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Coercive Problems

This chapter deals with problems whose weak formulation is endowed with a
coercivity property. The key examples investigated henceforth are scalar ellip-
tic PDEs, spectral problems associated with the Laplacian, and PDE systems
derived from continuum mechanics. The goal is twofold: First, to set up a
mathematical framework for well-posedness; then, to investigate conforming
and non-conforming finite element approximations based on Galerkin meth-
ods. Error estimates are derived from the theoretical results of Chapters 1
and 2 and are illustrated numerically. The last section of this chapter is con-
cerned with coercivity loss and is meant to be a transition to Chapters 4
and 5.

3.1 Scalar Elliptic PDEs: Theory

Let Ω be a domain in Rd. Consider a differential operator L in the form

Lu = −∇·(σ·∇u) + β·∇u+ µu, (3.1)

where σ, β, and µ are functions defined over Ω and taking their values in Rd,d,
Rd, and R, respectively. Given a function f : Ω → R, consider the problem of
finding a function u : Ω → R such that

{
Lu = f in Ω,

Bu = g on ∂Ω,
(3.2)

where the operator B accounts for boundary conditions. The model problem
(3.2) arises in several applications:

(i) Heat transfer: u is the temperature, σ = κI where κ is the thermal
conductivity, β is the flow field, µ = 0, and f is the externally supplied
heat per unit volume.
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(ii) Advection–diffusion: u is the concentration of a solute transported in a
flow field β. The matrix σ models the solute diffusivity resulting from
either molecular diffusion or turbulent mixing by the carrier flow. Solute
production or destruction by chemical reaction is accounted for by the
linear term µu, and the right-hand side f models fixed sources or sinks.

Henceforth, the following assumptions are made on the data: f ∈ L2(Ω),
σ ∈ [L∞(Ω)]d,d, β ∈ [L∞(Ω)]d, ∇·β ∈ L∞(Ω), and µ ∈ L∞(Ω). Furthermore,
the operator L is assumed to be elliptic in the following sense:

Definition 3.1. The operator L defined in (3.1) is said to be elliptic if there
exists σ0 > 0 such that

∀ξ ∈ Rd,
d∑

i,j=1

σijξiξj ≥ σ0‖ξ‖2d a.e. in Ω. (3.3)

Equation (3.2) is then called an elliptic PDE.

Example 3.2. A fundamental example of an elliptic operator is the Lapla-
cian, L = −∆, which is obtained for σ = I, β = 0, and µ = 0. ut

3.1.1 Review of boundary conditions and their weak formulation

We first proceed formally and then specify the mathematical framework for
the weak formulation.

Homogeneous Dirichlet boundary condition. We want to enforce u = 0
on ∂Ω. Multiplying the PDE Lu = f by a (sufficiently smooth) test function
v vanishing at the boundary, integrating over Ω, and using the Green formula

∫

Ω

−∇·(σ·∇u) v =

∫

Ω

∇v·σ·∇u−
∫

∂Ω

v (n·σ·∇u), (3.4)

yields ∫

Ω

∇v·σ·∇u+ v(β·∇u) + µuv =

∫

Ω

fv.

A possible regularity requirement on u and v for the integrals over Ω to be
meaningful is

u ∈ H1(Ω) and v ∈ H1(Ω).

Since u ∈ H1(Ω), Theorem B.52 implies that u has a trace at the bound-
ary. Because of the boundary condition u|∂Ω = 0, the solution is sought in
H1

0 (Ω). Test functions are also taken in H1
0 (Ω), leading to the following weak

formulation: {
Seek u ∈ H1

0 (Ω) such that

aσ,β,µ(u, v) =
∫
Ω
fv, ∀v ∈ H1

0 (Ω),
(3.5)

with the bilinear form

aσ,β,µ(u, v) =

∫

Ω

∇v·σ·∇u+ v(β·∇u) + µuv. (3.6)
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Proposition 3.3. If u solves (3.5), then Lu = f a.e. in Ω and u = 0 a.e. on
∂Ω.

Proof. Let ϕ ∈ D(Ω) and let u be a solution to (3.5). Hence,

〈−∇·(σ·∇u), ϕ〉D′,D = 〈σ·∇u,∇ϕ〉D′,D =

∫

Ω

∇ϕ·σ·∇u

=

∫

Ω

(f − β·∇u− µu)ϕ,

yielding 〈Lu, ϕ〉D′,D =
∫
Ω
fϕ. Owing to the density of D(Ω) in L2(Ω), Lu = f

in L2(Ω). Therefore, Lu = f a.e. in Ω. Moreover, u = 0 a.e. on ∂Ω by
definition of H1

0 (Ω); see Theorem B.52. ut

Non-homogeneous Dirichlet boundary condition. We want to enforce
u = g on ∂Ω, where g : ∂Ω → R is a given function. We assume that g
is sufficiently smooth so that there exists a lifting ug of g in H1(Ω), i.e., a
function ug ∈ H1(Ω) such that ug = g on ∂Ω; see §2.1.4. We obtain the weak
formulation:





Seek u ∈ H1(Ω) such that

u = ug + φ, φ ∈ H1
0 (Ω),

aσ,β,µ(φ, v) =
∫
Ω
fv − aσ,β,µ(ug, v), ∀v ∈ H1

0 (Ω).

(3.7)

Proposition 3.4. Let g ∈ H 1
2 (∂Ω). If u solves (3.7), then Lu = f a.e. in Ω

and u = g a.e. on ∂Ω.

Proof. Similar to that of Proposition 3.3. ut

When the operator L is the Laplacian, (3.7) is called a Poisson problem.

Neumann boundary condition. Given a function g : ∂Ω → R, we want
to enforce n·σ·∇u = g on ∂Ω. Note that in the case σ = I, the Neumann
condition specifies the normal derivative of u since n·∇u = ∂nu. Proceeding
as before and using the Neumann condition in the surface integral in (3.4)
yields the weak formulation:

{
Seek u ∈ H1(Ω) such that

aσ,β,µ(u, v) =
∫
Ω
fv +

∫
∂Ω

gv, ∀v ∈ H1(Ω).
(3.8)

Proposition 3.5. Let g ∈ L2(∂Ω). If u solves (3.8), then Lu = f a.e. in Ω
and n·σ·∇u = g a.e. on ∂Ω.

Proof. Taking test functions in D(Ω) readily implies Lu = f a.e. in Ω. There-

fore, −∇·(σ·∇u) ∈ L2(Ω). Corollary B.59 implies n·σ·∇u ∈ H
1
2 (∂Ω)′ =

H−
1
2 (∂Ω) since
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∀φ ∈ H 1
2 (∂Ω), 〈n·σ·∇u, φ〉

H
− 1

2 ,H
1
2
=

∫

Ω

−∇·(σ·∇u)uφ +

∫

Ω

∇uφ·σ·∇u,

where uφ ∈ H1(Ω) is a lifting of φ in H1(Ω). Then, (3.8) yields

∀φ ∈ H 1
2 (∂Ω), 〈n·σ·∇u, φ〉

H
− 1

2 ,H
1
2
=

∫

∂Ω

gφ,

showing that n·σ·∇u = g in H−
1
2 (∂Ω) and, therefore, in L2(∂Ω) since g

belongs to this space. ut

Mixed Dirichlet–Neumann boundary conditions. Consider a partition
of the boundary in the form ∂Ω = ∂ΩD ∪ ∂ΩN. Impose a Dirichlet con-
dition on ∂ΩD and a Neumann condition on ∂ΩN. If the Dirichlet condi-
tion is non-homogeneous, assume that ∂ΩD is smooth enough so that, for all
g ∈ H 1

2 (∂ΩD), there exists an extension g̃ ∈ H 1
2 (∂Ω) such that g̃|∂ΩD

= g
and ‖g̃‖

H
1
2 (∂Ω)

≤ c ‖g‖
H

1
2 (∂ΩD)

uniformly in g. Then, using the lifting of g̃

in H1(Ω), one can assume that the Dirichlet condition is homogeneous. The
boundary conditions are thus

{
u = 0 on ∂ΩD,

n·σ·∇u = g on ∂ΩN,

with a given function g : ∂ΩN → R.
Proceeding as before, we split the boundary integral in (3.4) into its con-

tributions over ∂ΩD and ∂ΩN. Taking the solution and the test function in
the functional space

H1
∂ΩD

(Ω) = {u ∈ H1(Ω); u = 0 on ∂ΩD},

the surface integral over ∂ΩD vanishes. Furthermore, using the Neumann con-
dition in the surface integral over ∂ΩN yields the weak formulation:

{
Seek u ∈ H1

∂ΩD
(Ω) such that

aσ,β,µ(u, v) =
∫
Ω
fv +

∫
∂ΩN

gv, ∀v ∈ H1
∂ΩD

(Ω).
(3.9)

Proposition 3.6. Let ∂ΩD ⊂ ∂Ω, assume meas(∂ΩD) > 0, and set ∂ΩN =
∂Ω\∂ΩD. Let g ∈ L2(∂ΩN). If u solves (3.9), then Lu = f a.e. in Ω, u = 0
a.e. on ∂ΩD, and (n·σ·∇u) = g a.e. on ∂ΩN.

Proof. Proceed as in the previous proofs. ut

Robin boundary condition. Given two functions g, γ : ∂Ω → R, we want
to enforce γu+n·σ·∇u = g on ∂Ω. Using this condition in the surface integral
in (3.4) yields the weak formulation:

{
Seek u ∈ H1(Ω) such that

aσ,β,µ(u, v) +
∫
∂Ω

γuv =
∫
Ω
fv +

∫
∂Ω

gv, ∀v ∈ H1(Ω).
(3.10)
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Problem V a(u, v) f(v)

Homogeneous Dirichlet H1
0 (Ω) aσ,β,µ(u, v)

∫
Ω
fv

Neumann H1(Ω) aσ,β,µ(u, v)
∫
Ω
fv +

∫
∂Ω

gv

Dirichlet–Neumann H1
∂ΩD

(Ω) aσ,β,µ(u, v)
∫
Ω
fv +

∫
∂ΩN

gv

Robin H1(Ω) aσ,β,µ(u, v) +
∫
∂Ω

γuv
∫
Ω
fv +

∫
∂Ω

gv

Table 3.1. Weak formulation corresponding to the various boundary conditions for
the second-order PDE (3.2). The bilinear form aσ,β,µ(u, v) is defined in (3.6).

Proposition 3.7. Let g ∈ L2(∂Ω) and let γ ∈ L∞(∂Ω). If u solves (3.10),
then Lu = f a.e. in Ω and γu+ n·σ·∇u = g a.e. on ∂Ω.

Proof. Proceed as in the previous proofs. ut
Summary. Except for the non-homogeneous Dirichlet problem, all the prob-
lems considered herein take the generic form:

{
Seek u ∈ V such that

a(u, v) = f(v), ∀v ∈ V, (3.11)

where V is a Hilbert space satisfying

H1
0 (Ω) ⊂ V ⊂ H1(Ω).

Moreover, a is a bilinear form defined on V ×V , and f is a linear form defined
on V ; see Table 3.1. For the non-homogeneous Dirichlet problem, u ∈ H1(Ω),
u = ug + φ where ug is a lifting of the boundary data and φ solves a problem
of the form (3.11).

Essential and natural boundary conditions. It is important to observe
the different treatment between Dirichlet conditions and Neumann or Robin
conditions. The former are imposed explicitly in the functional space where
the solution is sought, and the test functions vanish on the corresponding part
of the boundary. For this reason, Dirichlet conditions are often termed essen-
tial boundary conditions. Neumann and Robin conditions are not imposed by
the functional setting but by the weak formulation itself. The fact that test
functions have degrees of freedom on the corresponding part of the boundary
is sufficient to enforce the boundary conditions in question. For this reason,
these conditions are often termed natural boundary conditions. Note that it is
also possible to treat Dirichlet conditions as natural boundary conditions by
using a penalty method; see §8.4.3.

3.1.2 Coercivity

Theorem 3.8. Let f ∈ L2(Ω), let σ ∈ [L∞(Ω)]d,d be such that (3.3)
holds, let β ∈ [L∞(Ω)]d with ∇·β ∈ L∞(Ω), and let µ ∈ L∞(Ω). Set
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p = inf essx∈Ω
(
µ− 1

2∇·β
)
and let cΩ be the constant in the Poincaré in-

equality (B.23).

(i) Both the homogeneous Dirichlet problem (3.5) and the non-homogeneous
Dirichlet problem (3.7) are well-posed if

σ0 +min
(
0, p

cΩ

)
> 0. (3.12)

(ii) The Neumann problem (3.8) is well-posed if

p > 0 and inf ess
x∈∂Ω

(β·n) ≥ 0. (3.13)

(iii) The mixed Dirichlet–Neumann problem (3.9) is well-posed if (3.12) holds,
meas(∂ΩD) > 0, and ∂Ω− = {x ∈ ∂Ω; (β·n)(x) < 0} ⊂ ∂ΩD.

(iv) Set q = inf essx∈∂Ω(γ +
1
2β·n). The Robin problem (3.10) is well-posed if

p ≥ 0, q ≥ 0, and pq 6= 0. (3.14)

Proof. We prove (i) and (iv) only, leaving the remaining items as an exercise.
(1) Proof of (i). Using the ellipticity of L and the identity

∫

Ω

u(β·∇u) = − 1
2

∫

Ω

(∇·β)u2 + 1
2

∫

∂Ω

(β·n)u2,

which is a direct consequence of the divergence formula (B.19), yields

∀u ∈ H1
0 (Ω), aσ,β,µ(u, u) ≥ σ0|u|21,Ω + p‖u‖20,Ω .

Setting δ = min(0, p
cΩ

) and using the Poincaré inequality (B.23) yields

∀u ∈ H1
0 (Ω), aσ,β,µ(u, u) ≥

(
σ0 +

δ

cΩ

)
|u|21,Ω ≥ α‖u‖21,Ω ,

with α = cΩ(cΩσ0+δ)
1+c2

Ω

, showing that the bilinear form aσ,β,µ is coercive on

H1
0 (Ω). The well-posedness of the homogeneous Dirichlet problem then results

from the Lax–Milgram Lemma, while that of the non-homogeneous Dirichlet
problem results from Proposition 2.10.
(2) Proof of (iv). Let a(u, v) = aσ,β,µ(u, v) +

∫
∂Ω

γuv. A straightforward cal-
culation shows that

∀u ∈ H1(Ω), a(u, u) ≥ σ0|u|21,Ω + p‖u‖20,Ω + q‖u‖20,∂Ω .

If p > 0 and q ≥ 0, the bilinear form a is clearly coercive on H1(Ω) with
constant α = min(σ0, p). If p ≥ 0 and q > 0, the coercivity of a is readily
deduced from Lemma B.63. In both cases, well-posedness then results from
the Lax–Milgram Lemma. ut
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Remark 3.9.
(i) For the homogeneous and the non-homogeneous Dirichlet problem, f

can be taken in H−1(Ω) = (H1
0 (Ω))′. In this case, the right-hand side in

(3.11) becomes f(v) = 〈f, v〉H−1,H1
0
, and the problem is still well-posed. The

stability estimate takes the form ‖u‖1,Ω ≤ c ‖f‖−1,Ω .
(ii) Consider the Laplacian with homogeneous Dirichlet boundary con-

ditions, i.e., given f ∈ H−1(Ω), solve −∆u = f in Ω with the boundary
condition u|∂Ω = 0. Then, the weak formulation of this problem amounts to
seeking u ∈ H1

0 (Ω) such that
∫
Ω
∇u·∇v = 〈f, v〉H−1,H1

0
for all v ∈ H1

0 (Ω).
Owing to Theorem 3.8(i) with β = 0, σ = I, and µ = 0, this problem is
well-posed. This means that the operator (−∆)−1 : H−1(Ω) → H1

0 (Ω) is an
isomorphism.

(iii) Uniqueness is not a trivial property in spaces larger than H1(Ω). For
instance, one can construct domains in which this property does not hold in
L2 for the Dirichlet problem; see Exercise 3.4.

(iv) Consider problem (3.11). If the advection field β vanishes and if the
diffusion matrix σ is symmetric a.e. in Ω, the bilinear form a is symmetric and
positive. Therefore, owing to Proposition 2.4, (3.11) can be reformulated into
a variational form. For the homogeneous Dirichlet problem, the variational
form in question is

min
v∈H1

0 (Ω)

(
1
2

∫

Ω

∇v·σ·∇v + 1
2

∫

Ω

µv2 −
∫

Ω

fv

)
.

The case of other boundary conditions is left as an exercise.
(v) When µ and β vanish, the solution to the Neumann problem (3.8) is

defined up to an additive constant. Therefore, we decide to seek a solution
with zero-mean over Ω. Accordingly, we introduce the space

H1∫
=0(Ω) =

{
v ∈ H1(Ω);

∫

Ω

v = 0

}
.

To ensure the existence of a solution, the data f and g must satisfy a compati-
bility relation. Owing to the fact that

∫
Ω
f = −

∫
Ω
∇·(σ·∇u) = −

∫
∂Ω

n·σ·∇u =
−
∫
∂Ω

g, the compatibility condition is

∫

Ω

f +

∫

∂Ω

g = 0. (3.15)

Thus, the weak formulation of the purely diffusive Neumann problem is:

{
Seek u ∈ H1∫

=0(Ω) such that∫
Ω
∇v·σ·∇u =

∫
Ω
fv +

∫
∂Ω

gv, ∀v ∈ H1∫
=0(Ω).

(3.16)

Test functions have also been restricted to the functional space H1∫
=0(Ω). In-

deed, owing to (3.15), a constant test function leads to the trivial equation
“0 = 0.” Moreover, under the conditions (3.3) and (3.15), assuming that the
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data satisfy f ∈ L2(Ω) and g ∈ L2(∂Ω), and using Lemma B.66, one readily
verifies that problem (3.16) is well-posed with a stability estimate of the form
∀f ∈ L2(Ω), ∀g ∈ L2(∂Ω), ‖u‖1,Ω ≤ c (‖f‖0,Ω + ‖g‖0,∂Ω). ut

3.1.3 Smoothing properties

We have seen that the natural functional space V in which to seek the solu-
tion to (3.11) is such that H1

0 (Ω) ⊂ V ⊂ H1(Ω). For sufficiently smooth data,
stronger regularity results can be derived. The interest of these results stems
from the fact that in the framework of finite element methods, the regularity
of the exact solution directly controls the convergence rate of the approximate
solution; see §3.2.5 for numerical illustrations. In this section, it is implicitly
assumed that the hypotheses of Theorem 3.8 hold so that the problems con-
sidered henceforth are well-posed. This section is set at an introductory level;
see, e.g., [Gri85, Gri92, CoD02] for further insight.

Theorem 3.10 (Domain with smooth boundary). Let m ≥ 0, let Ω be
a domain of class Cm+2, and let f ∈ Hm(Ω). Assume that the coefficients σij
are in Cm+1(Ω) and that the coefficients βi and µ are in Cm(Ω). Then:

(i) The solution to the homogeneous Dirichlet problem (3.5) is in Hm+2(Ω).

(ii) Assuming g ∈ Hm+ 3
2 (∂Ω), the solution to the non-homogeneous Dirich-

let problem (3.7) is in Hm+2(Ω).

