1/2} \leq C \exp(-R/C).\]
\[\mathbb{E}\langle X_1, y \rangle^2 1_{\{\|X_1, y\| > R\}} \leq \left(\mathbb{E}\langle X_1, y \rangle^4 \right)^{1/2} \mathbb{P}(\|X_i, y\| > R)^{1/2} \leq C \exp(-R/C). \]

Theorem (Bernstein’s inequality)

Let \(Y_1, \ldots, Y_N \) be i.i.d. centered r.v. with \(\mathbb{E} Y_i^2 = \sigma^2 \) and \(\|Y_i\|_\infty \leq a \). For any \(t \geq 0 \),

\[\mathbb{P}\left(\left\| \frac{1}{N} \sum_{i=1}^N Y_i \right\| \geq t \right) \leq 2 \exp\left(-cN \min\left(\frac{t^2}{\sigma^2}, \frac{t}{a} \right) \right). \]

This gives

\[\mathbb{P}(I \geq \varepsilon) \leq 5^n \exp(-cN \min(\varepsilon^2, \varepsilon/R^2)). \]
The unbounded part

With pr. at least $1 - \exp(-t\sqrt{n})$ we have for all $m \leq N$,

$$A_m = \sup_{z \in S^{N-1}} \left| \sum_{i=1}^{N} z_i X_i \right| \leq Ct \left(\sqrt{n} + \sqrt{m} \log \left(\frac{2N}{n} \right) \right).$$
The unbounded part

With pr. at least $1 - \exp(-t\sqrt{n})$ we have for any $E \subseteq \{1, \ldots, N\}$,

$$\sup_{y \in S^{n-1}} \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n} \right)^2 \right).$$
The unbounded part

With pr. at least $1 - \exp(-t\sqrt{n})$ we have for any $E \subseteq \{1, \ldots, N\}$,

$$\sup_{y \in S^{n-1}} \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n} \right)^2 \right).$$

Set $E = E(y) = \{ i : |\langle X_i, y \rangle| \geq R \}$. Then

$$|E|R^2 \leq \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n} \right)^2 \right).$$
The unbounded part

With pr. at least $1 - \exp(-t\sqrt{n})$ we have for any $E \subseteq \{1, \ldots, N\}$,

$$\sup_{y \in S^{n-1}} \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n}\right)^2\right).$$

Set $E = E(y) = \{i: |\langle X_i, y \rangle| \geq R\}$. Then

$$|E|R^2 \leq \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n}\right)^2\right).$$

For $R^2 \geq 2Ct^2 \log \left(\frac{2N}{n}\right)^2$ we get $|E| \leq Ct^2 nR^{-2}$.
The unbounded part

With pr. at least $1 - \exp(-t\sqrt{n})$ we have for any $E \subseteq \{1, \ldots, N\}$,

$$\sup_{y \in S^{n-1}} \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n} \right)^2 \right).$$

Set $E = E(y) = \{i: |\langle X_i, y \rangle| \geq R\}$. Then

$$|E|R^2 \leq \sum_{i \in E} \langle X_i, y \rangle^2 \leq Ct^2 \left(n + |E| \log \left(\frac{2N}{n} \right)^2 \right).$$

For $R^2 \geq 2Ct^2 \log \left(\frac{2N}{n} \right)^2$ we get $|E| \leq Ct^2 nR^{-2}$. Thus

$$\sup_{y \in S^{n-1}} \sum_{i \in E} \langle X_i, y \rangle^2 \leq 2Ct^2 n.$$
For $R \geq Ct \log(2N/n)$ we have

- With pr. $1 - 5^n \exp(-cN \min(\varepsilon^2, \varepsilon/R^2))$, $I \leq \varepsilon$,
- With pr. $1 - \exp(-ct\sqrt{n})$, $II \leq Ct^2 n/N$,
- With pr. $1 - \exp(-R/C)$, $III \leq C \exp(-R/C)$.

