Gauged linear σ-model and gauged Witten equation
(joint work with Gang Tian)

1. Motivation
2. Gauged Witten equation
3. Linear σ-model
4. Correlation functions

Motivation
Let $Q : \mathbb{C}^n \to \mathbb{C}$ be a homogeneous polynomial of degree y. Associated to Q there are two interesting geometric theories:

(i) The nonlinear σ-model of $\overline{X}_Q \subseteq \mathbb{P}^{N-1}$ (Gromov-Witten)

based on the analysis of $\mathcal{M}(\Sigma) = \{ u : \Sigma \to \overline{X}_Q \mid \overline{\partial} u = 0 \}$

Mathematical fundations: Ruan, Ruan-Tian, Fukaya-Oh, Li-Tian

(ii) Landau-Ginzburg model of the singularity (\mathbb{C}^n, Q)

based on the analysis of $\mathcal{W}(\Sigma) = \{ u : \Sigma \to \mathbb{C}^n \mid \overline{\partial} u + \nabla Q(u) = 0 \}$

Mathematical fundation: Fan-Jarvis-Ruan (2013), following Witten's idea (1993)
In superstring theory, physicists care about the NLSM of Calabi-Yau manifolds. When \(\deg Q = N \), \(X_Q \) is CY. Physicists discovered the so-called Landau-Ginzburg / Calabi-Yau correspondence between the two above theories, long before the mathematical theories rigorously constructed. The LG/CY correspondence remains mysterious to mathematicians.

A mathematically more accessible approach towards the LG/CY correspondence was introduced by Witten (1993). His theory is now referred to as the gauged linear \(\sigma \)-model.

The idea of GLSM. Consider \(\mathbb{C}^{N+1} = \mathbb{C} \times \mathbb{C} \) and a new potential \(W(x;p) = p(Q(x)) \). \(W \) is invariant under a \(\mathbb{C}^* \)-action on \(\mathbb{C}^{N+1} \) given by

\[
\xi(x_1, \ldots, x_N, p) = (\xi x_1, \ldots, \xi x_N, \xi^{-1} p) \quad (r = \deg Q).
\]

This action is Hamiltonian, with moment map \(\mu = |x_1|^2 + \cdots + |x_N|^2 - |p|^2 - 2 \rho \cdot p \).

"GLSM" is a gauge theory with a superpotential \(W \).

Classical vacuum: \((\mu^{-1}(0) \cap \text{Crit} W) / S^1 \)

\[
\theta W = p \Rightarrow \frac{\partial W}{\partial p} = Q \quad \Rightarrow \quad \tau > 0, \ |x_1| \neq 0, \ \text{so} \quad p = 0 \quad Q = 0 \quad X_Q
\]

\(\tau < 0 \Rightarrow p \neq 0, \ x_1 = \cdots = x_n = 0 \) (\(Q \) is nondegenerate)
The variation of \mathcal{I} should relate the Landau-Grinzhburg theory with the Calabi-Yau theory.

Our project is to give a mathematical construction of the gauged linear σ-model, then study its dependence on certain parameters (including \mathcal{I}); we hope eventually the LG/CY correspondence can be understood.

Gauged Witten Equation

The first step is to set up a good elliptic PDE over a Riemann surface. Indeed we can work under a more general situation.

Let (X,ω, J) be a noncompact Kähler manifold and $W : X \to \mathbb{C}$ be a holomorphic function. Suppose we have a reductive Lie group $G = K^c$ acting on X such that W is equivariant with respect to a character $\rho : G \to \mathbb{C}^\times$, i.e. $W(gx) = \rho(g) W(x)$.

Let Σ be a Riemann surface. A "W-structure" over Σ is a pair (P, Φ), where $P \to \Sigma$ is a holomorphic principal G-bundle and Φ is an isomorphism $\phi : P \times_{\rho} \mathbb{C} \to K^c_{\Sigma}$.

This allows us to lift W to the fibre bundle $Y = P \times X$. Choose a local coordinate z on Σ and a frame e of P such that $\phi([e, 1]) = dz$. ($[e, 1] \in P \times \mathbb{C}$)
Then define $W_Y([p,x]) = W(x) \, dz$ \, ($[p,x] \in P \times G, X = Y$).