(iii) Assuming g ∈ Hm+ 1
2 (∂Ω), the solution to the Neumann problem (3.8) is

in Hm+2(Ω).

(iv) Assuming g ∈ Hm+ 1
2 (∂Ω) and γ ∈ Cm+1(∂Ω), the solution to the Robin

problem (3.10) is in Hm+2(Ω).

Remark 3.11.
(i) The reader who is not familiar with Sobolev spaces involving frac-

tional exponents may replace an assumption such as g ∈ Hm+ 3
2 (∂Ω) by

g ∈ Cm+1(∂Ω) and g(m+1) ∈ C0,1(∂Ω); see Example B.32(ii).
(ii) There is no regularity result for the mixed Dirichlet–Neumann problem.

Indeed, even if f , g, and the domain Ω are smooth, the solution u may not
necessarily belong to H2(Ω). For instance, in two dimensions, the solution
to −∆u = 0 on the upper half-plane {x2 > 0} with the mixed Dirichlet–
Neumann conditions

∂2u = 0, for x1 ≤ 0 and x2 = 0,

u = r
1
2 sin( 1

2θ), otherwise,

is u(x1, x2) = r
1
2 sin( 1

2θ). Clearly, u 6∈ H2 owing to the singularity at the
origin.

(iii) Theorem 3.10 can be extended to more general Sobolev spaces; see,
e.g., [GiR86, pp. 12–15]. For instance, let p be a real satisfying 1 < p <∞ and

let m ≥ 0. Let f ∈ Wm,p(Ω) and g ∈ Wm+2− 1
p
,p(∂Ω). Then, the solution to

the non-homogeneous Dirichlet problem (3.7) is in Wm+2,p(Ω). ut
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Theorem 3.12 (Convex polyhedron). Let Ω be a convex polyhedron and

denote by
⋃J
j=1 ∂Ωj the set of boundary faces (edges in two dimensions).

Assume that the coefficients σij are in C1(Ω) and that the coefficients βi and
µ are in C0(Ω). Then:

(i) The solution to the homogeneous Dirichlet problem (3.5) is in H2(Ω).

(ii) In dimension 2, if g ∈ H
3
2 (∂Ω), the solution to the non-homogeneous

Dirichlet problem (3.7) is in H2(Ω).

(iii) In dimension 2, if g|∂Ωj
∈ H 1

2 (∂Ωj) for 1 ≤ j ≤ J , the solution to the
Neumann problem (3.8) is in H2(Ω). In dimension 3, the conclusion still
holds if g = 0.

Remark 3.13.
(i) When the polyhedron Ω is not convex, the best regularity result is

u ∈ H
3
2 (Ω). In particular, it can be shown (see [Gri85, Gri92]) that in the

neighborhood of a vertex S with an interior angle ω > π, the solution u to
the homogeneous Dirichlet problem can be decomposed into the form

u = Υ + ũ,

where ũ ∈ H2(Ω) and Υ is a singular function behaving like r
π
ω in the neigh-

borhood of S, r being the distance to S.
(ii) Theorem 3.12 can be extended to more general Sobolev spaces. For

instance, let p be a real satisfying 1 < p < ∞, and let f ∈ Lp(Ω). Then,
the solution to the homogeneous Dirichlet problem (3.5) posed on a convex
polyhedron is in W 2,p(Ω).

(iii) The assumption on g in Theorem 3.12(ii) can be weakened as fol-
lows: Denote by {Sj}1≤j≤J the vertices of ∂Ω so that ∂Ωj is the segment
SjSj+1, and conventionally set SJ+1 = S1 and ∂ΩJ+1 = ∂Ω1. Then, if

g|∂Ωj
∈ H

3
2 (∂Ωj) and g|∂Ωj

(Sj) = g|∂Ωj+1
(Sj+1) for all 1 ≤ j ≤ J , the

solution to the non-homogeneous Dirichlet problem (3.7) is in H2(Ω).
(iv) A regularity result analogous to Theorem 3.12(iii) is valid for the

purely diffusive Neumann problem (3.16). ut
Definition 3.14 (Smoothing property). Problem (3.11) is said to have
smoothing properties in Ω if assumption (an1) in §2.3.4 is satisfied with Z =
H2(Ω)∩H1

0 (Ω), L = L2(Ω), and l(·, ·) = (·, ·)0,Ω, i.e., if there exists cS such
that, for all ϕ ∈ L2(Ω), the solution w to the adjoint problem:

{
Seek w ∈ V such that

a(v, w) =
∫
Ω
ϕv, ∀v ∈ V, (3.17)

satisfies ‖w‖2,Ω ≤ cS‖ϕ‖0,Ω.
Remark 3.15. Because the Laplace operator is self-adjoint, the Laplacian
has smoothing properties in Ω if the unique solution to the homogeneous
Dirichlet problem with f ∈ L2(Ω) is in H2(Ω) ∩H1

0 (Ω), i.e., if the operator
(−∆)−1 : L2(Ω)→ H2(Ω) ∩H1

0 (Ω) is an isomorphism. ut
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3.2 Scalar Elliptic PDEs: Approximation

This section reviews various finite element methods to approximate second-
order, scalar, elliptic PDEs. Assume that the well-posedness conditions stated
in Theorem 3.8 hold and denote by u ∈ V the unique solution to (3.11).

3.2.1 H1-conforming approximation

Let Ω be a polyhedron in Rd, let {Th}h>0 be a family of meshes of Ω, and let

{K̂, P̂ , Σ̂} be a reference Lagrange finite element of degree k ≥ 1. Let Lkc,h be

the H1-conforming approximation space defined by

Lkc,h = {vh ∈ C0(Ω); ∀K ∈ Th, vh ◦ TK ∈ P̂}. (3.18)

For instance, Lkc,h = P k
c,h or Qk

c,h defined in (1.76) and (1.77), respectively,
if a Pk or Qk Lagrange finite element is used. To obtain a V -conforming
approximation space, we must account for the boundary conditions, i.e., we
set

Vh = Lkc,h ∩ V. (3.19)

This yields Vh = {vh ∈ Lkc,h; vh = 0 on ∂Ω} for the homogeneous Dirichlet

problem and Vh = Lkc,h for the Neumann and the Robin problems. For the
mixed Dirichlet–Neumann problem, we assume, for the sake of simplicity, that
∂ΩD is a union of mesh faces; in this case, a suitable approximation space is
Vh = {vh ∈ Lkc,h; vh = 0 on ∂ΩD}.

Consider the approximate problem:

{
Seek uh ∈ Vh such that

a(uh, vh) = f(vh), ∀vh ∈ Vh.
(3.20)

Our goal is to estimate the error u − uh, first in the H1-norm, then in the
L2-norm, and finally in more general norms.

Theorem 3.16 (H1-estimate). Let Ω be a polyhedron in Rd and let {Th}h>0

be a shape-regular family of geometrically conforming meshes of Ω. Let Vh be
defined in (3.19). Then, limh→0 ‖u− uh‖1,Ω = 0. Furthermore, if u ∈ Hs(Ω)
with d

2 < s ≤ k + 1, there exists c such that

∀h, ‖u− uh‖1,Ω ≤ c hs−1|u|s,Ω . (3.21)

Proof. Since s > d
2 , Corollary B.43 implies that u is in the domain of the

Lagrange interpolation operator Ikh associated with Lkc,h. Moreover, Ikhu ∈ Vh
since the Lagrange interpolant preserves Dirichlet boundary conditions. As a
result, Céa’s Lemma yields

‖u− uh‖1,Ω ≤ c
(

inf
vh∈Vh

‖u− vh‖1,Ω
)
≤ c ‖u− Ikhu‖1,Ω .
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Owing to Corollary 1.110 (with p = 2) and since s ≤ k + 1,

‖u− Ikhu‖1,Ω ≤ c hs−1|u|s,Ω .

Combining the above inequalities yields (3.21). If u ∈ H1(Ω) only, the con-
vergence of uh results from the density of Hs(Ω) ∩ V in V . ut

Remark 3.17. The assumption s > d
2 in Theorem 3.16 can be lifted on sim-

plicial meshes by considering the Clément or the Scott–Zhang interpolation
operator instead of the Lagrange interpolation operator; details are left as an
exercise. ut

For the sake of simplicity, we shall henceforth restrict ourselves to homo-
geneous Dirichlet conditions.

Theorem 3.18 (L2-estimate). Along with the hypotheses of Theorem 3.16,
assume V = H1

0 (Ω), Vh = Lkc,h∩H1
0 (Ω), and that problem (3.11) has smooth-

ing properties. Then, there exists c such that

∀h, ‖u− uh‖0,Ω ≤ c h|u− uh|1,Ω . (3.22)

Proof. Apply the Aubin–Nitsche Lemma. ut

Example 3.19. Consider the homogeneous Dirichlet problem posed on a con-
vex polyhedron, say Ω. Owing to Theorem 3.12, the Laplacian has smoothing
properties in Ω. Therefore, using P1 finite elements yields the estimates

∀h, ‖u− uh‖0,Ω + h‖u− uh‖1,Ω ≤ c h2‖f‖0,Ω . ut

Using again duality techniques, it is possible to derive negative-norm esti-
mates for the error, provided Lagrange finite elements of degree 2 at least are
employed. For s ≥ 1, we define the norm

‖v‖−s,Ω = sup
z∈Hs(Ω)∩H1

0 (Ω)

(v, z)0,Ω
‖z‖s,Ω

.

Recall that this is not the norm considered to define the dual space H−s(Ω),
except in the particular case s = 1. Here, the norm ‖ · ‖−s,Ω is simply used as
a quantitative measure for functions in L2(Ω).

Theorem 3.20 (Negative-norm estimates). Along with the hypotheses of
Theorem 3.16, assume Vh ⊂ H1

0 (Ω). Assume k ≥ 2 and let 1 ≤ s ≤ k − 1.
Assume that there exists a stability constant cS > 0 such that, for all ϕ ∈
Hs(Ω), the solution w to the adjoint problem (3.17) satisfies ‖w‖s+2,Ω ≤
cS‖ϕ‖s,Ω. Then, there exists c such that

∀h, ‖u− uh‖−s,Ω ≤ c hs+1‖u− uh‖1,Ω . (3.23)



122 Chapter 3. Coercive Problems

Proof. Let 1 ≤ s ≤ k − 1, let z ∈ Hs(Ω) ∩H1
0 (Ω), and let w ∈ Hs+2 be the

solution to the adjoint problem (3.17) with data z. Then, for any wh ∈ Vh,
Galerkin orthogonality implies

(u− uh, z)0,Ω = a(u− uh, w)
= a(u− uh, w − wh)
≤ ‖a‖ ‖u− uh‖1,Ω‖w − wh‖1,Ω .

Since w ∈ Hs+2 ∩H1
0 (Ω), it is legitimate to take for wh the Lagrange inter-

polant of w in Vh (if s+2 ≤ d
2 , the Clément or the Scott–Zhang interpolation

operator must be considered). Corollary 1.109 implies

‖w − wh‖1,Ω ≤ c hs+1|w|s+2,Ω ,

and, therefore, ‖w − wh‖1,Ω ≤ c hs+1‖z‖s,Ω . Hence,

(u− uh, z)0,Ω ≤ c hs+1‖u− uh‖1,Ω‖z‖s,Ω ,

and taking the supremum over z yields the desired estimate. ut

Error estimates in the Sobolev norms ‖ · ‖1,p,Ω are useful in the context
of nonlinear problems; see [BrS94, p. 188] for an example. For second-order,
elliptic PDEs, the main result is a stability property for the discrete prob-
lem (3.20) in the W 1,p-norm. The result requires some technical assumptions
on the discretization and some regularity properties for the exact problem.
For the sake of brevity, the former are not restated here. These assumptions
hold for the Lagrange finite elements introduced in §1.2.3–§1.2.5 and for quasi-
uniform families of geometrically conforming meshes.

Theorem 3.21 (W 1,p-stability). Let Ω be a polyhedron in Rd with d ≤ 3.
Assume that:

(i) The bilinear form a is elliptic and coercive on H1
0 (Ω).

(ii) The assumptions of [BrS94, p. 170] on the finite element space Vh hold.
(iii) The diffusion coefficients are such that σ ∈ [W 1,p(Ω)]d,d for p > 2 if

d = 2 and for p ≥ 12
5 if d = 3.

(iv) There exists δ > d such that for all q ∈ ]1, δ[ and for all f ∈ Lq(Ω),
the unique solution to the exact problem (3.11) posed on H1

0 (Ω) is in
W 2,q(Ω). Assume also that the adjoint problem (3.17) satisfies the same
regularity property.

Then, there exist c and h0 > 0 such that

∀h ≤ h0, ∀1 < p ≤ ∞, ‖uh‖1,p,Ω ≤ c ‖u‖1,p,Ω . (3.24)

Proof. See [RaS82] and [BrS94, p. 169]. ut

Remark 3.22. Owing to assumption (iv) and Corollary B.43, the solution to
(3.11) is in W 1,∞(Ω) whenever f ∈ Lq(Ω) with q > d. ut
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Corollary 3.23 (W 1,p-estimate). Under the assumptions of Theorem 3.21,

lim
h→0
‖u− uh‖1,p,Ω = 0. (3.25)

Furthermore, if u ∈W s,p(Ω) for some s ≥ 2,

∀h, ‖u− uh‖1,p,Ω ≤ c hl|u|l+1,p,Ω , (3.26)

with l = min(k, s− 1) and k is the degree of the finite element.

Proof. Let vh ∈ Vh and 1 < p ≤ ∞. Since a(uh − vh, wh) = a(u− vh, wh) for
all wh ∈ Vh, Theorem 3.21 implies ‖uh− vh‖1,p,Ω ≤ c ‖u− vh‖1,p,Ω . Using the
triangle inequality readily yields the estimate

‖u− uh‖1,p,Ω ≤ c inf
vh∈Vh

‖u− vh‖1,p,Ω .

Equations (3.25) and (3.26) then result from (1.100) and (1.101). ut

Using duality techniques, one can obtain an Lp-norm estimate.

Proposition 3.24 (Lp-estimate). Under the assumptions of Theorem 3.21,
there exist c and h0 > 0 such that

∀h ≤ h0, ∀δ′ < p <∞, ‖u− uh‖Lp(Ω) ≤ c h‖u− uh‖1,p,Ω , (3.27)

where 1
δ
+ 1

δ′
= 1 and δ is defined in assumption (iv) of Theorem 3.21.

Proof. The proof uses duality techniques; see Exercise 3.8. ut

The derivation of L∞-norm estimates is more technical; see [Nit76, Sco76].
In the framework of the above assumptions, one can show that for finite
elements of degree 2 at least,

∀h ≤ h0, ‖u− uh‖L∞(Ω) ≤ c h‖u− uh‖1,∞,Ω .

However, for piecewise linear approximations in two dimensions, the best error
estimate in the L∞-norm is

∀h ≤ h0, ‖u− uh‖L∞(Ω) ≤ c h|lnh| ‖u− uh‖1,∞,Ω .

Remark 3.25.
(i) Let xi be a mesh node, let δx=xi be the Dirac mass at xi, and assume

that the following problem:

{
Seek Gi ∈ V such that

a(v,Gi) = 〈δx=xi , v〉D′,D, ∀v ∈ V,

is well-posed. Its solution Gi is said to be the Green function at point xi. If
it happens that Gi ∈ Vh, Galerkin orthogonality implies
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0 = a(u− uh, Gi) = 〈δx=xi , u− uh〉D′,D = u(xi)− uh(xi),

showing that the error vanishes identically at the mesh nodes. This situation
occurs when approximating the Laplacian in one dimension with Lagrange
finite elements since, in this case, the Green function is continuous and piece-
wise linear; see also Example 3.90 for the Green function associated with a
beam flexion problem.

(ii) When the solution u is not smooth enough, error estimates in weaker
norms can be derived. For instance, under the assumptions of Theorem 3.18
and assuming that the family of meshes {Th}h>0 is quasi-uniform, one can
show (see, e.g., [QuV97, p. 174]) that there exists c such that

∀h, ‖u− uh‖L∞(Ω) ≤ c hl+1− d
2 |u|l+1,Ω ,

with l ≤ k. For instance, if the solution u is in H2(Ω), the convergence in the
L∞-norm is first-order in dimension 2, and of order 1

2 in dimension 3. It would
scale like h2|lnh| provided u ∈W 2,∞(Ω) and P1 finite elements are used.

(iii) Consider the purely diffusive version of problem (3.11). When the
diffusion coefficients do not satisfy assumption (iii) of Theorem 3.21, but are
only measurable and bounded, it is still possible to prove a stability result in
W 1,p(Ω) if |p − 2| is small enough. The proof uses the inf-sup condition to
express the stability of the exact problem; see [BrS94, p. 184]. ut

3.2.2 Non-homogeneous Dirichlet boundary conditions

Given f ∈ L2(Ω) and g ∈ H 1
2 (∂Ω), the non-homogeneous version of problem

(3.11) is: 



Seek u ∈ H1(Ω) such that

a(u, v) =
∫
Ω
fv, ∀v ∈ H1

0 (Ω),

γ0(u) = g, in H
1
2 (∂Ω),

(3.28)

where γ0 is the trace operator defined in §B.3.5. We assume that problem
(3.28) is well-posed, namely that the bilinear form a satisfies the assump-
tions of the BNB Theorem on H1

0 (Ω) × H1
0 (Ω); see §2.1.4 for the theoreti-

cal background. For instance, a may be coercive on H1
0 (Ω). Henceforth, the

reader unfamiliar with fractional Sobolev spaces may replace the assumption
g ∈ H

1
2 (∂Ω) by g ∈ C0,1(∂Ω) (since C0,1(∂Ω) ⊂ H

1
2 (∂Ω) with continuous

embedding; see Example B.32(ii)).
We seek an approximate solution to (3.28) in the discrete space Vh = Lkc,h

defined in (3.18). Let N be the dimension of Vh. Denote by {ϕ1, . . . , ϕN} the
nodal basis of Vh and by {a1, . . . , aN} the associated nodes. Recall that the
Lagrange interpolant of a continuous function u on Ω is defined as

Ihu =
N∑

i=1

u(ai)ϕi.
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Assuming that g is continuous on ∂Ω, we introduce its Lagrange interpolant

I∂hg =
∑

ai∈∂Ω
g(ai)γ0(ϕi).

Since {ϕ1, . . . , ϕN} is a nodal basis,

(ai 6∈ ∂Ω) =⇒ (γ0(ϕi) = 0). (3.29)

As a result, for u ∈ C0(Ω) ∩H1(Ω),

γ0(Ihu) = γ0

(
N∑

i=1

u(ai)ϕi

)
=

N∑

i=1

u(ai)γ0(ϕi)

=
∑

ai∈∂Ω
u(ai)γ0(ϕi) = I∂h

(
γ0(u)

)
,

so that γ0 ◦ Ih = I∂h ◦ γ0, i.e., the trace of the interpolant of a sufficiently
smooth function coincides with the interpolant of its trace.