Set $R = Ct \log(2N/n)$ and $N \geq C(\varepsilon, t)n$ to get $I + II + III \leq 3\varepsilon$. "w.h.p."
For $R \geq Ct \log(2N/n)$ we have

- With pr. $1 - 5^n \exp(-cN \min(\varepsilon^2, \varepsilon/R^2))$,
 \[I \leq \varepsilon, \]

- With pr. $1 - \exp(-ct \sqrt{n})$
 \[II \leq Ct^2 n/N, \]
Summarizing

For $R \geq Ct \log(2N/n)$ we have

- With pr. $1 - 5^n \exp(-cN \min(\varepsilon^2, \varepsilon/R^2))$,
 $$I \leq \varepsilon,$$

- With pr. $1 - \exp(-ct\sqrt{n})$
 $$II \leq Ct^2 n/N,$$

- $III \leq C \exp(-R/C).$
Summarizing

For $R \geq Ct \log(2N/n)$ we have

- With pr. $1 - 5^n \exp(-cN \min(\varepsilon^2, \varepsilon/R^2))$,

 $$I \leq \varepsilon,$$

- With pr. $1 - \exp(-ct\sqrt{n})$

 $$II \leq Ct^2 n/N,$$

- $III \leq C \exp(-R/C)$.

Set $R = Ct \log(2N/n)$ and $N \geq C(\varepsilon, t)n$ to get

$$I + II + III \leq 3\varepsilon \text{ w.h.p.}$$
Theorem (LPTA)

Let X_1, \ldots, X_N be i.i.d. isotropic log-concave vectors in \mathbb{R}^n. For every $p \geq 2$ and every $\varepsilon \in (0, 1)$ and $t \geq 1$ there exists $C(p, \varepsilon, t)$ s.t. if $N \geq C(p, \varepsilon, t)n^{p/2}$, then with probability at least $1 - \exp(-c_p t \sqrt{n})$,

\[
\sup_{y \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} |\langle X_i, y \rangle|^p - \mathbb{E}|\langle X_i, y \rangle|^p \right| \leq \varepsilon.
\]

Moreover one can take $C(\varepsilon, t) = C_p t^{2p} \varepsilon^{-2} \log^{2p-2}(2t^2 \varepsilon^{-2})$.

Previous contributions

- Giannopoulos, Milman (2000) – $N = \mathcal{O}((n \log n)^{p/2})$
- Guedon, Rudelson (2007) – $N = \mathcal{O}(n^{p/2} \log n)$.

Remark: For $p < 2$ it is enough to take $N = \mathcal{O}(n)$.
Neighbourly polytopes

Theorem (LPTA)

Let \(\theta \in (0, 1) \) and assume that \(N \leq \exp(c\theta^Cn^c) \) and \(Cm \log^2 \left(\frac{2N}{\theta m} \right) \leq \theta^2 n \). Then, with pr. at least \(1 - \exp(-c\theta^Cn^c) \),

\[
\sup_{z \in S^{N-1}} \frac{1}{n} \left| \left| \Gamma x \right|^2 - 1 \right| = \left| \frac{1}{n} \sum_{i=1}^{N} z_i X_i \right|^2 - 1 \leq \theta.
\]

Corollary (LPTA)

Let \(X_1, \ldots, X_N \) be random vectors drawn from an isotropic convex body in \(\mathbb{R}^n \). Then, for \(N \leq \exp(cn^c) \), with probability at least \(1 - \exp(-cn^c) \), the polytope \(K(\Gamma) \) (resp. \(K_+(\Gamma) \)) is \(m \)-symmetric-neighbourly (resp. \(m \)-neighbourly) with

\[
m = \left\lfloor c \frac{n}{\log^2(CN/n)} \right\rfloor.
\]
Sketch of the proof

Denote

\[C_m = \max_{i \leq N} |X_i|, \]

\[B_m^2 = \sup_{z \in \mathbb{S}^{N-1}} \left| \frac{1}{n} \Gamma z \right|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \]

\[= \sup_{z \in \mathbb{S}^{N-1}} \sum_{i \neq j} \langle z_i X_i, z_j X_j \rangle = \sup_{z \in \mathbb{S}^{N-1}} D_z. \]
Sketch of the proof

Denote

\[C_m = \max_{i \leq N} |X_i|, \]

\[B_m^2 = \sup_{z \in S^{N-1}} \sup_{|\text{supp } z| \leq m} \left| \frac{1}{n} |\Gamma z|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \right| \]

\[= \sup_{z \in S^{N-1}} \sum_{i \neq j} \langle z_i X_i, z_j X_j \rangle = \sup_{z \in S^{N-1}} \langle D_z \rangle. \]

We have

\[D_z - D_x = \langle \Gamma z, \Gamma (z - x) \rangle + \langle \Gamma (z - x), \Gamma x \rangle + \sum_{i=1}^{n} (x_i - z_i)(x_i + z_i) |X_i|^2. \]

