3

Coercive Problems

This chapter deals with problems whose weak formulation is endowed with a
coercivity property. The key examples investigated henceforth are scalar ellip-
tic PDEs, spectral problems associated with the Laplacian, and PDE systems
derived from continuum mechanics. The goal is twofold: First, to set up a
mathematical framework for well-posedness; then, to investigate conforming
and non-conforming finite element approximations based on Galerkin meth-
ods. Error estimates are derived from the theoretical results of Chapters 1
and 2 and are illustrated numerically. The last section of this chapter is con-
cerned with coercivity loss and is meant to be a transition to Chapters 4
and 5.

3.1 Scalar Elliptic PDEs: Theory

Let £2 be a domain in R%. Consider a differential operator £ in the form
Lu = —V-(0-Vu) + 0-Vu + pu, (3.1)

where o, 3, and  are functions defined over {2 and taking their values in R%¢,
R?, and R, respectively. Given a function f : 2 — R, consider the problem of
finding a function u : {2 — R such that

Lu = in £,
f (3.2)
Bu=g on 02,
where the operator B accounts for boundary conditions. The model problem
(3.2) arises in several applications:

(i) Heat transfer: u is the temperature, 0 = kZ where & is the thermal
conductivity, 3 is the flow field, up = 0, and f is the externally supplied
heat per unit volume.
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(i1) Advection—diffusion: u is the concentration of a solute transported in a
flow field 8. The matrix ¢ models the solute diffusivity resulting from
either molecular diffusion or turbulent mixing by the carrier flow. Solute
production or destruction by chemical reaction is accounted for by the
linear term pu, and the right-hand side f models fixed sources or sinks.

Henceforth, the following assumptions are made on the data: f € L2(£2),
o € [L=(2)|%, B € [L>®(2)]%, V-3 € L>®(£2), and p € L>=(£2). Furthermore,
the operator £ is assumed to be elliptic in the following sense:
Definition 3.1. The operator L defined in (3.1) is said to be elliptic if there
exists o9 > 0 such that
d

Ve € RY, > 0ijti& = ooli€ld ace. in £2. (3.3)

ij=1
Equation (3.2) is then called an elliptic PDE.

Example 3.2. A fundamental example of an elliptic operator is the Lapla-
cian, L = —A, which is obtained for 0 =Z, f =0, and pu = 0. O

3.1.1 Review of boundary conditions and their weak formulation

We first proceed formally and then specify the mathematical framework for
the weak formulation.

Homogeneous Dirichlet boundary condition. We want to enforce u = 0
on 9f2. Multiplying the PDE Lu = f by a (sufficiently smooth) test function
v vanishing at the boundary, integrating over {2, and using the Green formula

/Q—V'(O"VU)U = /(ZVU~J~VU—/(SQU(noU~Vu), (3.4)
yields
/ Vv-o-Vu + v(8-Vu) + puv :/ fo.
Q 2

A possible regularity requirement on v and v for the integrals over 2 to be

meaningful is
u € H(92) and ve HY(N).

Since u € H'(£2), Theorem B.52 implies that u has a trace at the bound-
ary. Because of the boundary condition w5, = 0, the solution is sought in
H}(£2). Test functions are also taken in H(£2), leading to the following weak
formulation:

{ Seek u € Hg(£2) such that (3.5)

g, (u,0) = [ fv, Vv e Hj(12),
with the bilinear form

o8, (U, v) = /Q Vv-0-Vu + v(8-Vu) + puv. (3.6)
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Proposition 3.3. If u solves (3.5), then Lu= f a.e. in 2 andu =0 a.e. on
0n.

Proof. Let ¢ € D({2) and let u be a solution to (3.5). Hence,
(=V-(o-Vu),0)prp = (0-Vu,Vo)p p = / V-o-Vu
2
= [ (f=pvu—mp.

yielding (Lu, ¢)p p = fQ fp. Owing to the density of D(£2) in L?(£2), Lu = f
in L2(£2). Therefore, Lu = f a.e. in §2. Moreover, u = 0 a.e. on 952 by
definition of Hg(£2); see Theorem B.52. O

Non-homogeneous Dirichlet boundary condition. We want to enforce
u = g on 0f2, where g : 32 — R is a given function. We assume that g
is sufficiently smooth so that there exists a lifting u, of g in H*(£2), i.e., a
function u, € H'(£2) such that u, = g on 942; see §2.1.4. We obtain the weak
formulation:

Seek u € H'(£2) such that
u=1u,+¢, ¢ H}2), (3.7)
Ao p.u(Pyv) = fQ fv—aspu(ug,v), Yve Hi ().