Consider the approximate problem :




Seek uh ∈ Vh such that

a(uh, vh) =
∫
Ω
fvh, ∀vh ∈ Vh0,

γ0(uh) = I∂hg, on ∂Ω,

(3.30)

where Vh0 = {vh ∈ Vh; γ0(vh) = 0} ⊂ H1
0 (Ω). Assume that the bilinear form

a satisfies the condition (bnb1h) on Vh0 × Vh0.

Proposition 3.26. If g is smooth enough to have a lifting in C0(Ω)∩H1(Ω),
problem (3.30) is well-posed.

Proof. Let ug be a lifting of g in C0(Ω) ∩H1(Ω). Clearly,

γ0(Ihug) = I∂h
(
γ0(ug)

)
= I∂h (g) = γ0(uh).

Therefore, setting φh = uh − Ihug yields φh ∈ Vh0 and a(φh, vh) =
∫
Ω
fvh −

a(Ihug, vh) for all vh ∈ Vh0. Since the bilinear form a satisfies the condition
(bnb1h) on Vh0 × Vh0, problem (3.30) is well-posed. ut

The approximate problem (3.30) being well-posed, our goal is now to esti-
mate the approximation error u− uh in the H1- and L2-norms, where u and
uh solve (3.28) and (3.30), respectively. The results below generalize Céa’s
and Aubin–Nitsche Lemmas; see Exercises 3.9 and 3.10 for proofs.

Lemma 3.27. Along with the hypotheses of Proposition 3.26, assume that the
exact solution u is sufficiently smooth for its Lagrange interpolant Ihu to be
well-defined. Set ‖a‖ := ‖a‖H1(Ω),H1(Ω). Then,

‖u− uh‖1,Ω ≤
(
1 + ‖a‖

αh

)
‖u− Ihu‖1,Ω .
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Lemma 3.28. Along with the hypotheses of Lemma 3.27, assume that:

(i) Problem (3.11) has smoothing properties.
(ii) The bilinear form a satisfies the following continuity property: there exists

c such that, for all v ∈ H1(Ω) and w ∈ H2(Ω),

|a(v, w)| ≤ c (‖v‖0,Ω + ‖γ0(v)‖0,∂Ω)‖w‖2,Ω .

(iii) There exists an interpolation constant c > 0 such that

∀h, ∀θ ∈ H2(Ω), ‖θ − Ihθ‖1,Ω ≤ c h‖θ‖2,Ω .

Then, there exists c such that

∀h, ‖u− uh‖0,Ω ≤ c (h‖Ihu− u‖1,Ω + ‖Ihu− u‖0,Ω + ‖Ihg − g‖0,∂Ω).

Corollary 3.29. Let Ω be a polyhedron, let {Th}h>0 be a shape-regular family
of geometrically conforming meshes of Ω, and let Vh be a H1-conforming
approximation space based on Th and a Lagrange finite element of degree k ≥
1. Along with the hypotheses of Lemma 3.28, assume that the exact solution
u is in Hk+1(Ω). Then, there is c such that

∀h, ‖u− uh‖0,Ω + h‖u− uh‖1,Ω ≤ c hk+1‖u‖k+1,Ω . (3.31)

Proof. Direct consequence of Lemmas 3.27 and 3.28. ut

Example 3.30. Assumptions (i)–(iii) of Lemma 3.28 are satisfied for the Pois-
son problem posed in dimension 2 or 3 on either a convex polyhedron or a
domain of class C2 and for a Lagrange finite element of degree k ≥ 1 using
a shape-regular family of meshes. More precisely, assumption (i) is stated in
§3.1.3. Assumption (ii) results from the identity

∀v ∈ H1(Ω), ∀w ∈ H2(Ω), a(v, w) =

∫

Ω

∇v·∇w = −
∫

Ω

v∆w +

∫

∂Ω

v ∂nw,

together with the continuity of the normal derivative operator γ1 : H2(Ω)→
L2(∂Ω); see Theorem B.54. Assumption (iii) is a direct consequence of Corol-
lary 1.109. ut

3.2.3 Crouzeix–Raviart non-conforming approximation

In this section, we present an example of non-conforming approximation for
the Laplacian based on the Crouzeix–Raviart finite element. Let Ω be a poly-
hedron in Rd and let u be the solution to the homogeneous Dirichlet problem
with data f ∈ L2(Ω). Assume that u ∈ H2(Ω). This property holds, for
instance, if Ω is convex; see Theorem 3.12.

Let {Th}h>0 be a shape-regular family of geometrically conforming, affine
meshes of Ω. Let P 1

pt,h be the Crouzeix–Raviart finite element space defined
in (1.69). Let
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P 1
pt,h,0 =

{
vh ∈ P 1

pt,h; ∀F ∈ F∂h ,
∫

F

vh = 0

}
, (3.32)

where F∂h denotes the set of faces of the mesh located at the boundary. Recall
that dimP 1

pt,h,0 = N i
f , the number of internal faces (edges in two dimensions)

in the mesh. Since functions in P 1
pt,h,0 can be discontinuous, the bilinear form∫

Ω
∇u·∇v must be broken over the elements, yielding:

{
Seek uh ∈ P 1

pt,h,0 such that

ah(uh, vh) = f(vh), ∀vh ∈ P 1
pt,h,0,

(3.33)

with

ah(uh, vh) =
∑

K∈Th

∫

K

∇uh·∇vh and f(vh) =

∫

Ω

fvh. (3.34)

Set V (h) = P 1
pt,h,0+H

1
0 (Ω) and for vh ∈ V (h) define the broken H1-seminorm

|vh|h,1,Ω =

(
∑

K∈Th
‖∇vh‖20,K

) 1
2

.

Equip the space V (h) with the norm ‖ · ‖V (h) = ‖ · ‖0,Ω + | · |h,1,Ω .
Our goal is to investigate the convergence of the solution to the approx-

imate problem (3.33) in the norm ‖ · ‖V (h). To this end, we must exhibit
stability, continuity, consistency, and approximability properties; see §2.3.1.
To obtain a stability property for problem (3.33), we would like to establish
the coercivity of ah on P 1

pt,h,0. Since P
1
pt,h,0 6⊂ H1

0 (Ω), this is a non-trivial
result.

Lemma 3.31 (Extended Poincaré inequality). There exists c depending
only on Ω such that, for all h ≤ 1,

∀u ∈ V (h), c ‖u‖0,Ω ≤ |u|h,1,Ω . (3.35)

Proof. We restate the proof given in [Tem77, Prop. 4.13]; see also [CrG02].
Let u ∈ V (h); then

‖u‖0,Ω ≤ sup
v∈L2(Ω)

(u, v)0,Ω
‖v‖0,Ω

.

For v ∈ L2(Ω), there exists p ∈ [H1(Ω)]d such that ∇·p = v and ‖p‖1,Ω ≤
c ‖v‖0,Ω , where c depends only on Ω. Integration by parts yields

(u, v)0,Ω = (u,∇·p)0,Ω = −
∑

K∈Th
(∇u, p)0,K +

∑

K∈Th

∑

F∈∂K

∫

F

(p·nK)u,

where F is a face of K and nK is the outward normal to K. Consider the
second term in the right-hand side of the above equality. If F is an interface,



128 Chapter 3. Coercive Problems

F = Km ∩Kn, it appears twice in the sum, and since
∫
F
u|Km

=
∫
F
u|Kn

for
u ∈ V (h), we can subtract from p·nK a constant function on F that we take
equal to p·nK with p = 1

meas(F )

∫
F
p. The same conclusion is valid for faces

located at the boundary since
∫
F
u = 0 on such faces. Therefore,

∑

K∈Th

∑

F∈∂K

∫

F

(p·nK)u =
∑

K∈Th

∑

F∈∂K

∫

F

(p− p)·nKu

=
∑

K∈Th

∑

F∈∂K

∫

F

(p− p)·nK(u− u),

and using Lemma 3.32 below, this yields

(u, v)0,Ω ≤ ‖p‖0,Ω |u|h,1,Ω +
∑

K∈Th
c h

1
2

K |p|1,Kh
1
2

K |u|1,K

≤ ‖p‖0,Ω |u|h,1,Ω + c h|p|1,Ω |u|h,1,Ω .

Since h ≤ 1, (u, v)0,Ω ≤ c ‖v‖0,Ω |u|h,1,Ω and, hence, (3.35) holds. ut

Lemma 3.32. Let {Th}h>0 be a shape-regular family of geometrically con-
forming affine meshes. Let m ≥ 1 be a fixed integer. For K ∈ Th, ψ ∈
[H1(K)]m, and a face F ∈ ∂K, set ψ = 1

meas(F )

∫
F
ψ. Then, there exists c

such that

∀h, ∀K ∈ Th, ∀F ∈ ∂K, ∀ψ ∈ [H1(K)]m, ‖ψ−ψ‖0,F ≤ c h
1
2

K |ψ|1,K . (3.36)

Proof. Let K ∈ Th, let ψ ∈ [H1(K)]m, and consider a face F ∈ ∂K. Let K̂

be the reference simplex and let TK : K̂ → K be the corresponding affine
transformation with Jacobian JK . Letting F̂ = T−1

K (F ), it is clear that

‖ψ − ψ‖0,F ≤
(

measF

meas F̂

) 1
2 ‖ψ̂ − ψ̂‖0,F̂ ≤ c

(
measF

meas F̂

) 1
2 ‖ψ̂ − ψ̂‖1,K̂ ,

owing to the Trace Theorem B.52. The Deny–Lions Lemma implies

‖ψ̂ − ψ̂‖1,K̂ ≤ c |ψ̂|1,K̂ .

Returning to element K and using the shape-regularity of the mesh yields

‖ψ − ψ‖0,F ≤ c
(

measF

meas F̂

) 1
2 ‖J−1

K ‖d
(

meas K̂
measK

) 1
2 |ψ|1,K

≤ c h
d−1
2

K hKh
− d

2

K |ψ|1,K ≤ c h
1
2

K |ψ|1,K ,

thereby completing the proof. ut

Corollary 3.33 (Stability). The bilinear form ah defined in (3.34) is coer-
cive on P 1

pt,h,0.
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Proof. Direct consequence of the extended Poincaré inequality (3.35). ut

Lemma 3.34 (Continuity). The bilinear form ah defined in (3.34) is uni-
formly bounded on V (h)× V (h).

Proof. Use the fact that, for all uh ∈ V (h), |uh|h,1,Ω ≤ ‖uh‖V (h). ut

Corollary 3.35 (Well-Posedness). Problem (3.33) is well-posed.

Proof. Direct consequence of the Lax–Milgram Lemma. ut

Lemma 3.36 (Asymptotic consistency). Let u be the solution to the ho-
mogeneous Dirichlet problem with data f ∈ L2(Ω). Assume that u ∈ H2(Ω).
Then, there exists c such that

∀h, ∀wh ∈ P 1
pt,h,0,

|f(wh)− ah(u,wh)|
‖wh‖V (h)

≤ c h|u|2,Ω . (3.37)

Proof. Let wh ∈ P 1
pt,h,0. Since f = −∆u,

ah(u,wh)− f(wh) =
∑

K∈Th

∫

K

(
∇u·∇wh − fwh

)
=
∑

K∈Th

∑

F∈∂K

∫

F

∇u·nK wh.

Since each face F of an element K located inside Ω appears twice in the above
sum, we can subtract from wh its mean-value on the face, wh. If F is on ∂Ω,
it is clear that wh = 0. Therefore,

ah(u,wh)− f(wh) =
∑

K∈Th

∑

F∈∂K

∫

F

∇u·nK(wh − wh).

We can also subtract from ∇u its mean-value on F , ∇u, yielding

ah(u,wh)− f(wh) =
∑

K∈Th

∑

F∈∂K

∫

F

(∇u−∇u)·nK(wh − wh).

The Cauchy–Schwarz inequality implies

|ah(u,wh)− f(wh)| ≤
∑

K∈Th

∑

F∈∂K
‖∇u−∇u‖0,F ‖wh − wh‖0,F .

Lemma 3.32 yields

|ah(u,wh)− f(wh)| ≤
∑

K∈Th
c h

1
2

K |u|2,Kh
1
2

K |wh|1,K

≤ c h
(
∑

K∈Th
|u|22,K

∑

K∈Th
|wh|21,K

) 1
2

≤ c h|u|2,Ω‖wh‖V (h),

leading to (3.37). ut
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Lemma 3.37 (Approximability). There exists c such that

∀h, ∀u ∈ H2(Ω) ∩H1
0 (Ω), inf

vh∈P 1
pt,h,0

‖u− vh‖V (h) ≤ c h|u|2,Ω . (3.38)

Proof. Use P 1
c,h,0 = Pc,h ∩H1

0 (Ω) ⊂ P 1
pt,h,0 and Corollary 1.109. ut

Theorem 3.38 (Convergence). Under the assumptions of Lemma 3.36,
there exists c such that

∀h, ‖u− uh‖V (h) ≤ c h|u|2,Ω . (3.39)

Proof. Direct consequence of Lemma 2.25 and the above results. ut

Finally, an error estimate in the L2-norm can be obtained by generalizing
the Aubin–Nitsche Lemma to non-conforming approximation spaces.

Theorem 3.39 (L2-estimate). Along with the assumptions of Theorem 3.38,
assume that the Laplacian has smoothing properties in Ω. Then, there exists
c such that

∀h, ‖u− uh‖0,Ω ≤ c h|u− uh|h,1,Ω . (3.40)

Proof. See [Bra97, p. 108]. ut

3.2.4 Discontinuous Galerkin (DG) Approximation

In the previous section, we have investigated a first example of non-conforming
method to approximate second-order elliptic PDEs. Because the degrees of
freedom in the finite element space were located at the faces of the mesh, the
method can be viewed as a face-centered approximation. In this section, we
continue the investigation of non-conforming methods for elliptic problems by
analyzing cell-centered approximations in which the degrees of freedom in the
finite element space are defined independently on each cell. In the literature,
such methods are often termed Discontinuous Galerkin (DG) methods, and
this terminology will be employed henceforth.

For the sake of simplicity, we restrict ourselves to the approximation of the
Laplacian with homogeneous Dirichlet conditions and data f ∈ L2(Ω). As in
the previous section, we assume that the domain Ω is a polyhedron in Rd in
which the Laplacian has smoothing properties; hence, the exact solution u is
in H2(Ω). The material presented below is adapted from [ArB01].

Mixed formulation. We recast the problem in the form of a mixed system
of first-order PDEs

σ = ∇u, −∇·σ = f in Ω, u = 0 on ∂Ω. (3.41)

From a physical viewpoint, the auxiliary unknown σ plays the role of a flux,
and the PDE −∇·σ = f expresses a conservation property. The unknown u is
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called the primal variable. Multiplying the first and second equations in (3.41)
by test functions τ and v, respectively, and integrating formally over a subset
K of Ω yields the weak formulation





∫

K

σ·τ = −
∫

K

u∇·τ +
∫

∂K

u τ ·nK ,
∫

K

σ·∇v =

∫

K

fv +

∫

∂K

v σ·nK ,
(3.42)

where nK is the outward normal to ∂K.
Let {Th}h>0 be a shape-regular family of simplicial meshes of the domain

Ω, and for k ≥ 1, consider the finite element spaces

{
Vh = {v ∈ L1(Ω); ∀K ∈ Th, v|K ∈ Pk},
Σh = {τ ∈ [L1(Ω)]d; ∀K ∈ Th, τ|K ∈ [Pk]d}.

Note that Vh coincides with the space P k
td,h introduced in §1.4.3. For v ∈ Vh

and τ ∈ Σh, let ∇hv and ∇h·τ be the functions whose restriction to each
element K ∈ Th is equal to ∇v and ∇·τ , respectively. Following [CoS98],
a discrete mixed formulation is derived by summing (3.42) over the mesh
elements:





Seek uh ∈ Vh and σh ∈ Σh such that
∫
Ω
σh·τ = −

∫
Ω
uh∇h·τ +

∑
K∈Th

∫
∂K

φu τ ·nK , ∀τ ∈ Σh,∫
Ω
σh·∇hv =

∫
Ω
fv +

∑
K∈Th

∫
∂K

v φσ·nK , ∀v ∈ Vh,
(3.43)

where the numerical fluxes φu and φσ are approximations to the double-valued
traces at the mesh interfaces of uh and σh, respectively. The numerical fluxes
need not be single-valued at the mesh interfaces.

To specify the numerical fluxes, we introduce an appropriate functional
setting. For an integer l ≥ 1, let H l(Th) be the space of functions on Ω whose
restriction to each element K ∈ Th belongs to H l(K). Recall that F i

h denotes
the set of interior faces, F∂h the set of boundary faces, and Fh = F i

h ∪ F∂h .
The traces on element boundaries of functions in H1(Th) belong to a space
denoted by T (Fh). Functions in T (Fh) are double-valued on F i

h and single-
valued on F∂h . Denote by L2(Fh) the space of single-valued functions on Fh
whose restriction to each face F ∈ Fh is in L2(F ).

Using the above notation, the numerical fluxes are chosen to be linear
functions

φu : H1(Th) −→ T (Fh), φσ : H2(Th)× [H1(Th)]d −→ [T (Fh)]d.

In the present setting, φu depends only on uh, while φσ depends on both uh
and σh; other settings can be considered as well.

Two properties of the numerical fluxes are important in the analysis of
DG methods: consistency and conservativity.
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Definition 3.40 (Consistency). The numerical fluxes φu and φσ are said
to be consistent if for any smooth function v ∈ H2(Ω) ∩H1

0 (Ω),

φu(v) = v|Fh and φσ(v,∇v) = ∇v|Fh .

Proposition 3.41. If the numerical fluxes φu and φσ are consistent, the exact
solution u and its gradient ∇u satisfy (3.43).

Proof. Straightforward verification. ut

Definition 3.42 (Conservativity). The numerical fluxes φu and φσ are
said to be conservative if they are single-valued on Fh.

Proposition 3.43. Assume that the numerical fluxes are conservative. Let ω
be the union of any collection of elements. Then, if (uh, σh) solves (3.43),

∫

ω

f +

∫

∂ω

φσ(uh, σh)·nω = 0,

where nω is the outward normal to ∂ω.

Proof. Take v to be the characteristic function of ω. ut

Primal formulation. A primal formulation is a discrete problem in which
uh is the only unknown.

To derive a primal formulation, the discrete unknown σh must be elimi-
nated through a flux reconstruction formula, that is, a formula expressing the
discrete flux σh in terms of the discrete primal variable uh only. It is con-
venient to define averages and jumps across faces. Let F be an interior face
shared by elements K1 and K2, and let n1 and n2 be the normal vectors to F
pointing toward the exterior of K1 and K2, respectively. For v ∈ Vh, setting
vi = v|F∩Ki

, i = 1, 2, define the average {·} and jump [[·]] operators as

{v} = 1
2 (v1 + v2) and [[v]] = v1n1 + v2n2 on each F ∈ F i

h.

Using a similar notation for τ ∈ Σh, set

{τ} = 1
2 (τ1 + τ2) and [[τ ]] = τ1·n1 + τ2·n2 on each F ∈ F i

h.