Easy to check that $W_Y \in \Gamma(Y, \pi_Y^* K_\Sigma)$ is well-defined and holomorphic.

Suppose $G = K^e$ and K is a compact Lie group. Choose a K-reduction of P. It induces a Hermitian metric on $T^* Y$. (Depending on the Kähler metric on X_1 and the K-action being Hamiltonian.)

The vertical differential of W_Y is $dW_Y \in \Gamma(Y, (T^* Y)^* \otimes \pi_Y^* K_\Sigma)$.

Dualize it using the Hermitian metric of $T^* Y$, we obtain the vertical gradient

$$\nabla W_Y \in \Gamma(Y, T^* Y \otimes \pi_Y^* \Omega^{0,1}_{\Sigma})$$

The "Witten equation" for sections $u \in \Gamma(Y)$ is

$$\overline{\partial} u + \nabla W_Y(u) = 0$$

Here since Y is holomorphic, $\overline{\partial} u \in \Gamma(\Sigma, \text{Hom}^{0,1}(T\Sigma, u^* T^* Y))$

$$\cong \Omega^{0,1}(u^* T^* Y)$$

$$\nabla W_Y(u) = u^* \nabla W_Y \in \Omega^{0,1}(u^* T^* Y)$$

Note that in writing down the Witten equation, we need to choose a W-structure and a K-reduction of P.

W-structures exist in a moduli and two W-structures (P, ϕ) and (P', ϕ') are equivalent if there is an isomorphism...
\[\Phi : p \rightarrow p', \text{ such that the following diagram commutes. } \]

\[\begin{array}{c}
\begin{array}{c}
p \times_p C \\
\downarrow p \\
p' \times_{p'} C
\end{array} \\
\Phi \\
\Phi'
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
C \\
\downarrow 1
\end{array}
\end{array} \]

In a simpler situation, let \(G = G_1 \times C^* \) and \(p : G \rightarrow C^* \) is induced from a character \(p : C^* \rightarrow C^* \) (characterized by an integer \(\gamma \)), then a \(W \)-structure on \(\Sigma \) consists of an arbitrary \(G_1 \)-bundle \(p_i : \Sigma \rightarrow \Sigma \) together with an \(r \)-spin structure \((L, \Phi) \). That is, \(L \rightarrow \Sigma \) is a holomorphic line bundle and \(\Phi \) is an isomorphism \(\Phi : L^\otimes r \rightarrow K_{\Sigma} \).

In particular, when \(G_1 \) is a finite group \(\Gamma \), \(W = Q : C^N \rightarrow C \) is homogeneous, then the Witten equation is the one considered by Fan-Jarvis-Ruan.

What is the gauged Witten equation? From now on we restrict to the splitting case, i.e. \(G = C^* \times G_1 \) and \(G_1 \otimes = K_{\Sigma}^C \).

Instead of considering holomorphic \(G_1 \)-bundle, we consider smooth \(K_i \)-bundles with connections. The connection \(A \) is allowed to
 vary, we also allow the reduction on the C^* part, i.e., a Hermitian metric H_0 on L, to vary. Now for any smooth K_i-bundle $Q_i \to \Sigma$ and an r-th root $L \to \Sigma$, for any K_i-connection $A_i \in \mathcal{A}(Q_i)$ and Hermitian metric H_0 on L, we can form $\nabla^{H_0} W_L \in \Gamma(Y, T^* Y \otimes \pi_Y^*(\Omega^2))$, and the Witten equation for $u \in \Gamma(Y)$ (here $Y = (Q_i \times L)_{K_i \times \Sigma} \times X$)

$$\bar{\partial} A u + \nabla^{H_0} W_L(u) = 0.$$

To control the behavior of the variables A_i and H_0, we borrow the idea of symplectic vortex equations. Choose a volume form $\omega \in \Omega^2(\Sigma)$. We can write down the "vortex equation"

$$\ast F_{A_i, H_0} + \mu_{H_0}(u) = 0.$$

Here $F_{A_i, H_0} \in \Omega^2(\Sigma, \text{Ad}(\text{Lie} K))$ is the curvature form of the K_i-connection A_i and the Chern connection of H_0; \ast is the Hodge-star induced from the volume form ω. On the other hand, $\mu : X \to \text{Lie}(K) \ast \cong \text{Lie} K$ and $\mu_{H_0}(u) \in \Omega^0(\Sigma, \text{Ad}(\text{Lie} K))$ is well-defined. The gauged Witten equation is