Proposition 3.4. Let g € H2(912). If u solves (3.7), then Lu = f a.e. in 02
and w =g a.e. on 052.

Proof. Similar to that of Proposition 3.3. ad

When the operator L is the Laplacian, (3.7) is called a Poisson problem.

Neumann boundary condition. Given a function g : 02 — R, we want
to enforce n-o-Vu = g on 9f2. Note that in the case 0 = Z, the Neumann
condition specifies the normal derivative of u since n-Vu = 0,u. Proceeding
as before and using the Neumann condition in the surface integral in (3.4)
yields the weak formulation:

{ Seek u € H'(£2) such that (3.8)

to5.u(,0) = [o fv+ [po v, Vv € H'(R).

Proposition 3.5. Let g € L?(012). If u solves (3.8), then Lu = f a.e. in 2
and n-o-Vu =g a.e. on 92.

Proof. Taking test functions in D({2) readily implies Lu = f a.e. in (2. There-
fore, —V-(o-Vu) € L%(2). Corollary B.59 implies n-0-Vu € Hz(d82) =
H~2(812) since
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Yo € H%(aﬂ), <n-a~Vu,¢>H_% gy = /Q —V-(o-Vu)ug + /Qquychu,

)

where ugy € H'(2) is a lifting of ¢ in H'(§2). Then, (3.8) yields
Vo € H2(092), (n-o-Vu, ), 4 .3 = /8 99,
: 2

showing that n-o-Vu = g in H*%(&Q) and, therefore, in L?(02) since g
belongs to this space. 0O

Mixed Dirichlet—Neumann boundary conditions. Consider a partition
of the boundary in the form 02 = 0f2p U 0f2x. Impose a Dirichlet con-
dition on 9f2p and a Neumann condition on Of2y. If the Dirichlet condi-
tion is non-homogeneous, assume that 9f2p is smooth enough so that, for all
g € Hz(d2p), there exists an extension § € Hz(882) such that Joon = 9

and ||§||H%(8m <c ||g||H%(aQD) uniformly in g. Then, using the lifting of g

in H'(§2), one can assume that the Dirichlet condition is homogeneous. The
boundary conditions are thus

u=0 on Jdfp,
n-o-Vu=g¢g on 0,

with a given function g : 92y — R.

Proceeding as before, we split the boundary integral in (3.4) into its con-
tributions over 9f2p and df2N. Taking the solution and the test function in
the functional space

HéQD(Q) ={uec H' (2);u=0o0n 02p},

the surface integral over {2 vanishes. Furthermore, using the Neumann con-
dition in the surface integral over 02y yields the weak formulation:

{ Seek u € Hjg, ({2) such that (3.9)

o, (u,0) = [ fo+ [0 gv, Vo€ Hjo (02).
Proposition 3.6. Let 0f2p C 02, assume meas(9f2p) > 0, and set I2N =

ONOp. Let g € L*(002x). If u solves (3.9), then Lu = f a.e. in 2, u=10
a.e. on 0f2p, and (n-o-Vu) = g a.e. on 0f2y.

Proof. Proceed as in the previous proofs. a

Robin boundary condition. Given two functions g,v : 92 — R, we want
to enforce yu+mn-o-Vu = g on 9f2. Using this condition in the surface integral
in (3.4) yields the weak formulation:

{ Seek u € H*(f2) such that (3.10)

o3, (U, v) +f39 yuv = [, fv—&—faﬂ gv, Yv € HY(£).
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Problem Vv a(u,v) fw)
Homogeneous Dirichlet | H{ (£2) a8, (u,v) Jo fo
Neumann H'(02) ao,3,u(u,0) Jo fo+ [509v
Dirichlet—-Neumann Hpo, (2) ao,8,u (U, v) Jofo+ fanN gv
Robin Hl(Q) agﬁ,u(u,v)—i—fanfyuv fg fv—l—fangv

Table 3.1. Weak formulation corresponding to the various boundary conditions for
the second-order PDE (3.2). The bilinear form as,g,,(u,v) is defined in (3.6).