Hence if \(|x - z| \leq \theta \) and they have the same support,

\[D_z \leq D_x + 2\theta (A_m^2 + C_m^2) \leq D_x + 2\theta (B_m^2 + 2C_m^2). \]
\[D_z \leq D_x + 2\theta(A_m^2 + C_m^2) \leq D_x + 2\theta(B_m^2 + 2C_m^2). \]
\[D_z \leq D_x + 2\theta(A_m^2 + C_m^2) \leq D_x + 2\theta(B_m^2 + 2C_m^2). \]

We construct a set \(\mathcal{M}(\theta) \) such that

- \(\sup_{x \in \mathcal{M}} D_x \leq A_m\theta \sqrt{n} \) w.h.p.
\[D_z \leq D_x + 2\theta(A_m^2 + C_m^2) \leq D_x + 2\theta(B_m^2 + 2C_m^2). \]

We construct a set \(\mathcal{M}(\theta) \) such that

- \(\sup_{x \in \mathcal{M}} D_x \leq A_m\theta \sqrt{n} \) w.h.p.
- for every \(z \in S^{n-1} \) with \(|\text{supp } z| \leq m \), there is \(x \in \mathcal{M}(\theta) \), \(\text{supp } z = \text{supp } x \), \(|x - z| < \theta \).
\[D_z \leq D_x + 2\theta(A_m^2 + C_m^2) \leq D_x + 2\theta(B_m^2 + 2C_m^2). \]

We construct a set \(\mathcal{M}(\theta) \) such that

- \(\sup_{x \in \mathcal{M}} D_x \leq A_m\theta \sqrt{n} \) w.h.p.
- for every \(z \in S^{n-1} \) with \(|\text{supp } z| \leq m \), there is \(x \in \mathcal{M}(\theta) \), \(\text{supp } z = \text{supp } x \), \(|x - z| < \theta \).

We get

\[
B_m^2 = \sup_{\substack{z \in S^{n-1} \\ |\text{supp } z| \leq m}} D_z \leq \theta \sqrt{n} A_m + 2\theta(B_m^2 + C_m^2)
\]

\[
\leq \theta \sqrt{n} \sqrt{B_m^2 + C_m^2 + 2\theta(B_m^2 + C_m^2)}
\]

Now we solve for \(B_m \) and use the fact that \(C_m^2 \leq Cn \) w.h.p.
We get

\[B_m^2 = \sup_{z \in S^{N-1} \atop |\text{supp } z| \leq m} \left| \frac{1}{n} |\Gamma z|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \right| \leq \theta n. \]
We get

\[
B_m^2 = \sup_{z \in S^{N-1}, |\text{supp } z| \leq m} \left| \frac{1}{n} |\Gamma z|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \right| \leq \theta n.
\]

How does it imply the theorem?
We get

\[B_m^2 = \sup_{z \in S^{N-1}} \left| \frac{1}{n} |\Gamma z|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \right| \leq \theta n. \]

How does it imply the theorem?

\[\left| \sum_{i=1}^{N} z_i^2 |X_i|^2 - n \right| \leq \sum_{i=1}^{n} z_i^2 \left| X_i \right|^2 - n \right| \leq \max_{i \leq N} \left| X_i \right|^2 - n. \]
We get

\[B_m^2 = \sup_{z \in S^{N-1} \cap \text{supp } z \leq m} \left| \frac{1}{n} \| \Gamma z \|^2 - \sum_{i=1}^{N} z_i^2 |X_i|^2 \right| \leq \theta n. \]

How does it imply the theorem?

\[\left| \sum_{i=1}^{N} z_i^2 |X_i|^2 - n \right| \leq \sum_{i=1}^{n} z_i^2 \left| |X_i|^2 - n \right| \leq \max_{i \leq N} \left| |X_i|^2 - n \right|. \]

Theorem (Klartag)

\[\mathbb{P} \left(\left| |X_i| - n \right| \geq \theta n \right) \leq \exp(-c\theta^c n^c). \]

The statement follows by the union bound.
The smallest singular value of a square matrix

Theorem (GLPTA)

Let Γ be an $n \times n$ random matrix with independent isotropic log-concave rows. Then, for any $\varepsilon \in (0, 1)$,

$$P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + C \exp(-cn^c)$$

and

$$P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(2/\varepsilon).$$

Corollary

For any $\delta \in (0, 1)$ there exists C_{δ} such that for any n and $\varepsilon \in (0, 1)$,

$$P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C_{\delta}\varepsilon^{1-\delta}.$$
Compressible vectors