$$\sum \bar{\partial} A u + \nabla^{H_0} W_L(u) = 0$$

$$\ast F_{A_i, H_0} + \mu_{H_0}(u) = 0$$

(gauge invariant under $G(\mathbb{R}) \times C^0(\Sigma, S^1)$)
Special case: When $W = 0$, we don't need W-structures and the setting can be extended to Hamiltonian K-manifolds (X, ω, μ) with K-invariant almost complex structure J. This is the case of symplectic vortex equation. (introduced by Cieliebak-Epstein-Salamon and I. Mundet)

Energy functional. The symplectic vortex equation is a natural equation in the sense that solutions are minimizers of the Yang-Mills-Higgs functional on (A, u), given by

$$YMH(A, u) = \frac{1}{2} \left(\| d_A W \|_L^2 + \| \mu(u) \|_L^2 + \| F_A \|_L^2 \right).$$

For gauged Witten equation, solutions are minimizers of the following energy functional:

$$E(A, u) = \frac{1}{2} \left(\| d_{A_h, H_0} W \|_L^2 + \| \mu_{H_0}(u) \|_L^2 + \| F_{A_h, H_0} \|_L^2 \right) + \| \nabla H_0 W(u) \|_L^2$$

We could continue working on the general situation but let us restrict to the linear case.

Let $Q : \mathbb{C}^n \rightarrow \mathbb{C}$ be homogeneous of degree r. Let $X = \mathbb{C}^{n+1}$
Let \(W(x_1, \ldots, x_N, p) = p^l \Omega(x_1, \ldots, x_N) \) be as previously discussed.

Now \(G = \mathbb{C}^* \times \mathbb{C}^* \), which acts on \(\mathbb{C}^{N+1} \) as

\[
(\xi_0, \xi_1) (x_1, \ldots, x_N, p) = (\xi_0 x_1, \ldots, \xi_0 x_N, \xi_1 p)
\]

This action is Hamiltonian, with moment map

\[
\mu(x_1, \ldots, x_N, p) = \begin{pmatrix}
\sum_{i=1}^{N} |x_i|^2 - \tau_0 \\
\sum_{i=1}^{N} |x_i|^2 - r |p|^2 - \tau_1
\end{pmatrix}
\]

\(\tau_0, \tau_1 \in \mathbb{R} \).

The parameter \(\tau_1 \) will be responsible for the wall-crossing

\[W \text{ is invariant under the second } \mathbb{C}^* \text{--action but homogeneous under the first } \mathbb{C}^* \text{--action. } \]

\[P(\xi_0, \xi_1) = \xi_0 \in \mathbb{C}^* \]

\[W(gx) = P(g) W(x) \]

A \(W \)-structure is an \(r \)-spin structure \((L_0, \phi) \), \(L_0 \xrightarrow{\phi} K \Sigma \) together with an arbitrary holomorphic line bundle \(L_1 \).

We consider \(H_0 \) : Hermitian metrics on \(L_0 \) and consider \(L_1 \) as a Hermitian line bundle with arbitrary unitary connections. \((U, H_0, A_1) \)

\[
\{ \begin{array}{l}
\bar{\partial}_{A_1} U + \nabla_{H_0} W(U) = 0 \\
\ast F_{H_0, A_1} + \mu_{H_0}(U) = 0
\end{array} \}
\]

\(U \in \Gamma(L_0 \otimes L_1 \oplus \cdots \oplus L_0 \otimes L_1 \oplus L_1 \oplus L_1^{-1}) \)
All the above are working with a general Riemann surface. For compact Riemann surfaces, the above setting is not enough. Motivated from Fan-Jarvis-Ruan's work, we consider compact Riemann surfaces Σ, with marked points p_1, \ldots, p_k. Then the r-th root $\mathcal{O}(L_0)$ of K_Σ is allowed to have orbifold structures at p_1, \ldots, p_k, and K_Σ should be replaced by
\[K_{\text{log}} = K_\Sigma \otimes \mathcal{O}(p_1) \otimes \ldots \otimes \mathcal{O}(p_k) \]
Since $\phi: \mathcal{O}(L_0) \subseteq K_{\text{log}}$, the local group of L_0 near p_i must be \mathbb{Z}_r (or its subgroup). So locally, L_0 is identified with $\mathbb{D} \times \mathbb{C}/\mathbb{Z}_r$ with \mathbb{Z}_r-action given by $\xi(x, t) = (\xi x, \xi^m t)$.