Proposition 3.7. Let g € L%(082) and let v € L*(012). If u solves (3.10),
then Lu = f a.e. in 2 and yu+ n-c-Vu = g a.e. on 052.

Proof. Proceed as in the previous proofs. a

Summary. Except for the non-homogeneous Dirichlet problem, all the prob-
lems considered herein take the generic form:

{Seek u € V such that

a(u,v) = f(v), Yv eV, (3:11)

where V is a Hilbert space satisfying
Hi () cV c HY(ND).

Moreover, a is a bilinear form defined on V x V| and f is a linear form defined
on V; see Table 3.1. For the non-homogeneous Dirichlet problem, u € H(£2),
u = ug + ¢ where ug4 is a lifting of the boundary data and ¢ solves a problem
of the form (3.11).

Essential and natural boundary conditions. It is important to observe
the different treatment between Dirichlet conditions and Neumann or Robin
conditions. The former are imposed explicitly in the functional space where
the solution is sought, and the test functions vanish on the corresponding part
of the boundary. For this reason, Dirichlet conditions are often termed essen-
tial boundary conditions. Neumann and Robin conditions are not imposed by
the functional setting but by the weak formulation itself. The fact that test
functions have degrees of freedom on the corresponding part of the boundary
is sufficient to enforce the boundary conditions in question. For this reason,
these conditions are often termed natural boundary conditions. Note that it is
also possible to treat Dirichlet conditions as natural boundary conditions by
using a penalty method; see §8.4.3.

3.1.2 Coercivity

Theorem 3.8. Let f € L3(2), let o € [L®(0)]%? be such that (3.3)
holds, let 3 € [L°°(2)]? with V- € L*®(£2), and let p € L*>(£2). Set
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p = infess;en (,u— %V-ﬁ) and let cg be the constant in the Poincaré in-
equality (B.23).

(i) Both the homogeneous Dirichlet problem (3.5) and the non-homogeneous
Dirichlet problem (3.7) are well-posed if
o0 + min<0, LQ) > 0. (3.12)
(ii) The Neumann problem (3.8) is well-posed if

inf n) > 0. .1
p>0 and 1£eg%s(ﬁ n) >0 (3.13)

(iii) The mized Dirichlet-Neumann problem (3.9) is well-posed if (3.12) holds,
meas(02p) > 0, and 92~ = {z € 82; (B-n)(x) < 0} C ON2p.
(iv) Set q = inf essyeon (v + 36-n). The Robin problem (3.10) is well-posed if

p>0, ¢>0, and pqg#D0. (3.14)

Proof. We prove (i) and (iv) only, leaving the remaining items as an exercise.
(1) Proof of (i). Using the ellipticity of £ and the identity

[usvn =4 [ (ope+d [ g

which is a direct consequence of the divergence formula (B.19), yields
Vu € Hy(2),  agpu(u,u) = oolulf o + pllullf o-

Setting 6 = min(0, £ ) and using the Poincaré inequality (B.23) yields

7C_Q

1)
Vu € HY(D), o (i) > (oo n —Q) ul? o > allul?p,

cn(cnootd)
1+c?z

H}(£2). The well-posedness of the homogeneous Dirichlet problem then results

from the Lax—Milgram Lemma, while that of the non-homogeneous Dirichlet

problem results from Proposition 2.10.

(2) Proof of (iv). Let a(u,v) = ao,3,,(u,v) + [, yuv. A straightforward cal-

culation shows that

with a = , showing that the bilinear form a, g, is coercive on

Vue H'(2), a(u,u)> 00|U\?,9 +P||u||(2),9 + (I||U||3,an~

If p > 0 and ¢ > 0, the bilinear form a is clearly coercive on H!(§2) with
constant o = min(op,p). If p > 0 and ¢ > 0, the coercivity of a is readily
deduced from Lemma B.63. In both cases, well-posedness then results from
the Lax—Milgram Lemma. 0O
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Remark 3.9.