Note that the jump of a scalar-valued function is vector-valued, and vice versa
(to alleviate the notation, we write [[τ ]] instead of [[τ ·n]]). For F ∈ F∂h , set
[[v]] = vn and {τ} = τ where n is the outward normal. Owing to the identity

∫

Ω

∇h·τ v+
∫

Ω

τ ·∇hv =
∑

K∈Th

∫

∂K

v τ ·nK =

∫

Fh
[[v]]·{τ}+

∫

F i
h

{v}[[τ ]], (3.44)

holding for all v ∈ Vh and τ ∈ Σh, (3.43) is recast into the form
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



∫

Ω

σh·τ = −
∫

Ω

uh∇h·τ +
∫

Fh
[[φu(uh)]]·{τ}+

∫

F i
h

{φu(uh)}[[τ ]],
∫

Ω

σh·∇hv −
∫

Fh
{φσ(uh, σh)}·[[v]]−

∫

F i
h

[[φσ(uh, σh)]]{v} =
∫

Ω

fv,

(3.45)

for all τ ∈ Σh and v ∈ Vh. Using (3.44) to eliminate the term
∫
Ω
uh∇h·τ in

the first equation of (3.45) yields
∫

Ω

σh·τ =

∫

Ω

∇huh·τ+
∫

Fh
[[φu(uh)−uh]]·{τ}+

∫

F i
h

{φu(uh)−uh}[[τ ]]. (3.46)

Introduce the lifting operators l1 : L2(F i
h)→ Σh and l2 : [L2(Fh)]d → Σh

such that, for q ∈ L2(F i
h) and ρ ∈ [L2(Fh)]d,

∀τ ∈ Σh,

∫

Ω

l1(q)·τ = −
∫

F i
h

q[[τ ]],

∫

Ω

l2(ρ)·τ = −
∫

Fh
ρ·{τ}. (3.47)

These lifting operators involve local L2-projections. For instance, for F ∈ Fh,
define the operator lF : [L1(F )]d → Σh such that, for ρ ∈ [L1(F )]d,

∀τ ∈ Σh,

∫

Ω

lF (ρ)·τ = −
∫

F

ρ·{τ}.

Clearly, the support of lF (ρ) consists of the one or two simplices sharing F
as a face. For ρ ∈ [L2(Fh)]d, it is clear that l2(ρ) =

∑
F∈Fh lF (ρ). A similar

construction is possible for the lifting operator l1.
Recalling that∇hVh ⊂ Σh and using the above lifting operators, we deduce

from (3.46) the flux reconstruction formula

σh = ∇huh − l1({φu(uh)− uh})− l2([[φu(uh)− uh]]). (3.48)

Taking now τ = ∇hv in (3.46), the second equation in (3.45) yields ah(uh, v) =∫
Ω
fv, where

ah(uh, v) =

∫

Ω

∇huh·∇hv

+

∫

Fh
[[φu(uh)− uh]]·{∇hv} − {φσ(uh, σh)}·[[v]]

+

∫

F i
h

{φu(uh)− uh}[[∇hv]]− [[φσ(uh, σh)]]{v},

(3.49)

with σh evaluated from (3.48). The bilinear form ah is defined on H2(Th) ×
H2(Th). The primal formulation is thus:

{
Seek uh ∈ Vh such that

ah(uh, v) =
∫
Ω
fv, ∀v ∈ Vh.

(3.50)

Clearly, if (uh, σh) ∈ Vh×Σh solves (3.45), then uh solves (3.50) provided the
flux σh is reconstructed using (3.48).
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Remark 3.44. If the fluxes are conservative, (3.49) simplifies into

ah(uh, v) =

∫

Ω

∇huh·∇hv −
∫

Fh
[[uh]]·{∇hv}+ {φσ(uh, σh)}·[[v]]

+

∫

F i
h

(φu(uh)− {uh})[[∇hv]].
ut

Error analysis. To estimate the error induced by the approximate problem
(3.50), it is convenient to introduce the space V (h) = Vh +H2(Ω) ∩H1

0 (Ω).
For v ∈ V (h), set

|v|2h,1,Ω =
∑

K∈Th
|v|21,K , |v|2j =

∑

F∈Fh
‖lF ([[v]])‖20,Ω ,

and let
‖v‖2V (h) = |v|2h,1,Ω + |v|2j +

∑

K∈Th
h2
K |v|22,K . (3.51)

This choice will appear more clearly in the examples presented below.

Lemma 3.45. If Ω has smoothing properties, there exists c, independent of
h, such that

∀v ∈ V (h), c ‖v‖0,Ω ≤ |v|h,1,Ω + |v|j.

Proof. (1) Using inverse inequalities, one can prove that there exist positive
constants c1 and c2 such that

∀ρ ∈ [Pk(F )]d, c1‖lF (ρ)‖20,Ω ≤ h−1
F ‖ρ‖20,F ≤ c2‖lF (ρ)‖20,Ω .

These inequalities can be applied to ρ = [[v]] for v ∈ V (h), yielding

∀v ∈ V (h), c1|v|2j ≤
∑

F∈Fh
h−1
F ‖[[v]]‖20,F ≤ c2|v|2j . (3.52)

(2) Let v ∈ V (h) and let ψ ∈ H1
0 (Ω) solve −∆ψ = v. Since Ω has smoothing

properties, there is c > 0 such that ‖ψ‖2,Ω ≤ c ‖v‖0,Ω . Then,

‖v‖20,Ω = −
∫
Ω
v∆ψ =

∫
Ω
∇ψ·∇hv −

∫
Fh ∇ψ·[[v]]

≤ c |v|1,h,Ω‖v‖0,Ω +

(
∑

F∈Fh
h−1
F ‖[[v]]‖20,F

) 1
2
(
∑

F∈Fh
hF |ψ|21,F

) 1
2

.

Using a trace theorem and a scaling argument yields

hF |ψ|21,F ≤ c
(
|ψ|21,K + h2

F |ψ|22,K
)
≤ c′‖ψ‖22,K . (3.53)

Hence,
‖v‖20,Ω ≤ c1|v|1,h,Ω‖v‖0,Ω + c2|v|j‖v‖0,Ω ,

and this completes the proof. ut
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Remark 3.46. Lemma 3.45 is a discrete Poincaré-type inequality. ut
Proposition 3.47 (Well-posedness). Assume that the bilinear form ah de-
fined in (3.49) satisfies the following properties:

(i) Uniform boundedness on V (h): there exists cb > 0, independent of h,
such that

∀v, w ∈ V (h), ah(w, v) ≤ cb‖w‖V (h)‖v‖V (h). (3.54)

(ii) Coercivity on Vh: there exists cs > 0, independent of h, such that

∀v ∈ Vh, ah(v, v) ≥ cs‖v‖2V (h). (3.55)

Then, problem (3.50) is well-posed.

Proof. Direct consequence of the Lax–Milgram Lemma. ut
Proposition 3.48 (Consistency). Assume that the numerical fluxes φu and
φσ are consistent. Then, the exact solution u satisfies

∀v ∈ Vh, ah(u, v) =

∫

Ω

fv.

Proof. Since u ∈ H2(Ω), taking τ = ∇hu in (3.44) yields, for all v ∈ Vh,
∫

Ω

∇hu·∇hv = −
∫

Ω

∆uv +

∫

Fh
[[v]]·{∇hu}+

∫

F i
h

{v}[[∇hu]].

Since {u} = u, [[u]] = 0, {∇hu} = ∇u, [[∇hu]] = 0, and −∆u = f ,

ah(u, v) =

∫

Ω

fv +

∫

Fh
[[φu(u)]]·{∇hv}+ (∇u− {φσ(u, σh(u))})·[[v]]

+

∫

F i
h

{φu(u)− u}[[∇hv]]− [[φσ(u, σh(u))]]{v}.

Owing to the consistency of the numerical flux φu, φu(u) = u. Moreover, the
reconstruction formula (3.48) implies σh(u) = ∇u. Since the numerical flux
φσ is also consistent, {φσ(u, σh(u))} = ∇u and [[φσ(u, σh(u))]] = 0. Therefore,
all the face integrals vanish. ut
Lemma 3.49 (Approximability). There exists c such that, for all 1 ≤ s ≤
k + 1,

∀h, ∀u ∈ Hs(Ω) ∩H1
0 (Ω), inf

v∈Vh
‖u− v‖V (h) ≤ c hs−1|u|s,Ω .

Proof. Let 1 ≤ s ≤ k + 1. Since Vh contains the H1-conforming Scott–Zhang
interpolant SZhu of u and since the face jumps of u− SZhu vanish,

‖u− SZhu‖2V (h) = |u− SZhu|21,Ω +
∑

K∈Th
h2
K |u− SZhu|22,K ≤ c h2(s−1)|u|2s,Ω ,

the last inequality being a direct consequence of Lemma 1.130. ut
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Theorem 3.50 (Convergence). Let u be the solution to the homogeneous
Dirichlet problem with data f ∈ L2(Ω). Assume that the Laplacian has
smoothing properties in Ω and that u ∈ Hs(Ω) for some s ∈ {2, . . . , k+1}. Let
uh be the solution to (3.50). Along with hypotheses (i)–(ii) of Proposition 3.47,
assume that the numerical fluxes φu and φσ are consistent. Then, there exists
c such that

∀h, ‖u− uh‖V (h) ≤ c hs−1|u|s,Ω . (3.56)

Proof. Direct consequence of Lemma 2.25 and the above results. ut

An L2-norm error estimate can be obtained using duality techniques.

Definition 3.51 (Adjoint-consistency). The bilinear form ah is said to be
adjoint-consistent if, for all w ∈ H2(Ω) ∩H1

0 (Ω),

∀v ∈ V (h), ah(v, w) = −
∫

Ω

∆w v. (3.57)

Lemma 3.52. Assume that the numerical fluxes φu and φσ are conservative.
Then, the bilinear form ah is adjoint-consistent.

Proof. Let w ∈ H2(Ω)∩H1
0 (Ω) and let v ∈ V (h). Note that [[w]] = 0, [[∇hw]] =

0, and {∇hw} = ∇w. Using (3.44) yields

∫

Ω

∇hv·∇hw = −
∫

Ω

∆w v +

∫

Fh
[[v]]·∇w.

Since w is smooth, Remark 3.44 implies ah(v, w) =
∫
Ω
∇hv·∇hw−

∫
Fh [[v]]·∇w.

The conclusion follows readily. ut

Theorem 3.53 (L2-convergence). Under the hypotheses of Theorem 3.50,
assuming that the numerical fluxes φu and φσ are conservative, there exists c
such that

∀h, ‖u− uh‖0,Ω ≤ c hs|u|s,Ω . (3.58)

Proof. Let ψ ∈ H1
0 (Ω) be such that −∆ψ = u− uh. Since the Laplacian has

smoothing properties in Ω, |ψ|2,Ω ≤ c ‖u − uh‖0,Ω . Furthermore, since the
approximate fluxes φu and φσ are conservative, Lemma 3.52 implies

∀v ∈ V (h), ah(v, ψ) =

∫

Ω

(u− uh)v.

Since u− uh ∈ V (h) and the numerical fluxes are consistent,

‖u− uh‖20,Ω = ah(u− uh, ψ) = ah(u− uh, ψ − SZhψ)
≤ cb‖u− uh‖V (h)‖ψ − SZhψ‖V (h) ≤ c h|ψ|2,Ω‖u− uh‖V (h),

where SZhψ is the Scott–Zhang interpolant of ψ. Conclude using (3.56). ut
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Example 1 (LDG). The so-called Local Discontinuous Galerkin (LDG)
method has been introduced by Cockburn and Shu in 1998 [CoS98] to ap-
proximate time-dependent convection–diffusion problems. Written within the
above framework, it consists of taking the numerical fluxes

φu(uh) =

{
{uh} − β·[[uh]] on F i

h,

0 on F∂h ,
(3.59)

and

φσ(uh, σh) =

{
{σh}+ β·[[σh]]− ηFh−1

F [[uh]] on F i
h,

{σh} − ηFh−1
F [[uh]] on F∂h .

(3.60)

Here, β ∈ [L∞(F i
h)]

d is a vector-valued function that is constant on each
interior face, ηF is a given positive parameter on the face F , and hF denotes
the diameter of F . A straightforward calculation yields the following:

Proposition 3.54. The numerical fluxes φu and φσ defined by (3.59)–(3.60)
are consistent and conservative.

In the LDG method, the flux reconstruction formula (3.48) takes the form

σh = ∇huh + l1(β·[[uh]]) + l2([[uh]]),

and the bilinear form ah is given by

ah(uh, v) =

∫

Ω

∇huh·∇hv −
∫

Fh
[[uh]]·{∇hv}+ {∇huh}[[v]]

+

∫

Fh
ηFh

−1
F [[uh]] [[v]] +

∫

F i
h

β·[[uh]] [[v]] + [[∇huh]]β·[[v]]

+

∫

Ω

(
l1(β·[[uh]]) + l2([[uh]])

)
·
(
l1(β·[[v]]) + l2([[v]])

)
.

(3.61)

Proposition 3.55. The bilinear form ah defined by (3.61) is continuous on
V (h) and, provided infF ηF is large enough, it is also coercive on Vh.

Proof. The proof is only sketched; see [ArB01] and the references therein.
(i) To prove continuity, i.e., property (3.54), the various terms appearing in the
right-hand side of (3.61) must be bounded. Let w, v ∈ V (h). First, it is clear
that

∫
Ω
∇hw·∇hv ≤ |w|h,1,Ω |v|h,1,Ω . Owing to (3.52),

∫
Fh ηFh

−1
F [[uh]] [[v]] ≤

c3|w|j|v|j with c3 = c2 supF ηF . Next, for w ∈ H2(K) and a face F of K,
(3.53) implies

‖∇w·n‖20,F ≤ c4
(
h−1
F |w|21,K + hF |w|22,K

)
.

This in turn implies

∫

Fh
{∇hw}·[[v]] ≤ c5

(
∑

K∈Th
|w|21,K + h2

K |w|22,K

) 1
2
(
∑

F∈Fh
h−1
F ‖[[v]]‖20,F

) 1
2

≤ c5‖w‖V (h)|v|j.
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The remaining face integrals in (3.61) are bounded similarly. Finally, one can
readily show that

∀v ∈ V (h), ‖l1(β·[[v]])‖0,Ω ≤ c6‖β‖
1
2

L∞(F i
h
)
|v|j,

and
∀v ∈ V (h), ‖l2([[v]])‖0,Ω ≤ c7|v|j.

Using the above estimates, one easily bounds the second integral over Ω in
the right-hand side of (3.61).
(ii) Let us prove the coercivity of ah, i.e., property (3.55). Consider v ∈ Vh.
It is clear that

ah(v, v) = |v|2h,1,Ω +

∫

Fh
ηFh

−1
F [[v]]2 + b(v, v),

where the bilinear form b gathers all the remaining terms. It follows from the
first part of the proof that

∫

Fh
ηFh

−1
F [[v]]2 ≥ c8

(
inf
F
ηF

)
|v|2j and b(v, v) ≤ c9‖v‖V (h)|v|j.

Therefore,

ah(v, v) ≥ |v|2h,1,Ω + c8

(
inf
F
ηF

)
|v|2j − c9‖v‖V (h)|v|j,

and the last term in the right-hand side can be lower bounded in the form

−c9‖v‖V (h)|v|j ≥ −ε‖v‖2V (h) −
c29
4ε |v|2j for any positive ε. Moreover, using an

inverse inequality on Vh yields

‖v‖2V (h) ≤ c10(|v|2h,1,Ω + |v|2j ).

Coercivity follows by taking ε small enough and infF ηF large enough. ut

The above results show that the LDG method approximates the exact
solution to O(hk) in the H1-norm and to O(hk+1) in the L2-norm.

Example 2 (NIPG). The so-called Non-symmetric Interior Penalty Galerkin
(NIPG) method has been derived in [OdB98, BaO99] and further investigated
in [RiW99]. Written within the above framework, it consists of taking the
numerical fluxes

φu(uh) =

{
{uh}+ nK ·[[uh]] on F i

h,

0 on F∂h ,
(3.62)

and
φσ(uh, σh) = {∇huh} − ηFh−1

F [[uh]] on Fh. (3.63)

Note that φu is not single-valued on F i
h. A straightforward calculation yields

the following:
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Proposition 3.56. The numerical fluxes φu and φσ given by (3.62)–(3.63)
are consistent, but not conservative.

In the NIPG method, the bilinear form ah is given by

ah(uh, v) =

∫

Ω

∇huh·∇hv +
∫

Fh
ηFh

−1
F [[uh]] [[v]]

+

∫

Fh
[[uh]]·{∇hv} − {∇huh}[[v]].

(3.64)

Proposition 3.57. The bilinear form ah given by (3.64) is continuous on
V (h) and coercive on Vh.

Proof. Similar to that of Proposition 3.55. ut

The above results show that the NIPG method approximates the exact
solution to O(hk) in the H1-norm. However, because of the lack of conser-
vativity in the numerical fluxes, an improved error estimate in the L2-norm
cannot be derived in general.

Remark 3.58.
(i) Because of the skew-symmetric form of the face integrals in (3.64),

infF ηF needs not be large to ensure the coercivity of ah. However, skew-
symmetry is at the origin of the lack of adjoint-consistency, thus preventing
optimal convergence order in the L2-norm.

(ii) For a face F ∈ Fh, one can choose the penalty parameter ηF to be
proportional to a negative power of hF , leading to the so-called superpenalty
procedure. It is then possible to recover optimal convergence order for the
error in the L2-norm. The NIPG method with superpenalty is analyzed in
[RiW99]. ut

3.2.5 Numerical illustrations

This section presents two examples of finite element approximations to elliptic
PDEs. The purpose of the first example is to illustrate the link between the
convergence order of the finite element approximation and the regularity of the
exact solution. The purpose of the second example is to illustrate qualitatively
the behavior of the solution of advection–diffusion equations depending on
whether advection effects dominate or not.

Convergence tests. Consider the Laplace equation in the domain Ω =
]0, 1[ × ]0, 1[ and a positive parameter α. Choose the right-hand side f
and the non-homogeneous Dirichlet conditions so that the exact solution is
u(x1, x2) = (x2

1 + x2
2)

α
2 . Note that u ∈ H1(Ω) if 0 < α ≤ 1, u ∈ H2(Ω) if

1 < α ≤ 2, and u ∈ H3(Ω) if 2 < α ≤ 3. In the numerical experiments,
we consider the values α = 0.25, 1.25, and 2.25. A H1-conforming Lagrange



140 Chapter 3. Coercive Problems

-210 -110
-910

-810

-710

-610

-510

-410

-310

-210

-110

-210 -110
-610

-510

-410

-310

-210

-110

010

110

Fig. 3.1. Errors in the L2-norm (left) and H1-norm (right) as a function of the
mesh step size h: P1 finite element and α = 0.25 (+); P2 finite element and α = 0.25
(∗); P1 finite element and α = 1.25 (×); P2 finite element and α = 1.25 (◦); P2 finite
element and α = 2.25 (•).

finite element approximation of degree k = 1 or 2 is implemented. The tri-
angulation of Ω is uniform with vertices of the triangles given by (ih, jh),
0 ≤ i, j ≤ N + 1, where h = 1

N+1 and N is a given integer.