Let us define:

\[\text{Sparse} = \text{Sparse}(\delta) = \{ x \in \mathbb{R}^n : \| \text{supp} \, x \| \leq \delta n \} \]
\[\text{Comp} = \text{Comp}(\delta, \rho) = \{ x \in S^{n-1} : \text{dist}(x, \text{Sparse}(\delta)) \leq \rho \} \]
\[\text{Incomp} = \text{Incomp}(\delta, \rho) = S^{n-1} \setminus \text{Comp}(\delta, \rho) \]

Lemma (Rudelson-Vershynin)

Let \(H_k = \text{span}((X_i)_{i \neq k}) \). For every \(\rho, \delta \in (0, 1) \) and \(\varepsilon > 0 \),

\[
\mathbb{P}(\inf_{x \in \text{Incomp}(\delta, \rho)} |\Gamma x| < \varepsilon \rho n^{-1/2}) \leq \frac{1}{\delta n} \sum_{k=1}^{n} \mathbb{P}(\text{dist}(X_k, H_k) < \varepsilon).
\]
The isotropy constant

Definition

For an isotropic log-concave measure μ on \mathbb{R}^n define the **isotropy constant** of μ as

$$L_\mu = f(0)^{1/n},$$

where f is the density of μ.

A famous open problem:

Is $L_\mu \leq C$?

Fact (not difficult, enough for us)

$L_\mu \leq C \sqrt{n}$.

Theorem (Klartag)

$L_\mu \leq Cn^{1/4}$.
The isotropy constant

Definition

For an isotropic log-concave measure μ on \mathbb{R}^n define the isotropy constant of μ as

$$L_{\mu} = f(0)^{1/n},$$

where f is the density of μ.

A famous open problem: Is $L_{\mu} \leq C$?
The isotropy constant

Definition

For an isotropic log-concave measure μ on \mathbb{R}^n define the isotropy constant of μ as

$$L_{\mu} = f(0)^{1/n},$$

where f is the density of μ.

A famous open problem: Is $L_{\mu} \leq C$?

Fact (not difficult, enough for us)

$$L_{\mu} \leq C\sqrt{n}.$$
The isotropy constant

Definition
For an isotropic log-concave measure μ on \mathbb{R}^n define the isotropy constant of μ as

$$L_\mu = f(0)^{1/n},$$

where f is the density of μ.

A famous open problem: Is $L_\mu \leq C$?

Fact (not difficult, enough for us)

$$L_\mu \leq C\sqrt{n}.$$

Theorem (Klartag)

$$L_\mu \leq Cn^{1/4}.$$
Incompressible vectors

We have to estimate

\[\mathbb{P}(\text{dist} (X_i, H_i) \leq \varepsilon), \]

where \(H_i \) is a random hyperplane independent of \(X_i \). Let \(y \) be a unit normal to \(H_i \), then

\[\mathbb{P}(\text{dist} (X_i, H_i) \leq \varepsilon) = \mathbb{E}_{H_i} \mathbb{P}_{X_i}(|\langle X_i, y \rangle| \leq \varepsilon) \leq C\varepsilon, \]

as

\[\mathbb{P}_{X_i}(|\langle X_i, y \rangle| \leq \varepsilon) = \int_{-\varepsilon}^{\varepsilon} f_{\langle X_i, y \rangle}(t)dt \leq C\varepsilon. \]
We have to estimate
\[\mathbb{P}(\text{dist } (X_i, H_i) \leq \varepsilon), \]
where \(H_i \) is a random hyperplane independent of \(X_i \).

Let \(y \) be a unit normal to \(H_i \), then
\[\mathbb{P}(\text{dist } (X_i, H_i) \leq \varepsilon) = \mathbb{E}_{H_i}\mathbb{P}_{X_i}(|\langle X_i, y \rangle| \leq \varepsilon) \leq C\varepsilon, \]
as
\[\mathbb{P}_{X_i}(|\langle X_i, y \rangle| \leq \varepsilon) = \int_{-\varepsilon}^{\varepsilon} f_{\langle X_i, y \rangle}(t)dt \leq C\varepsilon. \]

Thus
\[\mathbb{P}(\inf_{x \in \text{Incomp}(\delta, \rho)} |\Gamma x| < \varepsilon \rho n^{-1/2}) \leq C\varepsilon. \]
Lemma (Compressible to sparse reduction)