(i) For the homogeneous and the non-homogeneous Dirichlet problem, f
can be taken in H~1(2) = (H}(£2))". In this case, the right-hand side in
(3.11) becomes f(v) = (f,v) -1 g1, and the problem is still well-posed. The
stability estimate takes the form |lull1.0 < c|/f|l-1,0-

(ii) Consider the Laplacian with homogeneous Dirichlet boundary con-
ditions, i.e., given f € H~1(2), solve —Au = f in 2 with the boundary
condition ujpp = 0. Then, the weak formulation of this problem amounts to
seeking u € H§(2) such that [, Vu-Vv = (fsv)g-1,mp for all v € H(0).
Owing to Theorem 3.8(i) with 8 = 0, 0 = Z, and u = 0, this problem is
well-posed. This means that the operator (—A)~1 : H=1(02) — H}() is an
isomorphism.

(iii) Uniqueness is not a trivial property in spaces larger than H!(§2). For
instance, one can construct domains in which this property does not hold in
L? for the Dirichlet problem; see Exercise 3.4.

(iv) Consider problem (3.11). If the advection field 3 vanishes and if the
diffusion matrix o is symmetric a.e. in {2, the bilinear form a is symmetric and
positive. Therefore, owing to Proposition 2.4, (3.11) can be reformulated into
a variational form. For the homogeneous Dirichlet problem, the variational
form in question is

miln (%/ VU-U-VU+%/ ;wz—/ fv).
vEH(£2) n n 2

The case of other boundary conditions is left as an exercise.

(v) When p and 8 vanish, the solution to the Neumann problem (3.8) is
defined up to an additive constant. Therefore, we decide to seek a solution
with zero-mean over 2. Accordingly, we introduce the space

mlo(n)—{veﬂl(ﬁ); /Qv—o}.

To ensure the existence of a solution, the data f and g must satisfy a compati-
bility relation. Owing to the fact that [, f = —[, V-(6-Vu) = —[,,n-0-Vu =
—[50 9, the compatibility condition is

/Qf+/mg:0. (3.15)

Thus, the weak formulation of the purely diffusive Neumann problem is:

{Seek u € H (1) such that (3.16)

fQ VU'O"VU = fQ f’U + fOQ guv, Vv S H’IZO(Q)

Test functions have also been restricted to the functional space Hflzo(Q) In-
deed, owing to (3.15), a constant test function leads to the trivial equation
“0 = 0.” Moreover, under the conditions (3.3) and (3.15), assuming that the
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data satisfy f € L?(£2) and g € L?(912), and using Lemma B.66, one readily
verifies that problem (3.16) is well-posed with a stability estimate of the form
Vf € L*(2), Vg € L*(902), |lullre < c(Ifllo.e + lgllo.0n)- O

3.1.3 Smoothing properties

We have seen that the natural functional space V' in which to seek the solu-
tion to (3.11) is such that H}(£2) € V C H'(£2). For sufficiently smooth data,
stronger regularity results can be derived. The interest of these results stems
from the fact that in the framework of finite element methods, the regularity
of the exact solution directly controls the convergence rate of the approximate
solution; see §3.2.5 for numerical illustrations. In this section, it is implicitly
assumed that the hypotheses of Theorem 3.8 hold so that the problems con-
sidered henceforth are well-posed. This section is set at an introductory level;
see, e.g., [Gri85, Gri92, CoD02] for further insight.

Theorem 3.10 (Domain with smooth boundary). Let m > 0, let {2 be
a domain of class C™*+2 and let f € H™(£2). Assume that the coefficients o;;
are in C™T(2) and that the coefficients 3; and u are in C™(82). Then:

(i) The solution to the homogeneous Dirichlet problem (3.5) is in H™ 2((2).
(ii) Assuming g € H™2(012), the solution to the non-homogeneous Dirich-
let problem (3.7) is in H™12(£2).
(i) Assuming g € H™2(912), the solution to the Neumann problem (3.8) is
in H™2((2).
(iv) Assuming g € H™2(002) and € C™+1(d12), the solution to the Robin
problem (3.10) is in H™T2(02).