Figure 3.1 presents the error in the L2- and H1-norms as a function of h.
Results are presented in a log-log scale so that the slopes indicate orders of
convergence. For α = 0.25 and k = 1, the error converges “slowly” to zero
as h→ 0, with a slope lower than 1 in the H1-norm and lower than 2 in the
L2-norm. For α = 1.25 and still k = 1, the slope is equal to 1 in the H1-norm
and to 2 in the L2-norm. Moreover, using a higher-order method (k = 2) does
not improve the convergence order. Finally, for α = 2.25 and with a second-
order finite element, the slopes in both the H1-norm and the L2-norm are one
order higher than those obtained with the first-order finite element method, in
agreement with theoretical predictions. As a conclusion, only when the exact
solution is smooth enough does it pay off to use a high-order finite element
method.

Advection–diffusion equation. Consider a two-dimensional flow through
a heated pipe. The flow velocity is assumed to be known, and we want to
evaluate the temperature u inside the pipe at steady-state. The temperature
is governed by the advection–diffusion equation

β·∇u− ε∆u = 0. (3.65)

The pipe is modeled by a rectangular domain Ω with sides numbered clock-
wise from 1 to 4 starting from the left-most side. The flow enters the pipe
through ∂Ω1 and flows out through ∂Ω3 while the sides ∂Ω2 and ∂Ω4 are



3.3. Spectral Problems 141

Wed Oct 27 18:56:27 1999

0 1 2 3 4 5
0

1

PLOT

X−Axis
Y

−
A

xi
s

0 1 2 3 4 5
0

1

Wed Oct 27 18:58:37 1999

0 1 2 3 4 5
0

1

PLOT

X−Axis

Y
−

A
xi

s

0 1 2 3 4 5
0

1

Wed Oct 27 18:57:32 1999

0 1 2 3 4 5
0

1

PLOT

X−Axis

Y
−

A
xi

s

0 1 2 3 4 5
0

1

Fig. 3.2. Heat transfer problem through a two-dimensional pipe: computational
mesh (top); temperature field for dominant diffusion (center); and temperature field
for dominant advection (bottom).

solid boundaries. Spatial coordinates are denoted by (x1, x2) with the x1-
axis parallel to the pipe axis. Temperature boundary conditions are u = 0
on ∂Ω1 (cold upstream flow), u = 1 on ∂Ω2 and ∂Ω4 (heated boundaries),
and ∂1u = 0 on ∂Ω3 (outflow condition). The flow velocity is taken to be
β = (4x2(1 − x2), 0). The solution to (3.65) is approximated on the mesh
shown in the top panel of Figure 3.2 using continuous P1 finite elements. The
central panel of Figure 3.2 presents isotherms for a diffusion-dominated case
(ε = 10−1); the peak temperature is quickly reached on the symmetry axis.
The bottom panel displays isotherms resulting from a moderate diffusion co-
efficient (ε = 10−3). Advection effects are dominant, i.e., the boundary layer
in which the temperature undergoes significant variations remains localized
near the top and bottom boundaries. If advection effects become even more
dominant, the approximation method needs to be stabilized to avoid spurious
oscillations in the solution profile; see Chapter 5.

3.3 Spectral Problems

This section contains a brief introduction to spectral problems and their ap-
proximation by finite element methods. Spectral problems occur when analyz-
ing the response of buildings, vehicles, or aircrafts to vibrations. Henceforth,
we restrict the presentation to a simple model problem: the Laplace operator
with homogeneous Dirichlet conditions. Although this problem is somewhat
simple, it is representative of a large class of engineering applications. As such,
it models membrane and string vibrations.
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Fig. 3.3. Elastic deformation of a membrane: reference configuration Ω, externally
applied load f , and equilibrium displacement u. The boundary ∂Ω of the membrane
is kept fixed.

3.3.1 Modeling a vibrating membrane

Figure 3.3 presents an elastic homogeneous membrane. In the reference con-
figuration, the membrane occupies the domain Ω in R2 and is tightened ac-
cording to a two-dimensional stress tensor σ ∈ R2,2. For the sake of simplic-
ity, we assume that σ is uniform and isotropic, i.e., σ = τI where τ is the
membrane tension. Apply now a transverse load f and assume first that f
is time-independent. If the strains in the membrane are sufficiently small, the
equilibrium configuration is described by a transverse displacement which is
a function u : Ω → R governed by the PDE

−τ∆u = f in Ω. (3.66)

We assume that the boundary of the membrane is kept fixed, yielding the
homogeneous Dirichlet condition u = 0 on ∂Ω.

Consider now the time-dependent load f(x, t) = g(x) cos(ωt) for (x, t) ∈
Q, where g : Ω → R is a given function, ω a real parameter representing
the angular velocity of the excitation, Q = Ω × ]0, T [, and T a given time.
Assuming again that the strains in the membrane remain sufficiently small,
the (time-dependent) displacement u : Q→ R is governed by the PDE

ρ∂ttu− τ∆u = g(x) cos(ωt) in Q, (3.67)

where ρ is the membrane density. Equation (3.67) is a wave equation with

celerity c = (τρ−1)
1
2 . It has to be supplemented with initial and boundary

conditions. The initial data comprises the initial value of the displacement
u0(x) and its time-derivative u1(x), i.e., the initial membrane velocity. We
assume that the membrane boundary is kept fixed at all times., i.e., we enforce
a homogeneous Dirichlet boundary condition.

3.3.2 The spectral problem

Consider the spectral problem:
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{
Seek ψ ∈ H1

0 (Ω), ψ 6= 0, and λ ∈ R such that

−∆ψ = λψ,

for which a weak formulation is
{
Seek ψ ∈ H1

0 (Ω), ψ 6= 0, and λ ∈ R such that∫
Ω
∇ψ·∇v = λ

∫
Ω
ψv, ∀v ∈ H1

0 (Ω).
(3.68)

Definition 3.59. Let {λ, ψ} be a solution to (3.68). The real λ is called an
eigenvalue of the Laplacian (with homogeneous Dirichlet conditions) and the
function ψ an eigenfunction.

Theorem 3.60 (Spectral decomposition). Let Ω be a domain in Rd.
Then, the spectral problem (3.68) admits infinitely many solutions. These so-
lutions form a sequence {λn, ψn}n>0 such that:

(i) {λn}n>0 is an increasing sequence of positive numbers, and λn →∞.
(ii) {ψn}n>0 is an orthonormal Hilbert basis of L2(Ω).

Proof. This is a consequence of the fact that the injection H1
0 (Ω) ⊂ L2(Ω) is

compact; see Theorem B.46 and [Yos80, p. 284] or [Bre91, p. 192]. ut
Example 3.61. For Ω = ]0, 1[, the eigenvalues of the Laplacian are λn =
n2π2 with corresponding eigenfunctions ψn(x) = sin(nπx). These functions
become more and more oscillatory as n grows. ut

The solution u to the wave equation (3.67) can be written as a series

in terms of the Laplacian eigenfunctions. Indeed, set ωn = (λnτρ
−1)

1
2 and

assume ω 6= ωn. Denote by gn =
∫
Ω
gψn the coordinates of g relative to the

orthonormal basis {ψn}n>0 and by αn and βn the coordinates of the initial
data u0 and u1, respectively. A straightforward calculation shows that for
ω 6= ωn,

u(x, t) =

∞∑

n=1

(
αn cos(ωnt) + βn sin(ωnt)

+
gn

ρ(ω + ωn)

sin
(
ω−ωn

2 t
)

ω−ωn
2

sin
(
ω+ωn

2 t
)
)
ψn(x).

As ω draws closer to one of the ωn’s, a resonance phenomenon occurs. In
particular, when ω = ωn, u(x, t) grows linearly in time.

3.3.3 The Rayleigh quotient

Set a(u, v) = (∇u,∇v)0,Ω for all u, v in H1
0 (Ω). This bilinear form is symmet-

ric, continuous, and coercive on H1
0 (Ω). The Rayleigh quotient of a function

u ∈ H1
0 (Ω), u 6= 0, is defined to be

R(u) =
a(u, u)

‖u‖20,Ω
.
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Proposition 3.62. Let λ1 be the smallest eigenvalue of the spectral prob-
lem (3.68) and let ψ1 be a corresponding eigenfunction. Then,

λ1 = R(ψ1) = inf
v∈H1

0 (Ω)
R(v).

Proof. Clearly, λ1 = R(ψ1) ≥ infv∈H1
0 (Ω)R(v). Furthermore, for v ∈ H1

0 (Ω),

the identity v =
∑∞

n=1 vnψn yields

R(v) =

∑∞
n=1 λnv

2
n∑∞

n=1 v
2
n

≥ λ1. ut

Proposition 3.63. Let λm be the m-th eigenvalue of problem (3.68) (eigen-
values are counted with their multiplicity and ordered increasingly). Let Vm
denote the set of subspaces of H1

0 (Ω) having dimension m. Then,

λm = min
Em∈Vm

max
v∈Em

R(v). (3.69)

Proof. Let Em = span{ψ1, . . . , ψm} be the space spanned by them first eigen-
functions. For all v =

∑m
n=1 vnψn in Em,

R(v) =

∑m
n=1 λnv

2
n∑m

n=1 v
2
n

≤ λm,

which yields
λm ≥ min

Em∈Vm
max
v∈Em

R(v).

Consider now Em ∈ Vm. A simple dimensional argument shows that there
exists v 6= 0 in Em∩E⊥m−1. Since v can be written in the form v =

∑∞
n=m vnψn,

it is clear that R(v) ≥ λm. As a result, maxv∈Em R(v) ≥ λm; hence,

λm ≤ min
Em∈Vm

max
v∈Em

R(v). ut

3.3.4 H1-conforming approximation

The spectral problem (3.68) can be solved analytically only in a limited num-
ber of remarkable cases when the domain Ω has a very simple shape. In the
general case, eigenvalues and eigenfunctions must be approximated using, for
instance, a finite element method.

Let {Th}h>0 be a family of geometrically conforming meshes of Ω and
let {Vh}h>0 be the corresponding family of H1-conforming approximation
spaces. Denote by N the dimension of Vh. The approximate spectral problem
we consider is the following:

{
Seek ψh ∈ Vh, ψh 6= 0, and λh ∈ R such that∫
Ω
∇ψh·∇vh = λh

∫
Ω
ψhvh, ∀vh ∈ Vh.

(3.70)
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Let {ϕ1, . . . , ϕN} be a basis of Vh and let Ψh ∈ RN be the coordinate vector
of Ψh relative to this base. The approximate problem (3.70) is recast in the
form: {

Seek Ψh ∈ RN , Ψh 6= 0, and λh ∈ R such that

AΨh = λhMΨh,
(3.71)

where the stiffness matrix A and the mass matrixM have entries

Aij =
∫

Ω

∇ϕi·∇ϕj and Mij =

∫

Ω

ϕiϕj . (3.72)

Because the matrix M is not the identity matrix, problem (3.71) is often
called a generalized eigenvalue problem.

Proposition 3.64. The matrices A and M defined in (3.72) are symmetric
positive definite. Furthermore, the spectral problem (3.71) admits N (positive)
eigenvalues (counted with their multiplicity).

Proof. The symmetry and positive definiteness of the matrices A andM di-
rectly results from the fact that they are Gram matrices; see also Remark 2.20.
Orthogonalizing the quadratic form associated with A with respect to the
scalar product induced by M yields N positive reals {λh1, . . . , λhN} and a
basis {Ψh1, . . . , ΨhN} of RN such that, for 1 ≤ i, j ≤ N ,

(Ψhi,AΨhj)N = λhiδij , (Ψhi,MΨhj)N = δij ,

where (·, ·)N denotes the Euclidean product in RN . As a result,

AΨhi = λhiMΨhi, 1 ≤ i ≤ N,

showing that the λhi’s are the eigenfunctions of the generalized eigenvalue
problem (3.71) and that the Ψhi’s are the corresponding eigenvectors. ut

3.3.5 Error analysis

Let {ψh1, . . . , ψhN} be an orthonormal basis of eigenvectors in Vh, i.e.,
(ψhi, ψhj)0,Ω = δij for 1 ≤ i, j ≤ N , and assume that the enumeration of
these vectors is such that λh1 ≤ . . . ≤ λhN .

Henceforth, m ≥ 1 denotes a fixed number, and we assume that h is small
enough so that m ≤ N . Set Vm = span{ψ1, . . . , ψm}, and define Sm to be the
unit sphere of Vm in L2(Ω). Introduce the elliptic projector Πh : H1

0 (Ω)→ Vh
such that a(Πhu− u, vh) = 0 for all vh in Vh, and define

σhm = inf
v∈Sm

‖Πhv‖0,Ω . (3.73)

Lemma 3.65. Let 1 ≤ m ≤ N . Assume σhm 6= 0. Then,

λm ≤ λhm ≤ λmσ−2
hm. (3.74)
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Proof. The first inequality is a simple consequence of Proposition 3.63. Fur-
thermore, since σhm 6= 0, Ker(Πh) ∩ Vm = {0}; hence, the Rank Theorem
implies dim(ΠhVm) = m. Adapting the proof of Proposition 3.63, one readily
infers

λhm ≤ max
vh∈ΠhVm

a(vh, vh)

‖vh‖20,Ω
= max

v∈Vm

a(Πhv,Πhv)

‖Πhv‖20,Ω
.

Hence,

λhm ≤ max
v∈Vm

a(v, v)

‖Πhv‖20,Ω
≤ max

v∈Vm
R(v) max

v∈Vm

‖v‖20,Ω
‖Πhv‖20,Ω

=
1

σ2
hm

max
v∈Sm

R(v).

Then, use λm = maxv∈Sm R(v) to conclude. ut

Remark 3.66. It is remarkable that, independently of the approximation
space (provided conformity holds), theN eigenvalues of the approximate prob-
lem (3.71) are larger than the corresponding eigenvalues of the exact problem
(3.68). Eigenvalues are thus approximated from above. ut

Lemma 3.67. Let 1 ≤ m ≤ N . There is c(m), independent of h, such that

σ2
hm ≥ 1− c(m) max

v∈Sm
‖v −Πhv‖21,Ω . (3.75)

Proof. Let v ∈ Sm. Let (Vi)1≤i≤m be the coordinate vector of v relative to
the basis {ψ1, . . . , ψm}. It is clear that ‖v‖20,Ω =

∑
1≤i≤m V

2
i = 1. In addition,

‖Πhv‖20,Ω is bounded from below as follows:

‖Πhv‖20,Ω ≥ ‖v‖20,Ω − 2(v, v −Πhv)0,Ω . (3.76)

Using the symmetry of a and the definition of Πhv yields

(v, v −Πhv)0,Ω =
∑

1≤i≤m
Vi(ψi, v −Πhv)0,Ω =

∑

1≤i≤m

Vi
λi
a(ψi, v −Πhv)

=
∑

1≤i≤m

Vi
λi
a(ψi −Πhψi, v −Πhv)

≤ ‖a‖
λ1
‖v −Πhv‖1,Ω

(
∑

1≤i≤m
‖ψi −Πhψi‖21,Ω

) 1
2

≤
√
m
‖a‖
λ1
‖v −Πhv‖1,Ω sup

w∈Sm
‖w −Πhw‖1,Ω

≤
√
m
‖a‖
λ1

sup
w∈Sm

‖w −Πhw‖21,Ω .

Then, the desired estimate is obtained by inserting this bound into (3.76) and

setting c(m) = 2
√
m‖a‖

λ1
. ut
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Lemma 3.68. Assume that the sequence of approximation spaces {Vh}h>0 is
endowed with the following approximability property:

∀v ∈ H1
0 (Ω), lim

h→0

(
inf

vh∈Vh
‖v − vh‖1,Ω

)
= 0. (3.77)

Then, for all m ≥ 1, there is h0(m) such that, for all h ≤ h0(m),

0 ≤ λhm − λm ≤ 2λmc(m) max
v∈Sm

inf
vh∈Vh

‖v − vh‖21,Ω . (3.78)

Proof. Let m ≥ 1 be a fixed number, and assume that h is small enough so
that m ≤ N . Since Sm is compact, there is v0 in Sm such that supv∈Sm ‖v −
Πhv‖21,Ω = ‖v0 −Πhv0‖21,Ω . Owing to (2.24),

‖v0 −Πhv0‖1,Ω ≤
(
‖a‖
α

) 1
2

inf
vh∈Vh

‖v0 − vh‖1,Ω .

Sincem is fixed, (3.77) implies that there is h0(m) such that, for all h ≤ h0(m),
c(m)‖v0−Πhv0‖21,Ω ≤ 1

2 . Then, observing that 1+2x ≥ 1
1−x for all 0 ≤ x ≤ 1

2
and using (3.75) yields

1 + 2c(m)‖v0 −Πhv0‖21,Ω = 1 + 2c(m) sup
v∈Sm

‖v −Πhv‖21,Ω ≥ σ−2
hm.

Conclude using (3.74). ut

To analyze the approximation error for eigenvectors, we assume, for the
sake of simplicity, that the eigenvalues are simple.

Lemma 3.69. Let 1 ≤ m ≤ N and set ρhm = max1≤i6=m≤N
λm

|λm−λhi| . If

λm is simple, there is h0(m) and a choice of eigenvector such that, for all
h ≤ h0(m),

‖ψm − ψhm‖0,Ω ≤ 2(1 + ρhm)‖ψm −Πhψm‖0,Ω . (3.79)

Proof. (1) Note that owing to Lemma 3.68, λhi → λi as h→ 0. Hence, since
λm is simple, ρhm is uniformly bounded when h is small enough.
(2) Define vhm = (Πhψm, ψhm)0,Ωψhm and let us evaluate ‖Πhψm−vhm‖0,Ω .
Note first that

(Πhψm, ψhi)0,Ω =
1

λhi
a(ψhi, Πhψm) =

1

λhi
a(ψm, ψhi) =

λm
λhi

(ψm, ψhi)0,Ω .

Hence, (Πhψm, ψhi)0,Ω = λm
λhi−λm (ψm −Πhψm, ψhi)0,Ω . As a result,

‖Πhψm−vhm‖20,Ω =
∑

1≤i6=m≤N
(Πhψm, ψhi)

2
0,Ω ≤ ρ2

hm‖ψm−Πhψm‖20,Ω . (3.80)

(3) Let us now estimate ‖ψhm − vhm‖0,Ω . Since
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‖ψm‖0,Ω − ‖ψm − vhm‖0,Ω ≤ ‖vhm‖0,Ω ≤ ‖ψm‖0,Ω + ‖ψm − vhm‖0,Ω ,
and ‖ψm‖0,Ω = 1, we infer |‖vhm‖0,Ω − 1| ≤ ‖ψm − vhm‖0,Ω . But,
‖ψhm − vhm‖0,Ω = |(Πhψm − ψhm, ψhm)0,Ω | = |(Πhψm, ψhm)0,Ω − 1|.

Assume that ψhm is chosen so that (Πhψm, ψhm)0,Ω ≥ 0. Then, ‖vhm‖0,Ω =
(Πhψm, ψhm)0,Ω , yielding

‖ψhm − vhm‖0,Ω ≤ ‖ψm − vhm‖0,Ω . (3.81)

(4) To conclude, use the triangle inequality together with (3.80) and (3.81):

‖ψm − ψhm‖0,Ω ≤ ‖ψm −Πhψm‖0,Ω + ‖Πhψm − vhm‖0,Ω + ‖vhm − ψhm‖0,Ω
≤ 2(‖ψm −Πhψm‖0,Ω + ‖Πhψm − vhm‖0,Ω).