For any $\rho, \delta \in (0, 1)$ and $M \geq 1$, if

$$\inf_{x \in \text{Comp}(\delta, \rho/(2M))} |\Gamma x| \leq \rho \sqrt{n}$$

and $\|\Gamma\| \leq M \sqrt{n}$, then

$$\inf_{y \in \text{Sparse}(\delta), |y| = 1} |\Gamma y| \leq 4\rho \sqrt{n}.$$
Lemma (Compressible to sparse reduction)

For any $\rho, \delta \in (0, 1)$ and $M \geq 1$, if

$$\inf_{x \in \text{Comp}(\delta, \rho/(2M))} |\Gamma x| \leq \rho \sqrt{n}$$

and $\|\Gamma\| \leq M\sqrt{n}$, then $\inf_{y \in \text{Sparse}(\delta), |y|=1} |\Gamma y| \leq 4\rho \sqrt{n}$.

We already know that with pr. at least $1 - \exp(-cn^c)$ for all m-sparse vectors z ($m = \delta n$, δ small enough),

$$\big||\Gamma z|^2 - n\big| \leq \frac{1}{4} n$$

(we set $m = \delta n$, $N = n$ in the RIP Theorem).
Lemma (Compressible to sparse reduction)

For any $\rho, \delta \in (0, 1)$ and $M \geq 1$, if

$$\inf_{x \in \text{Comp}(\delta, \rho/(2M))} |\Gamma x| \leq \rho \sqrt{n}$$

and $\|\Gamma\| \leq M \sqrt{n}$, then $\inf_{y \in \text{Sparse}(\delta), |y|=1} |\Gamma y| \leq 4\rho \sqrt{n}$.

We already know that with pr. at least $1 - \exp(-cn^c)$ for all m-sparse vectors z ($m = \delta n$, δ small enough),

$$\left| |\Gamma z|^2 - n \right| \leq \frac{1}{4} n$$

(we set $m = \delta n$, $N = n$ in the RIP Theorem).

This implies that

$$|\Gamma z| \geq \sqrt{n}/2.$$
We have proved that

\[P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c) \]
We have proved that

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^C)$$

How to prove

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})?$$
We have proved that

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c)$$

How to prove

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})?$$

Main ingredients
We have proved that
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c) \]

How to prove
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})? \]

Main ingredients

- We can assume that \(\varepsilon < \exp(-cn^c) \).
We have proved that
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c) \]

How to prove
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^c(\varepsilon^{-1})? \]

Main ingredients

- We can assume that \(\varepsilon < \exp(-cn^c) \).
- For a log-concave vector \(X \), \(\mathbb{P}(|X| \leq \rho \sqrt{n}) \leq C^n L_{\mu}^n \rho^n \leq C^n n^{n/2} \rho^n \).
We have proved that
\[P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c) \]

How to prove
\[P(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})? \]

Main ingredients

- We can assume that \(\varepsilon < \exp(-cn^c) \).
- For a log-concave vector \(X \), \(P(\|X\| \leq \rho \sqrt{n}) \leq C^n L_\mu^n \rho^n \leq C^n n^{n/2} \rho^n \).
- If \(z \in S^{n-1} \) then \(\sum_{i=1}^n z_i X_i \) is log-concave (Prekopa-Leindler) and isotropic (easy).
We have proved that
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c) \]

How to prove
\[\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})? \]

Main ingredients

- We can assume that \(\varepsilon < \exp(-cn^c). \)
- For a log-concave vector \(X, \mathbb{P}(|X| \leq \rho \sqrt{n}) \leq C^n L_n^\mu \rho^n \leq C^n n^{n/2} \rho^n. \)
- If \(z \in S^{n-1} \) then \(\sum_{i=1}^n z_i X_i \) is log-concave (Prekopa-Leindler) and isotropic (easy).
- The set \(\text{Sparse}(\rho) \) admits significantly smaller nets than \(S^{n-1}. \)
We have proved that

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + \exp(-cn^c)$$

How to prove

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon^{n/(n+2)} \log^C(\varepsilon^{-1})?$$

Main ingredients

- We can assume that $\varepsilon < \exp(-cn^c)$.
- For a log-concave vector X, $\mathbb{P}(|X| \leq \rho \sqrt{n}) \leq C_n L_{\mu}^n \rho^n \leq C^n n^{n/2} \rho^n$.
- If $z \in S^{n-1}$ then $\sum_{i=1}^n z_i X_i$ is log-concave (Prekopa-Leindler) and isotropic (easy).
- The set $\text{Sparse}(\rho)$ admits significantly smaller nets than S^{n-1}.
- One has to choose all the parameters (tedious but doable).
Thank you