Remark 3.11.

(i) The reader who is not familiar with Sobolev spaces involving frac-
tional exponents may replace an assumption such as g € H m+%((“).(2) by
g € C"1(90) and g+ € CO1(912); see Example B.32(ii).

(ii) There is no regularity result for the mixed Dirichlet—Neumann problem.
Indeed, even if f, g, and the domain {2 are smooth, the solution u may not
necessarily belong to H?(£2). For instance, in two dimensions, the solution
to —Au = 0 on the upper half-plane {5 > 0} with the mixed Dirichlet—
Neumann conditions

Oou = 0, for 1 < 0 and x5 =0,

u=r? sin(36), otherwise,
is u(zy,z2) = rs sin(36). Clearly, u ¢ H? owing to the singularity at the
origin.

(iii) Theorem 3.10 can be extended to more general Sobolev spaces; see,
e.g., [GiR86, pp. 12-15]. For instance, let p be a real satisfying 1 < p < oo and
let m > 0. Let f € W™P({2) and g € Wm+27%’p(0(2). Then, the solution to
the non-homogeneous Dirichlet problem (3.7) is in W™T2P(§2). O
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Theorem 3.12 (Convex polyhedron). Let {2 be a convex polyhedron and
denote by U}']:1 012; the set of boundary faces (edges in two dimensions).

Assume that the coefficients o;; are in CY(0) and that the coefficients (3; and
w are in CO(2). Then:

(i) The solution to the homogeneous Dirichlet problem (3.5) is in H?((2).
(ii) In dimension 2, if g € H?(812), the solution to the non-homogeneous
Dirichlet problem (3.7) is in H?(£2).
(iii) In dimension 2, if gjon, € H%(aﬂj) for 1 < j < J, the solution to the
Neumann problem (3.8) is in H?(£2). In dimension 3, the conclusion still
holds if g = 0.

Remark 3.13.

(i) When the polyhedron {2 is not convex, the best regularity result is
u € H3(£2). In particular, it can be shown (see [Gri85, Gri92]) that in the
neighborhood of a vertex S with an interior angle w > , the solution u to
the homogeneous Dirichlet problem can be decomposed into the form

u=7+u,

where % € H?(£2) and 7T is a singular function behaving like % in the neigh-
borhood of S, r being the distance to S.

(ii) Theorem 3.12 can be extended to more general Sobolev spaces. For
instance, let p be a real satisfying 1 < p < oo, and let f € LP(£2). Then,
the solution to the homogeneous Dirichlet problem (3.5) posed on a convex
polyhedron is in W2P(£2).

(iii) The assumption on ¢ in Theorem 3.12(ii) can be weakened as fol-
lows: Denote by {S;}1<;<s the vertices of 0f2 so that 0f2; is the segment
S;Sj+1, and conventionally set Syy1 = S1 and 92,41 = 0§2;. Then, if
glo; € H%(ﬁﬂj) and g|agj(5j) = gl@Qj+1(Sj+1) for all 1 < 5 < J, the
solution to the non-homogeneous Dirichlet problem (3.7) is in H?(£2).

(iv) A regularity result analogous to Theorem 3.12(iii) is valid for the
purely diffusive Neumann problem (3.16). a

Definition 3.14 (Smoothing property). Problem (3.11) is said to have
smoothing properties in 2 if assumption (AN1) in §2.3.4 is satisfied with Z =
H2(Q)NH{(2), L =L*£), and I(-,-) = (-,")o.2, i.¢., if there exists cs such
that, for all o € L?(£2), the solution w to the adjoint problem:

{ Seek w € V' such that

Nl
a(v,w) = [,pv, YveV, (8.17)

satisfies ||wl|2,2 < csllello,o-

Remark 3.15. Because the Laplace operator is self-adjoint, the Laplacian
has smoothing properties in {2 if the unique solution to the homogeneous
Dirichlet problem with f € L?(£2) is in H2(£2) N H}(£2), i.e., if the operator
(—A)~1: L2(0) — H%(2) N H}(2) is an isomorphism. ]
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3.2 Scalar Elliptic PDEs: Approximation

This section reviews various finite element methods to approximate second-
order, scalar, elliptic PDEs. Assume that the well-posedness conditions stated
in Theorem 3.8 hold and denote by « € V' the unique solution to (3.11).