The conclusion follows from (3.80). ut
Theorem 3.70. Let 1 ≤ m ≤ N . If λm is simple, there is h0(m) and a choice
of eigenvector such that, for all h ≤ h0(m),

‖ψm − ψhm‖0,Ω ≤ c2(m)‖ψm −Πhψm‖0,Ω , (3.82)

‖ψm − ψhm‖1,Ω ≤ c1(m) max
v∈Sm

inf
vh∈Vh

‖v − vh‖1,Ω . (3.83)

Proof. Estimate (3.82) is a direct consequence of Lemma 3.69. To control
‖ψm − ψhm‖1,Ω , use the coercivity of a as follows:

α‖ψm − ψhm‖21,Ω ≤ a(ψm − ψhm, ψm − ψhm)

= λhm + λm − 2λm(ψm, ψhm)0,Ω

= λhm − λm + λm‖ψm − ψhm‖20,Ω .
Then, (3.83) is a consequence of the above equality, together with Lemmas 3.68
and 3.69. ut
Corollary 3.71. Let 1 ≤ m ≤ N . Assume that the approximation setting is
such that there is k ≥ 1 and c1(m) so that infv∈Sm ‖Πhv − v‖0,Ω + h‖Πhv −
v‖1,Ω ≤ c1(m)hk+1. Then, there are c2(m), c3(m), c4(m), independent of h,
such that, if h is sufficiently small, the following estimates hold:

λm ≤ λhm ≤ λm + c2(m)h2kλ2
m. (3.84)

Moreover, if the eigenvalue λm is simple,
{
‖ψm − ψhm‖0,Ω ≤ c3(m)hk+1λm,

‖ψm − ψhm‖1,Ω ≤ c4(m)hkλm,
(3.85)

and the constants c2(m), c3(m), c4(m) grow unboundedly as m→ +∞. If λm
is multiple, ψm can be chosen so that (3.85) still holds.

Proof. Simple consequence of Lemma 3.68 and Theorem 3.70. ut
Remark 3.72. The above corollary shows that when h is fixed, the accuracy
of the approximation decreases as m increases since c2(m), c3(m), and c4(m)
grow unboundedly as m→ +∞; see §3.3.6 for an illustration. ut
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Fig. 3.4. Left: Finite element approximation to the eigenvalues of the Laplacian in
one dimension. Right: Eightieth eigenfunction for the exact problem (dashed line)
and for the approximate problem (solid line).

3.3.6 Numerical illustrations

In one dimension. Consider the spectral problem for the Laplacian posed
in the domain Ω = ]0, 1[, whose solutions are the pairs

{λm, ψm} = {m2π2, sin(mπx)} for m ≥ 1.

Consider now a uniform mesh of Ω with step size h = 1
N+1 and a P1 Lagrange

finite element approximation. A straightforward calculation shows that the
matrices A andM are tridiagonal and given by

A =
1

h
tridiag(−1, 2,−1), M =

h

6
tridiag(1, 4, 1).

The eigenvalues of the approximate problem (3.71) are easily shown to be

λhm =
6

h2

(
1− cos(mπh)

2 + cos(mπh)

)
, 1 ≤ m ≤ N.

The left panel in Figure 3.4 presents the first 100 eigenvalues of both the exact
and the approximate problems, the latter being obtained with a mesh con-
taining N = 100 points. The exact eigenvalues are approximated from above,
as predicted by the theory. We also observe that only the first eigenvalues are
approximated accurately. Eigenfunctions corresponding to large eigenvalues
oscillate too much to be represented accurately on the mesh; see the right
panel in Figure 3.4. To approximate the m-th eigenvalue with a relative accu-

racy of ε, i.e., |λhm−λm| < ελm, a mesh with step size lower than
√
ε

m
must be

used. In the present example, only the first 10 eigenvalues are approximated
within 1% accuracy.
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Fig. 3.5. Two domains on which the Laplacian has the same spectrum: the hen-
shaped domain (left) and the arrow-shaped domain (right). The coarsest meshes
used for the finite element approximation are shown. The length scale is such that
the area of the two domains is equal to 7

2
and that the meshes correspond to h = 1

4
.

Shape Hen Arrow

Mesh size 1
4

1
8

1
16

1
4

1
8

1
16

Eigenvalue 1 11.16 10.44 10.24 11.03 10.42 10.24

Eigenvalue 2 16.37 15.09 14.76 16.19 15.06 14.75

Eigenvalue 3 24.45 21.67 20.98 24.07 21.64 20.98

Table 3.2. First three eigenvalues for the hen- and arrow-shaped domains obtained
with a first-order finite element method on three meshes of increasing refinement.

In two dimensions. Relating the spectrum and the shape of a two-dimen-
sional membrane is a nontrivial task. For instance, knowing the spectrum
{λm}m≥1, is it possible to reconstruct the shape of the domain Ω (or, in
other words, can we hear the shape of a drum)? The answer is negative, as
proven recently by Gordon and Webb [GoW96] who discovered two domains
in R2 having exactly the same spectrum. These domains take on the shape of
a “hen” and an “arrow” as depicted in Figure 3.5. We verify numerically that
the first eigenvalues of these two domains indeed coincide. Eigenvalues are
computed using the P1 Lagrange finite element on a sequence of three meshes
that are successively refined. The coarsest meshes are displayed in Figure 3.5;
results are presented in Table 3.2. Both sets of eigenvalues converge to a
common limit as h→ 0. The first two eigenfunctions are shown in Figure 3.6.

3.4 Continuum Mechanics

This section is concerned with PDE systems endowed with a multicomponent
coercivity property. Important examples include those arising in continuum
mechanics. Hereafter we restrict ourselves to linear isotropic elasticity. The
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Fig. 3.6. Two first eigenfunctions for the hen-shaped domain (top) and for the
arrow-shaped domain (bottom). Courtesy of E. Cancès (ENPC).

first part of this section introduces a setting for the mathematical analysis
and the finite element approximation of continuum mechanics problems in
this framework. The second part focuses on some problems related to beam
flexion.

3.4.1 Model problems and their weak formulation

The physical model. The domain Ω ⊂ R3 represents a deformable medium
initially at equilibrium and to which an external load f : Ω → R3 is applied.
Our goal is to determine the displacement field u : Ω → R3 induced by f once
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the system has reached equilibrium again. We assume that the deformations
are small enough so that the linear elasticity theory applies.

Let σ : Ω → R3,3 be the stress tensor in the medium. The equilibrium
conditions under the external load f can be expressed as

∇·σ + f = 0 in Ω. (3.86)

Let ε(u) : Ω → R3,3 be the (linearized) strain rate tensor defined as

ε(u) = 1
2 (∇u+∇uT ). (3.87)

In the framework of linear isotropic elasticity, the stress tensor is related to
the strain rate tensor by the relation

σ(u) = λ tr(ε(u))I + 2µε(u),

where λ and µ are the so-called Lamé coefficients, and I is the identity matrix.
Using (3.87), the above relation yields

σ(u) = λ(∇·u)I + µ(∇u+∇uT ). (3.88)

The Lamé coefficients λ and µ are phenomenological coefficients. Owing to
thermodynamic stability, these coefficients are constrained to be such that
µ > 0 and λ+ 2

3µ ≥ 0. Moreover, for the sake of simplicity, we shall henceforth
assume that λ and µ are constant and that λ ≥ 0. In this case, owing to the
identity ∇·

(
ε(u)

)
= 1

2

(
∆u+∇(∇·u)

)
, (3.86) and (3.88) yield

−µ∆u− (λ+ µ)∇(∇·u) = f in Ω.

The model problem (3.86)–(3.88) must be supplemented with boundary con-
ditions. We investigate two cases: a mixed problem in which the displacement
is imposed on part of the boundary, and a pure-traction problem in which the
normal component of the stress tensor is imposed on the entire boundary. The
pure-displacement problem in which the displacement is imposed on the entire
boundary can be treated as a special case of the mixed problem.

Remark 3.73.
(i) The coefficient λ + 2

3µ describes the compressibility of the medium;
very large values correspond to almost incompressible materials.

(ii) Instead of using λ and µ, it is sometimes more convenient to consider
the Young modulus E and the Poisson coefficient ν. These quantities are
related to the Lamé coefficients by

E = µ
3λ+ 2µ

λ+ µ
and ν = 1

2

λ

λ+ µ
.

The Poisson coefficient is such that −1 ≤ ν < 1
2 , and owing to the assumption

λ ≥ 0, we infer ν ≥ 0. An almost incompressible material corresponds to a



3.4. Continuum Mechanics 153

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

PSfrag replacements

u
∂ΩN

∂ΩN

∂ΩD
f

Ω

g

Fig. 3.7. Example of a mixed problem in continuum mechanics.

Poisson coefficient very close to 1
2 .

(iii) The linear isotropic elasticity model is in general valid for problems
involving infinitesimal strains. In this case, the medium responds linearly to
externally applied loads so that one can normalize the problem and consider
arbitrary loads.

(iv) The finite element method originated in the 1950s when engineers
developed it to solve continuum mechanics problems in aeronautics; see, e.g.,
[Lev53, ArK67] and the references cited in [Ode91]. These problems involved
complex geometries that could not be easily handled by classical finite differ-
ence techniques. At the same time, theoretical researches on the approxima-
tion of linear elasticity equations were carried out [TuC56]. In 1960, Clough
coined the terminology “finite elements” in a paper dealing with linear elas-
ticity in two dimensions [Clo60]. ut

Mixed problem and its weak formulation. Consider the partition ∂Ω =
∂ΩD∪∂ΩN illustrated in Figure 3.7. The boundary ∂ΩD is clamped, whereas
a normal load g : ∂ΩN → R3 is imposed on ∂ΩN. The model problem we
consider is the following:





∇·σ(u) + f = 0 in Ω,

σ(u) = λ(∇·u)I + µ(∇u+∇uT ) in Ω,

u = 0 on ∂ΩD,

σ(u)·n = g on ∂ΩN.

(3.89)

To derive a weak formulation for (3.89), take the scalar product of the
equilibrium equation with a test function v : Ω → R3. Since

∫
Ω
−
(
∇·σ(u)

)
·v =∫

Ω
σ(u):∇v −

∫
∂Ω

v·σ(u)·n and σ(u):∇v = σ(u):ε(v) owing to the symmetry
of σ(u), ∫

Ω

σ(u):ε(v)−
∫

∂Ω

v·σ(u)·n =

∫

Ω

f ·v.

The displacement u and the test function v are taken in the functional space

VDN = {v ∈ [H1(Ω)]3; v = 0 on ∂ΩD}, (3.90)

equipped with the norm ‖v‖1,Ω =
∑3

i=1 ‖vi‖1,Ω where v = (v1, v2, v3)
T . The

weak formulation of (3.89) is thus:
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{
Seek u ∈ VDN such that

a(u, v) =
∫
Ω
f ·v +

∫
∂ΩN

g·v, ∀v ∈ VDN,
(3.91)

with the bilinear form

a(u, v) =

∫

Ω

σ(u):ε(v) =

∫

Ω

λ∇·u∇·v +
∫

Ω

2µ ε(u):ε(v). (3.92)

In continuum mechanics, the test function v plays the role of a virtual dis-
placement and the weak formulation (3.91) expresses the principle of virtual
work.

Proposition 3.74. Let Ω be a domain in R3, consider the partition ∂Ω =
∂ΩD ∪ ∂ΩN, and assume that the measure of ∂ΩD is positive. Let λ and
µ be two coefficients satisfying µ > 0 and λ ≥ 0. Let f ∈ [L2(Ω)]3 and
g ∈ [L2(∂ΩN)]

3. Then, the solution u to (3.91) satisfies

−µ∆u− (λ+ µ)∇(∇·u) = f a.e. in Ω, (3.93)

u = 0 a.e. on ∂ΩD, and σ·n = g a.e. on ∂ΩN.

Proof. Straightforward verification. ut

Pure-traction problem and its weak formulation. The pure-traction
problem consists of the following equations:





∇·σ(u) + f = 0 in Ω,

σ(u) = λ(∇·u)I + µ(∇u+∇uT ) in Ω,

σ(u)·n = g on ∂Ω.

(3.94)

It is natural to seek the solution and take the test functions in [H1(Ω)]3.
Proceeding as before yields the problem:

{
Seek u ∈ [H1(Ω)]3 such that

a(u, v) =
∫
Ω
f ·v +

∫
∂Ω

g·v, ∀v ∈ [H1(Ω)]3.
(3.95)

The bilinear form a is still defined by (3.92). The difficulty is that a be-
comes singular on [H1(Ω)]3. To see this, introduce the set R = {u ∈
[H1(Ω)]3; u(x) = α + β × x}, where α and β are vectors in R3 and where
× denotes the cross-product in R3. A function in R is called a rigid displace-
ment field since it corresponds to a global motion consisting of a translation
and a rotation.

Lemma 3.75. The following equivalence holds:

(u ∈ R) ⇐⇒ (∀v ∈ [H1(Ω)]3, a(u, v) = 0).
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Proof. Let u ∈ R. Clearly, ∇·u = 0 and ε(u) = 0. Therefore, a(u, v) = 0 for
all v ∈ [H1(Ω)]3. Conversely, if a(u, v) = 0 for all v ∈ [H1(Ω)]3, take v = u
to obtain

a(u, u) =

∫

Ω

λ(∇·u)2 +
∫

Ω

2µε(u):ε(u) = 0,

implying that ε(u) = 0. Moreover, the fact that, for all j, k with 1 ≤ j, k ≤ 3,

∂jkui = ∂k(∂jui) = ∂k(2εij)− ∂i∂kuj = ∂j(2εik)− ∂i∂juk
= ∂kεij + ∂jεik − ∂iεjk = 0,

implies that all the components ui of u are first-order polynomials. Hence,

u(x) = α+Bx,

with α ∈ R3 and B ∈ R3,3. Moreover, ε(u) = 0 implies B +BT = 0, showing
that the matrix B is skew-symmetric. Therefore, there exists a vector β ∈ R3

such that Bx = β × x. This shows that u ∈ R. ut

Taking v ∈ R in (3.95), Lemma 3.75 shows that a necessary condition
for the existence of a solution to (3.94) is that the data f and g satisfy the
compatibility relation

∀v ∈ R,
∫

Ω

f ·v +
∫

∂Ω

g·v = 0. (3.96)

Note that (3.96) expresses that the sum of the externally applied forces and
their moments vanish. Furthermore, it is clear that the solution u, if it exists,
is defined only up to a rigid displacement. Conventionally, we choose to seek
the solution u such that

∫
Ω
u =

∫
Ω
∇×u = 0 (note that both quantities are

meaningful if u ∈ [H1(Ω)]3). This leads to the following weak formulation:

{
Seek u ∈ VN such that

a(u, v) =
∫
Ω
f ·v +

∫
∂Ω

g·v, ∀v ∈ VN,
(3.97)

with

VN =

{
u ∈ [H1(Ω)]3;

∫

Ω

u = 0;

∫

Ω

∇×u = 0

}
, (3.98)

equipped with the norm ‖ · ‖1,Ω .

Proposition 3.76. Let Ω be a domain in R3. Let λ and µ be two coefficients
satisfying µ > 0 and λ ≥ 0. Let f ∈ [L2(Ω)]3 and let g ∈ [L2(∂Ω)]3. Assume
that the compatibility condition (3.96) is satisfied. Then, the solution u to
(3.97) satisfies (3.93) and σ·n = g a.e. on ∂Ω.

Proof. Straightforward verification. ut
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3.4.2 Well-posedness

The coercivity of the bilinear form a defined in (3.92) relies on the following
Korn inequalities:

Theorem 3.77 (Korn’s first inequality). Let Ω be a domain in R3. Set

‖ε(v)‖0,Ω = (
∫
Ω
ε(v):ε(v))

1
2 . Then, there exists c such that

∀v ∈ [H1
0 (Ω)]3, c ‖v‖1,Ω ≤ ‖ε(v)‖0,Ω . (3.99)

Proof. Let v ∈ [H1
0 (Ω)]3. Since v vanishes at the boundary,

∫

Ω

∇v:∇vT =
∑

i,j

∫

Ω

(∂ivj)(∂jvi) = −
∑

i,j

∫

Ω

(∂2
ijvj)vi

=
∑

i,j

∫

Ω

(∂ivi)(∂jvj) =

∫

Ω

(∇·v)2.

A straightforward calculation yields

∫

Ω

ε(v):ε(v) = 1
4

∫

Ω

(∇v +∇vT ):(∇v +∇vT )

= 1
2

∫

Ω

∇v:∇v + 1
2

∫

Ω

∇v:∇vT

= 1
2

∫

Ω

∇v:∇v + 1
2

∫

Ω

(∇·v)2 ≥ 1
2

∫

Ω

∇v:∇v = 1
2 |v|

2
1,Ω .

Hence, |v|21,Ω ≤ 2‖ε(v)‖20,Ω . Inequality (3.99) then results from the Poincaré
inequality applied componentwise. ut

Theorem 3.78 (Korn’s second inequality). Let Ω be a domain in R3.
Then, there exists c such that

∀v ∈ [H1(Ω)]3, c ‖v‖1,Ω ≤ ‖ε(v)‖0,Ω + ‖v‖0,Ω . (3.100)

Proof. See [Cia97, p. 11] or [DuL72, p. 110]. ut

Proposition 3.79 (Mixed problem). Let Ω be a domain in R3 and let
∂ΩD ⊂ ∂Ω have positive measure. Let f ∈ [L2(Ω)]3 and let g ∈ [L2(∂ΩN)]

3.
Then, problem (3.91) is well-posed and there exists c such that

∀f ∈ [L2(Ω)]3, ∀g ∈ [L2(∂ΩN)]
3, ‖u‖1,Ω ≤ c (||f ||0,Ω + ‖g‖0,∂ΩN

).

Moreover, (3.91) is equivalent to the variational formulation

min
u∈VDN

(
1
2λ

∫

Ω

(∇·u)2 + 1
2µ

∫

Ω

ε(u):ε(u)−
∫

Ω

f ·u−
∫

∂ΩN

g·u
)
.
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Proof. If ∂ΩD = ∂Ω, VDN = [H1
0 (Ω)]3. Coercivity then results from Korn’s

first inequality since

∀u ∈ [H1
0 (Ω)]3, a(u, u) ≥ 2µ

∫

Ω

ε(u):ε(u) ≥ c ‖u‖21,Ω .

If ∂ΩD Ã ∂Ω, coercivity results from Korn’s second inequality and a com-
pacity argument; see the proof of Proposition 3.81. Conclude using the Lax–
Milgram Lemma and Proposition 2.4. ut

Remark 3.80. Given a displacement u, the quantity J(u) represents the to-
tal energy of the deformed medium Ω. The quadratic terms correspond to
the elastic deformation energy and the linear terms to the potential energy
associated with external loads. ut

Proposition 3.81 (Pure-traction problem). Let Ω be a domain in R3.
Assume that f ∈ [L2(Ω)]3 and g ∈ [L2(∂Ω)]3 satisfy the compatibility condi-
tion (3.96). Then, problem (3.97) is well-posed and there exists c such that

∀f ∈ [L2(Ω)]3, ∀g ∈ [L2(∂Ω)]3, ‖u‖1,Ω ≤ c (||f ||0,Ω + ‖g‖0,∂Ω).