The above structures gives an "r-spin curve" $(\Sigma, p_1, \ldots, p_k, L_0, \phi)$.

Perturbations. When there is an orbifold point whose $m_i = 0$, the Witten equation looks like the Floer type equation:
\[\frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \nabla W(u) = 0 \]

In general W has degenerate critical points, so the linearization of the Witten equation or the gauged Witten equation is not naturally a Fredholm operator.
Therefore we need to perturb the equation, not to achieve transversality but to achieve Fredholmness.
(There are other reasons why we need to perturb.)

A perturbation is given as follows. Near the cylindrical ends at P_i with cylindrical coordinates (s,t), consider

$$\frac{\partial u}{\partial s} + J\left(\frac{\partial u}{\partial t}\right) + \Delta W(u) + \beta(s) \Delta F(u) = 0.$$

Here $\beta(s)$ is a cut-off function supported near $s = \pm \infty$ and $F : X \to \mathbb{C}$ is a holomorphic function such that $W + F : X \to \mathbb{C}$ is a holomorphic Morse function.

If $W = pQ$, then we choose $F = -ap + \sum_{i=1}^{N} b_i x_i$ and

$$W + F = p(Q - a) + \sum_{i=1}^{N} b_i x_i. \quad \text{(Lefschetz pencil.)}$$

Thm (Tian-X, 2014) In the above setting, for solutions to the perturbed gauged Witten equation, we have:

1. Asymptotic behavior: $m \to 0 \Rightarrow U(s,t) \to \mathbb{R}^3 \times \mathbb{C}; \ m = 0 \Rightarrow U(s,t) \to \mathbb{C}^4 + (W + F)$

2. Fredholm theory

3. Compactly (fixing an \mathfrak{g}-spin curve)
Invariant. How to define (formally) an invariant out of the moduli space of solutions:

\[\mathcal{Z}_Q = \bigoplus_{k=0}^{r-1} \mathcal{H}^{(k)}_Q \]

\[\mathcal{H}_Q^{(k)} = \bigoplus_{i=0}^{r-1} e^{k} \mathcal{H}_Q^{(i)}; \]

\[\mathcal{H}_Q^{(0)} \cong \text{PH}^{N-2}(X_Q) \]

If we fix an r-spin curve \(C = (\Sigma, p_1, \ldots, p_k; L_0, \Phi) \) with monodromies \(\gamma_i = \exp(\frac{2\pi i m_i}{r}) \), \(m_i \in \{0, 1, \ldots, r-1\} \), then the invariant is a multilinear function (for \(d \in \mathbb{Z} \))

\[\langle \cdots \rangle^d_c : \mathcal{H}_Q^{(m_1)} \otimes \cdots \otimes \mathcal{H}_Q^{(m_k)} \rightarrow \mathbb{Q} \]

Example. When \(k = 3 \), suppose \(m_1 \neq 0, m_2 \neq 0, m_3 = 0 \). Choose \(\Theta \in \mathcal{H}_Q^{(0)} \cong \text{PH}^{N-2}(X_Q) \cong H^{N-1}(Q^d(a) \setminus \mathbb{Q}) \mathbb{Z}_r \). Then

\[\langle e^{m_1}, e^{m_2}, \Theta \rangle_c^d = \sum_{x \in \text{Crit}(W+F)} \# A^\Theta_{x} \left(\begin{array}{c} m_1 \\ m_2 \end{array} \right) \]

Here \(\# \) is the virtual counting of solutions to the perturbed gauged Witten equation whose asymptotic at \(p_3 \) is given by \(K \). It is nonzero only when the virtual dimension is zero. \(A^\Theta_{x} \) is a topological intersection number in \(Q^d(a) \) b.c. \(K \) gives a cycle \(H_{N}^d(\Omega^d(a), \infty) \).