3.2.1 H'-conforming approximation

Let {2 be a polyhedron in RY, let {77, }5~0 be a family of meshes of £2, and let
{K, P, X} be a reference Lagrange finite element of degree k > 1. Let L’C“’h be
the H'-conforming approximation space defined by

LF, = {v, € C°(2); VK € Ty, vy, 0 T € P}. (3.18)

For instance, L’C“’h = th or Qﬁ’h defined in (1.76) and (1.77), respectively,
if a P, or Qg Lagrange finite element is used. To obtain a V-conforming
approximation space, we must account for the boundary conditions, i.e., we
set

V=L, NV. (3.19)

This yields V}, = {v;, € L’CC i Un = 0 on 002} for the homogeneous Dirichlet
problem and V;, = Lk for the Neumann and the Robin problems. For the
mixed Dirichlet— Neumann problem, we assume, for the sake of simplicity, that
df2p is a union of mesh faces; in this case, a suitable approximation space is
={u, € L’C“’h; vy, =0 on d02p}.
Consider the approximate problem:

{ Seek uy, € V}, such that (3.20)

a(uh,vh) = f(vh), Yoy, € Vi,

Our goal is to estimate the error u — uy, first in the H'-norm, then in the
L?-norm, and finally in more general norms.

Theorem 3.16 (H'-estimate). Let 2 be a polyhedron in R? and let {T}, }n>o
be a shape-regular family of geometrically conforming meshes of 2. Let V}, be
defined in (3.19). Then, limp,_o ||u — up||1,0 = 0. Furthermore, if w € H*({2)
with % < s < k+1, there exists ¢ such that

Vh, lu—upl,e < chs_1|u|5,g. (3.21)

Proof. Since s > ‘21, Corollary B.43 implies that u is in the domain of the

Lagrange interpolation operator Z) associated with Lk Moreover, Zfu € Vj,
since the Lagrange interpolant preserves Dirichlet boundary conditions. As a
result, Céa’s Lemma yields

o) <clu-

— < inf
o=l < e iuf |
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Owing to Corollary 1.110 (with p = 2) and since s < k + 1,
lu—Tiull,e < ch*uls,0.

Combining the above inequalities yields (3.21). If u € H(§2) only, the con-
vergence of up, results from the density of H*(2)NV in V. O

Remark 3.17. The assumption s > % in Theorem 3.16 can be lifted on sim-
plicial meshes by considering the Clément or the Scott—Zhang interpolation
operator instead of the Lagrange interpolation operator; details are left as an
exercise. O

For the sake of simplicity, we shall henceforth restrict ourselves to homo-
geneous Dirichlet conditions.

Theorem 3.18 (L?-estimate). Along with the hypotheses of Theorem 3.16,
assume V. = H}($2), V}, = Lf’h NHE(£2), and that problem (3.11) has smooth-
ing properties. Then, there ezists ¢ such that

Vh, |lu—upllo,n < chlu—uplin. (3.22)

Proof. Apply the Aubin—Nitsche Lemma. a

Example 3.19. Consider the homogeneous Dirichlet problem posed on a con-
vex polyhedron, say 2. Owing to Theorem 3.12, the Laplacian has smoothing
properties in (2. Therefore, using P; finite elements yields the estimates

Vh, lu—upllo,e + hllu— upll1,e < ch?||fllo,e- O

Using again duality techniques, it is possible to derive negative-norm esti-
mates for the error, provided Lagrange finite elements of degree 2 at least are
employed. For s > 1, we define the norm

||’U||75’Q — Sup (UWZ)O,Q‘
2€EH*(Q)NHL(2) l12]]s,22

Recall that this is not the norm considered to define the dual space H ~*({2),
except in the particular case s = 1. Here, the norm || - || _s ¢, is simply used as
a quantitative measure for functions in L?(2).