Moreover, (3.97) is equivalent to the variational formulation

min
u∈VN

(
1
2λ

∫

Ω

(∇·u)2 + 1
2µ

∫

Ω

ε(u):ε(u)−
∫

Ω

f ·u−
∫

∂Ω

g·u
)
.

Proof. Coercivity results from Korn’s second inequality and from the Petree–
Tartar Lemma. Indeed, set X = VN, Y = [L2(Ω)]3,3, and A : X 3 u 7→ ε(u) ∈
Y . Lemma 3.75 implies that the operator A is injective. Set Z = [L2(Ω)]3 and
let T be the compact injection from X into Z. Korn’s second inequality yields

∀u ∈ X, ‖u‖X ≤ c (‖Au‖Y + ‖Tu‖Z).

Applying the Petree–Tartar Lemma yields ‖u‖X ≤ c ‖Au‖Y for all u ∈ X,
i.e.,

∀u ∈ VN, ‖u‖1,Ω ≤ c ‖ε(u)‖0,Ω .
This inequality shows that the bilinear form a is coercive on VN. To complete
the proof, use the Lax–Milgram Lemma and Proposition 2.4. ut

3.4.3 Finite element approximation

For the sake of simplicity, we assume that Ω is a polyhedron.
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H1-conforming approximation. We consider a H1-conforming finite ele-
ment approximation of problems (3.91) and (3.97) based on a family of affine,
geometrically conforming meshes {Th}h>0 and a Lagrange finite element of

degree k ≥ 1 denoted by {K̂, P̂ , Σ̂}.
To approximate the mixed problem, we assume, for the sake of simplicity,

that ∂ΩD is a union of mesh faces. Hence, the approximation space

V k
h = {vh ∈ [C0(Ω)]3; ∀K ∈ Th, vh ◦ TK ∈ [P̂ ]3; vh = 0 on ∂ΩD},

is VDN-conforming. Consider the discrete problem:

{
Seek uh ∈ V k

h such that

a(uh, vh) =
∫
Ω
f ·vh +

∫
∂ΩN

g·vh, ∀vh ∈ V k
h .

(3.101)

Proposition 3.82 (Mixed problem). Let u solve (3.91) and let uh solve
(3.101). In the above setting, limh→0 ‖u − uh‖1,Ω = 0. Furthermore, if u ∈
[H l+1(Ω)]3 ∩ VDN for some l ∈ {1, . . . , k}, there exists c such that

∀h, ‖u− uh‖1,Ω ≤ c hl|u|l+1,Ω .

Proof. Direct consequence of Céa’s Lemma and Corollary 1.109 applied com-
ponentwise. ut

Remark 3.83. It is not possible to apply the Aubin–Nitsche Lemma to derive
an error estimate in the [L2(Ω)]3-norm because the mixed problem is not
endowed with a suitable smoothing property. ut

For the pure-traction problem, one possible way to eliminate the arbitrary
rigid displacement is the following:

(i) Impose the displacement of a node, say a0, to be zero.
(ii) Choose three additional nodes a1, a2, a3, and three unit vectors τ1, τ2,

τ3 such that the set {(ai−a0)×τi}1≤i≤3 forms a basis of R3, and impose
the displacement of the node ai along the direction τi to be zero.

This procedure leads to the approximation space

W k
h = {vh ∈ [C0(Ω)]3; ∀K ∈ Th, vh ◦ TK ∈ [P̂ ]3;

vh(a0) = 0; vh(ai)·τi = 0, i = 1, 2, 3},

and to the discrete problem:
{
Seek uh ∈W k

h such that

a(uh, vh) =
∫
Ω
f ·vh +

∫
∂Ω

g·vh, ∀vh ∈W k
h .

(3.102)

Proposition 3.84 (Pure-traction problem). Let u solve (3.91) and let uh
solve (3.102). In the above setting, limh→0 ‖u − uh‖1,Ω = 0. Furthermore, if
u ∈ [H l+1(Ω)]3 ∩ VN for some l ∈ {1, . . . , k}, there exists c such that
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∀h, ‖u− uh‖1,Ω ≤ c hl|u|l+1,Ω .

In addition, if Ω is convex and g = 0, there is c such that

∀h, ‖u− uh‖0,Ω ≤ c hl+1|u|l+1,Ω .

Proof. Use Céa’s Lemma, together with Corollary 1.109, to obtain the H1-
error estimate. Furthermore, the homogeneous pure-traction problem posed
over a convex polyhedron is endowed with a smoothing property [Gri92,
p. 135]. The L2-error estimate then results from the Aubin–Nitsche Lemma.

ut

Crouzeix–Raviart approximation. Non-conforming finite element approx-
imations to the equations of elasticity can be considered using the Crouzeix–
Raviart finite element introduced in §1.2.6. For pure-traction problems, the
main difficulty in the analysis is to prove an appropriate version of Korn’s sec-
ond inequality. This result can be established for non-conforming piecewise
quadratic or cubic finite elements, but is false for piecewise linear interpo-
lation. For Crouzeix–Raviart interpolation, appropriate modifications of the
method are discussed in [Fal91, Rua96].

One important advantage of non-conforming approximations is that they
yield optimal-order error estimates that are uniform in the Poisson coefficient
ν. Such a property is particularly useful when modeling almost incompress-
ible materials since it is well-known that, in this case, H1-conforming finite
elements suffer from a severe deterioration in the convergence rate; see §3.5.3
for an illustration.

Numerical illustrations. As a first example, consider the horizontal de-
formations of a two-dimensional, rectangular plate with a circular hole. The
triangulation of the plate is depicted in the left panel of Figure 3.8. The left
side is clamped, the displacement (1, 0) is imposed on the right side, and zero
normal stress is imposed on the three remaining sides. There is no external
load, and the Lamé coefficients are such that λ

µ
= 1. The plate in its equi-

librium configuration is shown in the right panel of Figure 3.8. P1 Lagrange
finite elements have been used.

The second example deals with the three-dimensional body illustrated in
Figure 3.9. A transverse load is imposed at the forefront of the body. The
approximate solution has been obtained using first-order prismatic Lagrange
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Fig. 3.8. Deformation of an elastic plate with a hole: reference configuration (left);
equilibrium configuration (right).
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O 

X Y 

Z 

Fig. 3.9. Three-dimensional continuum mechanics problem in which a transverse
load is applied to the forefront of the body; reference and equilibrium configurations
are presented; approximation with prismatic Lagrange finite elements of degree 1.
Courtesy of D. Chapelle (INRIA).

finite elements. Figure 3.9 presents the reference and the equilibrium config-
urations.

3.4.4 Beam flexion and fourth-order problems

The physical model. We investigate a model for beam flexion due to Tim-
oshenko; see, e.g., [Bat96]. Consider the horizontal beam of length L shown
in Figure 3.10. The x-coordinate is set so as to coincide with the beam axis.
The beam is clamped into a rigid wall at x = 0. Impose a distributed load
f = (fx, fy) in the (x, y)-plane and a distributed momentum m parallel to
the z-axis. Impose further a point force F = (Fx, Fy) and a point momentum
M at the beam extremity located at x = L. Assuming that the axis of the
beam remains in the (x, y)-plane, the beam flexion can be described by the
displacement u = (ux, uy) of the points along the axis and by the rotation
angle θ of the corresponding transverse sections.

In the Timoshenko model, the tangential displacement ux uncouples from
the unknowns uy and θ. Setting Ω = ]0, L[, ux solves −u′′x = 1

ES
fx in Ω with

boundary conditions ux(0) = 0 and u′x(L) = 1
ES
Fx, where E is the Young

modulus and S is the area of the beam section. Thus, a one-dimensional
second-order PDE with mixed boundary conditions is recovered.

To alleviate the notation, we now write u instead of uy, f instead of fy,
and F instead of Fy. The displacement u and the rotation angle θ satisfy the
PDEs

−(u′′ − θ′) = γ

EI
f and − γθ′′ − (u′ − θ) = γ

EI
m, (3.103)

where I is the inertia moment of the beam, γ = 2(1+ν)I
Sκ

, and κ is an empirical
correction factor (usually set to 5

6 ). Boundary conditions for u and θ are
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Fig. 3.10. Timoshenko model for beam flexion.

u(0) = 0, θ(0) = 0, (u′ − θ)(L) = γ

EI
F, θ′(L) =

1

EI
M. (3.104)

Weak formulation and coercivity. Let v be a test function for the normal
displacement u and let ω be a test function for the rotation angle θ. Multiply
the first equation in (3.103) by v, the second by ω, and integrate by parts over
Ω to obtain the weak formulation:

{
Seek (u, θ) ∈ X ×X such that ∀(v, ω) ∈ X ×X,

a
(
(u, θ), (v, ω)

)
= γ

EI
[
∫
Ω
(fv +mω) + Fv(L) +Mω(L)],

(3.105)

where

a
(
(u, θ), (v, ω)

)
=

∫

Ω

γθ′ω′ +

∫

Ω

(u′ − θ)(v′ − ω), (3.106)

and X = {v ∈ H1(Ω); v(0) = 0}. Equip the product space X × X with the
norm ‖(u, θ)‖X×X = ‖u‖1,Ω + ‖θ‖1,Ω . One readily verifies the following:

Proposition 3.85. Let f and m ∈ L2(Ω). If the couple (u, θ) solves (3.105),
it satisfies (3.103) a.e. in Ω and the boundary conditions (3.104).

Theorem 3.86 (Coercivity). Let γ > 0, let f,m ∈ L2(Ω), and let F,M ∈
R. Then, problem (3.105) is well-posed. Moreover, (u, θ) solves (3.105) if and
only if it minimizes over X ×X the energy functional

J(u, θ) = 1
2

∫

Ω

γ(θ′)2+ 1
2

∫

Ω

(u′− θ)2− γ
EI

[∫

Ω

(fu+mθ) + Fu(L) +Mθ(L)

]
.

Proof. The key point is to verify the coercivity of the bilinear form a defined
by (3.106). A straightforward calculation yields

a
(
(u, θ), (u, θ)

)
=

∫

Ω

γ(θ′)2 +

∫

Ω

(u′)2 +

∫

Ω

θ2 − 2

∫

Ω

θu′.

Let µ > 0. Use inequality (A.3) with parameter µ, together with the Poincaré
inequality cΩ‖v‖0,Ω ≤ ‖v′‖0,Ω valid for all v ∈ X, to obtain
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a
(
(u, θ), (u, θ)

)
≥ γ|θ|21,Ω + |u|21,Ω + ‖θ‖20,Ω − µ‖θ‖20,Ω −

1

µ
|u|21,Ω

≥
(
1− 1

µ

)
|u|21,Ω +

γ

2
|θ|21,Ω +

(γ
2
c2Ω + 1− µ

)
‖θ‖20,Ω .

Taking µ = 1 + γ
2 c

2
Ω yields

a
(
(u, θ), (u, θ)

)
≥

γ
2 c

2
Ω

1 + γ
2 c

2
Ω

|u|21,Ω +
γ

2
|θ|21,Ω ≥ α(γ)‖(u, θ)‖2X×X ,

with α(γ) = γ
4

c2Ω
1+c2

Ω

inf
(
1, c2Ω/(1 + γ

2 c
2
Ω)
)
> 0; since γ > 0, a is coercive.

Conclude using the Lax–Milgram Lemma and Proposition 2.4. ut

Discrete approximation. Let Th be a mesh of Ω with vertices 0 = x0 <
x1 < . . . < xN < xN+1 = L where N is a given integer. Consider a conforming
Pk Lagrange finite element approximation for both u and θ. The approxima-
tion space we consider is thus

Xh = {vh ∈ C0(Ω); ∀i ∈ {0, . . . , N}, vh|[xi,xi+1] ∈ Pk; vh(0) = 0},

yielding the approximate problem:

{
Seek (uh, θh) ∈ Xh ×Xh such that, ∀(vh, ωh) ∈ Xh ×Xh,

a
(
(uh, θh), (vh, ωh)

)
= γ

EI
[
∫
Ω
(fvh +mωh) + Fvh(L) +Mωh(L)].

(3.107)

Theorem 3.87. Let Th be a mesh of Ω. Along with the assumptions of The-
orem 3.86, assume that u and θ ∈ Hs(Ω) for some s ≥ 2. Then, setting
l = min(k, s− 1), there exists c such that, for all h,

|u− uh|1,Ω + |θ − θh|1,Ω ≤ c hlmax(|u|l+1,Ω , |θ|l+1,Ω),

‖u− uh‖0,Ω + ‖θ − θh‖0,Ω ≤ c hl+1 max(|u|l+1,Ω , |θ|l+1,Ω).

Proof. The estimate in the H1-norm results from Céa’s Lemma and from
Proposition 1.12 applied to u and θ. The estimate in the L2-norm results
from the Aubin–Nitsche Lemma. Indeed, one easily checks that the adjoint
problem is endowed with the required smoothing property. ut

Navier–Bernoulli model and fourth-order problems. A case often en-
countered in applications arises when the parameter γ becomes extremely
small. In the limit γ → 0, the Navier–Bernoulli model is recovered

u′ − θ = 0 on Ω,

meaning that the sections of the bended beam remain orthogonal to the axis.
Assuming that m = 0, EI = 1, and that the beam is clamped at its two
extremities, the normal displacement u is governed by the fourth-order PDE
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u′′′′ = f in Ω with boundary conditions u(0) = u(L) = u′(0) = u′(L) = 0,
leading to the weak formulation:

{
Seek u ∈ H2

0 (Ω) such that
∫ L
0
u′′v′′ =

∫ L
0
fv, ∀v ∈ H2

0 (Ω).
(3.108)

Proposition 3.88. Let f ∈ L2(Ω). Then, problem (3.108) is well-posed.
Moreover, problem (3.108) is equivalent to minimizing over H2

0 (Ω) the en-
ergy functional J(v) = 1

2

∫
Ω
(v′′)2 −

∫
Ω
fv.

Proof. Left as an exercise. ut

We consider a H2-conforming approximation to problem (3.108) using a
Hermite finite element approximation. Taking the boundary conditions into
account leads to the approximation space

X3
h0 = {vh ∈ C1(Ω); ∀i ∈ {0, . . . , N}, vh|[xi,xi+1] ∈ P3;

vh(0) = v′h(0) = vh(L) = v′h(L) = 0},

and the discrete problem:

{
Seek uh ∈ X3

h0 such that
∫ 1

0
u′′hv

′′
h =

∫ 1

0
fvh, ∀vh ∈ X3

h0.
(3.109)

Proposition 3.89. Let Th be a mesh of Ω. Let f ∈ L2(Ω), let u solve (3.108),
and let uh solve (3.109). Then, there exists c such that, for all h,

‖u− uh‖0,Ω + h|u− uh|1,Ω + h2|u− uh|2,Ω ≤ c h4‖f‖0,Ω .

Proof. Left as an exercise. ut

Example 3.90. Consider a unit-length beam clamped at its two extremities.
Apply a unit load f ≡ 1. Approximate problem (3.109) using uniform meshes
with step size h = 1

10 ,
1
20 ,

1
40 , and

1
80 . The left panel in Figure 3.11 presents

the error along the beam. We observe that the error vanishes at the mesh
points. This is because, in this simple one-dimensional problem, the Green
function associated with (3.108) belongs to the approximation space X3

h0; see
Remark 3.25 for a justification. The right panel in Figure 3.11 presents the
error in the L2-norm, H1-seminorm, and H2-seminorm. Convergence orders
are 4, 3, and 2, respectively, as predicted by the theory. ut

Remark 3.91. The two-dimensional version of problem (3.108) is to seek
u ∈ H2

0 (Ω) such that

∫

Ω

∆u∆v =

∫

Ω

fv, ∀v ∈ H2
0 (Ω). (3.110)
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Fig. 3.11. Hermite finite element approximation for a beam flexion problem. Left:
Error distribution along the beam for various mesh sizes; h = 1

10
(dashed), 1

20

(dotted), and 1
40

(solid). Right: Error in the L2-norm (solid), H1-seminorm (dotted),
and H2-seminorm (dashed) as a function of mesh size.

This problem models, for instance, the bending of a clamped plate submitted
to a transverse load; see [Des86, Cia97]. Regularity results for problem (3.110)
are found in [GiR86, p. 17], [Cia91, p. 297], and [Gri92, p. 109]. Finite element
approximations are discussed, e.g., in [Cia91, p. 273]; see also [GiR86, p. 204]
for a related mixed formulation of problem (3.110) in the context of the Stokes
equations in dimension 2. ut

3.5 Coercivity Loss

Coercivity loss occurs when some model parameters take extreme values. In
this case, although the exact problem is well-posed, discrete stability is ob-
served only if very fine meshes are employed. The examples addressed in this
section are:

(i) Advection–diffusion problems of the form (3.2) with dominant advection.
(ii) Elastic deformations of a quasi-incompressible material.
(iii) Elastic bending of a very thin Timoshenko beam.

The scope of this section is not to fix the above-mentioned problems, but to
highlight the mathematical background related to coercivity loss. We identify
the model parameter taking extreme values, and by letting this parameter
approach zero, we derive formally a problem with no coercivity, i.e., typically
involving a saddle-point or a first-order PDE. Such problems are thoroughly
investigated in Chapters 4 and 5.

3.5.1 The setting

Consider the problem:
{
Seek u ∈ V such that

aη(u, v) = f(v), ∀v ∈ V,
(3.111)
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where V is a Hilbert space, f ∈ V ′, and aη is a continuous, coercive, bilinear
form on V × V . The form aη depends on the phenomenological parameter η
that will subsequently take arbitrarily small values. Set ‖aη‖ := ‖aη‖V,V and
denote by αη the coercivity constant of aη, i.e.,

αη = inf
u∈V

aη(u, u)

‖u‖2V
.

Definition 3.92. Coercivity loss occurs in (3.111) if

lim
η→0

‖aη‖
αη

=∞.

Remark 3.93. By analogy with the terminology adopted for linear systems
in §9.1, coercivity loss amounts to the ill-conditioning of the form a. ut

Let Vh be a V -conforming approximation space and assume, as is often the
case in practice, that Vh is endowed with the optimal interpolation property

∀u ∈W, inf
vh∈Vh

‖u− vh‖V ≤ cihk‖u‖W ,

where W is a dense subspace of V and ci is an interpolation constant. Let uh
be the solution to the approximate problem:

{
Seek uh ∈ Vh such that

aη(uh, vh) = f(vh), ∀vh ∈ Vh.

Assuming that the exact solution u is in W yields the error estimate

‖u− uh‖V ≤
‖aη‖
αη

cih
k‖u‖W .

If problem (3.111) suffers from coercivity loss, this estimate does not yield any
practical control of the error. Obviously, keeping η fixed and letting h → 0,
convergence is achieved. However, the mesh size is limited from below by the
available computer resources. Therefore, it is not always possible in practice
to compensate coercivity losses by systematic mesh refinement. Some explicit
examples where this situation occurs are detailed below.

3.5.2 Advection–diffusion with dominant advection

Let Ω be a domain in Rd. Consider the advection–diffusion equation

−ν∆u+ β·∇u = f in Ω, (3.112)

where ν > 0 is the diffusion coefficient, β : Ω → Rd the advection velocity,
and f : Ω → R the source term. Following §3.1, we consider the bilinear form
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Fig. 3.12. Finite element approximation of an advection–diffusion equation with
dominant advection: h ≈ 1

10
and P1 approximation (top left); h ≈ 1

20
and P1 ap-

proximation (top right); h ≈ 1
40

and P1 approximation (bottom left); h ≈ 1
20

and
P2 approximation (bottom right).

aη(u, v) =

∫

Ω

ν∇u·∇v +
∫

Ω

v(β·∇u).

The parameter η = ν
‖β‖

[L∞(Ω)]d
measures the relative importance of advective

and diffusive effects. Assuming η ¿ 1 implies

‖aη‖
αη

= O

(‖β‖[L∞(Ω)]d

ν

)
= O

(
1

η

)
À 1,

leading to coercivity loss.
Figure 3.12 presents various approximate solutions to the advection–

diffusion equation (3.112). The domain Ω is the unit square in R2. We impose
u = 1 on the right side, u = 0 on the left side, and ∂x2

u = 0 on the two other
sides. The diffusion coefficient is set to ν = 0.002, the advection velocity is
constant and equal to β = (1, 0), and the source term f is zero. The exact
solution is

u(x1, x2) =
e
x1
ν − 1

e
1
ν − 1

.
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Since the diffusion coefficient ν takes very small values, the exact solution u
is almost identically zero in Ω except in a boundary layer of width ν located
near the right side where u sharply goes from 0 to 1. Three unstructured
triangulations of the domain Ω are considered: a coarse mesh containing 238
triangles (triangle size h ≈ 1

10 ); an intermediate mesh containing 932 triangles
(triangle size h ≈ 1

20 ); and a fine mesh containing 3694 triangles (triangle size
h ≈ 1

40 ). The P1 Galerkin solution is computed on the three meshes: h ≈ 1
10 ,

top left panel; h ≈ 1
20 , top right panel; and h ≈ 1

40 , bottom left panel. The P2

Galerkin solution computed on the intermediate mesh is shown in the bottom
right panel. We observe that spurious oscillations pollute the approximate
solution in the four cases presented. Oscillations are larger on the two coarser
meshes and for the P1 approximation.

In the limit η → 0, the diffusion term is negligible and the solution u is
governed by a first-order PDE. Hence, to understand and fix the problems
associated with coercivity loss, it is important to analyze the limit first-order
PDE; this is the purpose of Chapter 5.

3.5.3 Almost incompressible materials

Almost incompressible materials, such as rubber, are characterized by Lamé
coefficients λ and µ with a very large ratio λ

µ
. Another equivalent characteriza-

tion is that the Poisson coefficient ν is very close to 1
2 . In §3.4.1 we introduced

the bilinear form

aη(u, v) =

∫

Ω

λ∇·u∇·v +
∫

Ω

2µ ε(u):ε(v),

where ε(u) is the strain rate tensor. When the ratio η = µ
λ
is very small, one

verifies that
‖aη‖
αη

= O

(
λ

µ

)
= O

(
1

η

)
À 1,

leading to coercivity loss.
Consider a horizontal elastic flat plate with three internal holes; see Fig-

ure 3.13. The left side is kept fixed, the displacement (1, 0) is imposed on the
right side, and zero normal stress is imposed on the remaining external sides
as well as on the three internal sides. No internal load is applied, and the
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Fig. 3.13. Deformations of a horizontal, flat plate with three holes: maximal stresses
(left); Tresca stresses (right).
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ratio of the Lamé coefficients is λ
µ
= 100. Figure 3.13 presents Tresca stresses

and maximal stresses obtained with a P1 Lagrange finite element approxima-
tion. We observe that spurious oscillations pollute the discrete solution; in
the literature, this phenomenon is often referred to as locking.

When λ
µ
À 1, one can show that ∇·u → 0. Introducing a new scalar

unknown p in place of the product −λ∇·u yields

{
σ = −pI + 2µε(u),

∇·u = 0.

Since ∆u = 2∇·ε(u) when ∇·u = 0, the governing equations of an incom-
pressible medium in the framework of linear elasticity become

{
−µ∆u+∇p = f,

∇·u = 0.

Formally, we recover the Stokes equations often considered to model steady,
incompressible flows of creeping fluids. The new unknown p can be identi-
fied with a pressure. The Stokes equations are endowed with a saddle-point
structure. The analysis of this class of problems is the purpose of Chapter 4.

3.5.4 Very thin beams

Referring to §3.4.4 for more details, the bilinear form arising in Timoshenko’s
model of beam flexion is

aη
(
(u, θ), (v, ω)

)
=

∫

Ω

γθ′ω′ +

∫

Ω

(u′ − θ)(v′ − ω),

where u is the normal displacement of the beam axis and θ the rotation angle
of the beam section. The parameter η is simply equal to γ. When γ ¿ 1, the
proof of Theorem 3.86 shows

‖aη‖
αη

= O

(
1

γ

)
= O

(
1

η

)
À 1,

leading to coercivity loss. Note that γ ¿ 1 when the ratio between the inertia
moment and the section of the beam is very small, as for very thin beams.
In this case, the beam bends according to the Navier–Bernoulli assumption,
meaning that the sections remain almost perpendicular to the beam axis.

Figure 3.14 compares analytical and approximate solutions for a beam of
length L = 1 and parameter EI = 1. The flexion is induced by a force F = 1
applied at the extremity x = L. Solutions are obtained using the P1 finite
element approximation for both the displacement u and the rotation angle
θ on a uniform mesh with step size h = 1

20 . The left column in Figure 3.14
corresponds to the case γ = 0.01 and the right column to the case γ = 0.0001.
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Fig. 3.14. Comparison between the analytical and finite element solutions (solid
and dashed lines, respectively) for the bending of a Timoshenko beam clamped at
its left extremity: γ = 0.01 (left column); γ = 0.0001 (right column).

In the second case, coercivity loss leads to very poor accuracy, indicating a
locking phenomenon.

To pass to the limit γ → 0 in Timoshenko’s model (3.103), we introduce
the auxiliary unknown

v =
1

γ

(
u−

∫ x

0

θ

)
.

The unknowns (v, θ) satisfy the PDEs −v′′ = 1
EI
f and −θ′′ − v′ = 1

EI
m in

]0, L[, together with the boundary conditions v(0) = 0, θ(0) = 0, v′(L) = 1
EI
F ,

and θ′(L) = 1
EI
M . One readily checks that this new problem leads to a

coercive bilinear form. Furthermore, the displacement u is recovered from the
first-order PDE {

u′ = γv′ + θ,

u(0) = 0.
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Here, as in §3.5.2, coercivity loss is associated with the presence of a first-order
PDE in the limit problem. The finite element approximation of such PDEs is
investigated in Chapter 5.

3.6 Exercises

Exercise 3.1. Complete the proof of Theorem 3.8.

Exercise 3.2. Let Ω = ]0, 1[, let f ∈ L2(Ω), and let k ∈ R. Consider the
problem:

{
Seek u ∈ H1

0 (Ω) such that
∫ 1

0
u′v′ + k

∫ 1

0
u′v +

∫ 1

0
uv =

∫ 1

0
fv, ∀v ∈ H1

0 (Ω).

(i) Write the corresponding PDE and boundary conditions.
(ii) Prove that the problem is well-posed. (Hint: Use the Lax–Milgram

Lemma.)

Exercise 3.3. Let Ω be a domain in R2, let f ∈ L2(Ω), and let σ ∈ R. Show
that if |σ| < 1, the following problem is well-posed:

{
Seek u ∈ H1

0 (Ω) such that
∫
Ω

[
∂xu∂xv + σ(∂xu∂yv + ∂yu∂xv) + ∂yu∂yv

]
=
∫
Ω
fv, ∀v ∈ H1

0 (Ω).

Exercise 3.4. Consider the domain Ω whose definition in polar coordinates
is Ω = {(r, θ); 0 < r < 1, π

α
< θ < 0} with α < − 1

2 . Let ∂Ω1 = {(r, θ); r =
1, π

α
< θ < 0} and ∂Ω2 = ∂Ω\∂Ω1. Consider the following problem: −∆u = 0

in Ω, u = sin(αθ) on ∂Ω1, and u = 0 on ∂Ω2.

(i) Let ϕ1 = rα sin(αθ) and ϕ2 = r−α sin(αθ). Prove that ϕ1 and ϕ2 solve the
above problem. (Hint: In polar coordinates, ∆ϕ = 1

r
∂r(r∂rϕ) +

1
r2
∂θθϕ.)

(ii) Prove that ϕ1 and ϕ2 are in L2(Ω) if −1 < α < − 1
2 .

(iii) Consider the following problem: Seek u ∈ H1(Ω) such that u = sin(αθ)
on ∂Ω1, u = 0 on ∂Ω2, and

∫
Ω
∇u·∇v = 0 for all v ∈ H1

0 (Ω). Prove that
ϕ2 solves this problem, but ϕ1 does not. Comment.

Exercise 3.5 (Péclet number). Let Ω = ]0, 1[, let ν > 0, and let β ∈ R.
Consider the following problem:

{
−νu′′ + βu′ = 1,

u(0) = u(1) = 0.

(i) Verify that the exact solution is u(x) = 1
β
(x− 1−eλx

1−eλ ) with λ = β
ν
.

(ii) Plot the solution for β = 1 and ν = 1, ν = 0.1, and ν = 0.01. Comment.
(iii) Write the problem in weak form and show that it is well-posed.
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(iv) Consider a P1 H
1-conforming finite element approximation on a uniform

grid Th =
⋃

0≤i≤N [ih, (i + 1)h] where h = 1
N+1 . Show that the stiffness

matrix is A = ν
h
tridiag(−1− γ

2 , 2,−1+
γ
2 ), where γ = βh

ν
is the so-called

local Péclet number.
(v) Solve the linear system and comment. (Hint: If γ 6= 2, the solution is

Ui =
1
β
(ih− 1−δi

1−δN+1 ) where δ =
2+γ
2−γ .) What happens if γ = 2 or γ = −2?

(vi) Plot the approximate solution for γ = 1 and γ = 10. Comment.

Exercise 3.6. Let ν > 0 and b > 0. Consider the equation −νu′′ + bu′ = f
posed on ]0, 1[ with the boundary conditions u(0) = 0 and u′(1) = 0.

(i) Write the weak formulation of the problem.
(ii) Let Th be a mesh of ]0, 1[ and use P1 finite elements to approximate the

problem. Let [xN−1, xN ] be the element such that xN = 1. Let UN−1 and
UN be the value of the approximate solution at xN−1 and xN . Write the
equation satisfied by UN−1 and UN when testing the weak formulation
by the nodal shape function ϕN .

(iii) What is the limit of the equation derived in question (ii) when |xN −
xN−1| → 0? What is the limit equation when ν ¿ |xN − xN−1|. Com-
ment.

Exercise 3.7. Let Ω be a domain in Rd. Let µ be a positive constant, let β
be a constant vector field, and let f ∈ L2(Ω). Equip V = H1

0 (Ω) with the
norm v 7→ ‖v‖V = ‖∇v‖0,Ω . Consider the problem: Seek u ∈ V such that, for
all v ∈ V , a(u, v) =

∫
Ω
fv, where a(u, v) =

∫
Ω
µ∇u·∇v + (β·∇u)v.

(i) Explain why v 7→ ‖∇v‖0,Ω is a norm in V .
(ii) Show that the above problem is well-posed.
(iii) Let Vh be a finite-dimensional subspace of V . Let λ ≥ 0, define the

bilinear form ah(wh, vh) = a(wh, vh) + λh
∫
Ω
∇wh·∇vh, and let uh ∈ Vh

be such that ah(uh, vh) =
∫
Ω
fvh for all vh ∈ Vh. Set µh = µ+λh. Prove

‖u− uh‖V ≤ inf
vh∈Vh

{
λh
µh

sup
wh∈Vh

∫
Ω
∇vh·∇wh
‖wh‖V

+
(
1 + ‖a‖

µh

)
‖u− vh‖V

}
.

(iv) Assume that there is an interpolation operator Πh and an integer k > 0
such that ‖v − Πhv‖V ≤ c hl−1‖v‖l,Ω for all 1 ≤ l ≤ k + 1 and all
v ∈ H l(Ω) ∩ V . Prove and comment the following estimate:

‖u− uh‖V ≤ c
{(

1 + ‖a‖
µh

)
hk|u|k+1,Ω + λ

µh
h‖∇u‖0,Ω

}
.

Exercise 3.8. The goal of this exercise is to prove estimate (3.27) using du-
ality techniques. Assume p <∞. Let v = |u− uh|p−1sgn(u− uh) and let z be
the solution to the adjoint problem (3.17) with data v.

(i) Verify that v ∈ Lp′(Ω) with 1
p
+ 1

p′
= 1.
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(ii) Using assumption (iv) of Theorem 3.21, find a constant δ′ such that, for
p′ > δ′, z ∈W 2,p′(Ω).

(iii) Show that, for all zh ∈ Vh,

‖u− uh‖pLp(Ω) ≤ ‖a‖ ‖u− uh‖1,p,Ω‖z − zh‖1,p′,Ω .

(iv) Conclude.

Exercise 3.9 (Proof of Lemma 3.27).

(i) Explain why γ0(Ihu) = I∂h
(
γ0(u)

)
= I∂h (g) = γ0(uh).

(ii) Show that a(Ihu− uh, vh) = a(Ihu− u, vh), for all vh ∈ Vh0.
(iii) Use (bnb1h) to prove αh‖Ihu− uh‖1,Ω ≤ ‖a‖ ‖Ihu− u‖1,Ω .
(iv) Conclude.

Exercise 3.10 (Proof of Lemma 3.28).

(i) Prove that there is θ ∈ H2(Ω)∩H1
0 (Ω) such that a(v, θ) =

∫
Ω
(Ihu−uh)v

for all v ∈ H1
0 (Ω). Show that

‖Ihu− uh‖20,Ω ≤ ‖a‖ ‖u− uh‖1,Ω‖θ − wh‖1,Ω + a(Ihu− u, θ).

(ii) Using Lemma 3.27 to estimate ‖u− uh‖1,Ω and using assumption (ii) in
Lemma 3.27, show that

‖Ihu− uh‖20,Ω ≤ c ‖u− Ihu‖1,Ω inf
wh∈Vh0

‖θ − wh‖1,Ω

+ c (‖u− Ihu‖0,Ω + ‖g − Ihg‖0,∂Ω)‖θ‖2,Ω .

(iii) Show that infwh∈Vh0
‖θ − wh‖1,Ω ≤ c h‖θ‖2,Ω and that

‖Ihu− uh‖0,Ω ≤ c (h‖u− Ihu‖1,Ω + ‖u− Ihu‖0,Ω + ‖g − Ihg‖0,∂Ω).

(iv) Conclude.

Exercise 3.11. Prove Propositions 3.88 and 3.89.

Exercise 3.12. Assume that Ω is a bounded domain of class C2 in R2. Using
the notation of Lemma B.69, prove that ∇· : [H1

0 (Ω)]2 → L2∫
=0(Ω) is con-

tinuous and surjective. (Hint: For g ∈ L2∫
=0(Ω), construct [H1

0 (Ω)]2 3 u =
∇q + ∇×ψ such that ∇·u = g and q solves a Poisson problem, ψ solves a
biharmonic problem, and ∇×ψ := (∂2ψ,−∂1ψ).)

Exercise 3.13. Let Ω be a domain in Rd. Prove that C0,1(∂Ω) ⊂ H
1
2 (∂Ω)

with continuous embedding.

Exercise 3.14. Let Ω = ]0, 1[
2
. Consider the problem −∆u+u = 1 in Ω and

u|∂Ω = 0. Approximate its solution with P1 H
1-conforming finite elements.
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(i) Let {λ0, λ1, λ2} be the barycentric coordinates
in the triangle Kh shown in the figure. Compute

1

3

2

x

y

h

h

the entries of the elementary stiffness matrix
Aij =

∫
Kh
∇λi·∇λj +

∫
Kh

λiλj , and the right-

hand side vector
∫
Kh

λi. (Hint: Use a quadrature

from Table 8.2.)
(ii) Consider the two meshes shown in the

0 10 1

1 1

Maillage 1 Maillage 2

0 10 1

1 1

Maillage 1 Maillage 2

figure. Assemble the stiffness matrix and
the right-hand side in both cases and
compute the solution. For a fine mesh
composed of 800 elements, uh(

1
2 ,

1
2 ) ≈

0, 0702. Comment.

Exercise 3.15. Let Ω = ]0, 3[ × ]0, 2[. Consider the problem −∆u = 1 in Ω
and u|∂Ω = 0. Approximate its solution with P1 H1-conforming finite ele-
ments.

(i) Consider the reference simplex T̂ and the reference square K̂ shown in
the figure. The nodes are numbered an-

(0,0) (1,0)

(0,1)

(0,0) (0,1)

(1,1)(0,1)

(0,0) (1,0)

(0,1)

(0,0) (0,1)

(1,1)(0,1)

ticlockwise from (0, 0). Let {λ̂1, λ̂2, λ̂3}
and {θ̂1, θ̂2, θ̂3, θ̂4} be the local shape

functions on T̂ and K̂, respectively. Com-

pute the matrices
(∫

T̂
∇λ̂i·∇λ̂j

)
1≤i,j≤3

and
(∫

K̂
∇θ̂i·∇θ̂j

)
1≤i,j≤4

.

(ii) Consider the meshes shown in

maillage 1 maillage 2 maillage 3maillage 1 maillage 2 maillage 3maillage 1 maillage 2 maillage 3

the figure. Assemble the stiff-
ness matrix for each of these
three meshes.

Exercise 3.16. Let Ω be a two-dimensional domain and let {Th}h>0 be a
shape-regular family of meshes composed of affine simplices. Let P 2

pt,h be the
finite element space defined in (1.71). Let

P 2
pt,h,0 =

{
vh ∈ P 2

pt,h; ∀F ∈ F∂h ,
∫

F

vh = 0

}
.

Prove that the extended Poincaré inequality (3.35) holds in P 2
pt,h,0. (Hint:

Proceed as in the proof of Lemma 3.31.)

Exercise 3.17 (Discrete maximum principle). Let Ω be a polygonal do-
main in R2 and let Th be an affine simplicial mesh of Ω. Assume that all the
angles of the triangles in Th are acute. Let P 1

c,h be the approximation space
constructed on Th using continuous, piecewise linears. Let {ϕ1, . . . , ϕN} be
the global shape functions and let A be the stiffness matrix associated with
the Laplace operator, i.e., Aij =

∫
Ω
∇ϕi·∇ϕj for 1 ≤ i, j ≤ N .
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(i) Show that A is an M-matrix, i.e., all its off-diagonal entries are non-
positive and its row-wise sums are non-negative.

(ii) Prove the following discrete maximum principle: If f ∈ L2(Ω) is such
that f ≤ 0 in Ω, the finite element solution uh to the homogeneous
Dirichlet problem with right-hand side f is such that uh ≤ 0 in Ω.