Theorem 3.20 (Negative-norm estimates). Along with the hypotheses of
Theorem 3.16, assume Vi, C H(£2). Assume k > 2 and let 1 < s < k — 1.
Assume that there exists a stability constant cs > 0 such that, for all ¢ €
H*(£2), the solution w to the adjoint problem (3.17) satisfies |wl|s+2,0 <
csllells.2- Then, there exists ¢ such that

Vh, Jlu—unll—ae < b lu—

1.0 (3.23)
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Proof. Let 1 < s <k—1,let 2 € H*(2) N H}(£2), and let w € H*™2 be the
solution to the adjoint problem (3.17) with data z. Then, for any wj, € Vj,
Galerkin orthogonality implies

(u —un, 2)o,0 = a(u — up, w)

=a(u — up, w — wp)

< llalllu = wnllr,ellw = whllh,o-

Since w € H**2 N H}(£2), it is legitimate to take for w), the Lagrange inter-
polant of w in V, (if s4+2 < %, the Clément or the Scott—Zhang interpolation
operator must be considered). Corollary 1.109 implies

lw —whll1e < ch™Hwlarz.0,

and, therefore, |[w — wy||1,0 < ch*T1||z||s,o. Hence,

(u —up, 2)o,0 < chs+1||u —up,

[1.ellz]ls,2,
and taking the supremum over z yields the desired estimate. O
Error estimates in the Sobolev norms || - ||1,5,2 are useful in the context

of nonlinear problems; see [BrS94, p. 188] for an example. For second-order,
elliptic PDEs, the main result is a stability property for the discrete prob-
lem (3.20) in the W1P-norm. The result requires some technical assumptions
on the discretization and some regularity properties for the exact problem.
For the sake of brevity, the former are not restated here. These assumptions
hold for the Lagrange finite elements introduced in §1.2.3-§1.2.5 and for quasi-
uniform families of geometrically conforming meshes.

Theorem 3.21 (W' P-stability). Let 2 be a polyhedron in R% with d < 3.
Assume that:

(i) The bilinear form a is elliptic and coercive on H}($2).

(i1) The assumptions of [BrS94, p. 170] on the finite element space Vi, hold.

(iii) The diffusion coefficients are such that o € [WLP(02)]%? for p > 2 if
d =2 and for p > % if d = 3.

(iv) There exists 6 > d such that for all ¢ € 11,6[ and for all f € L(12),
the unique solution to the exact problem (3.11) posed on HE(£2) is in
W?24(02). Assume also that the adjoint problem (3.17) satisfies the same
reqularity property.

Then, there exist ¢ and hg > 0 such that
Vh < hg, V1 <p<oo, |unlipa <clulipeo- (3.24)
Proof. See [RaS82] and [BrS94, p. 169]. O

Remark 3.22. Owing to assumption (iv) and Corollary B.43, the solution to
(3.11) is in W°°(£2) whenever f € L%(£2) with ¢ > d. 0
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Corollary 3.23 (W'P-estimate). Under the assumptions of Theorem 3.21,
;PE% llu — upll1,p,2 = 0. (3.25)
Furthermore, if u € WSP(§2) for some s > 2,
Vh, |lu—unllipe < chlluliip.o, (3.26)
with | = min(k, s — 1) and k is the degree of the finite element.
Proof. Let v, € Vj, and 1 < p < oo. Since a(up — vy, wp) = a(u — vy, wy,) for

all wy, € V3, Theorem 3.21 implies ||up, — vpll1,p,0 < ¢||lu—vp|l1,p, 0. Using the
triangle inequality readily yields the estimate

_ <ec¢ inf |lu— .
v —unllipo <c ,inf [w —vnll1,p,0

Equations (3.25) and (3.26) then result from (1.100) and (1.101). O
Using duality techniques, one can obtain an LP-norm estimate.

Proposition 3.24 (LP-estimate). Under the assumptions of Theorem 3.21,
there exist ¢ and hg > 0 such that

Vh < hg, V' <p<oo, |u—unllreo) < chllu—unlip e, (3.27)
where % + % =1 and 0 is defined in assumption (iv) of Theorem 3.21.
Proof. The proof uses duality techniques; see Exercise 3.8. a

The derivation of L*-norm estimates is more technical; see [Nit76, Sco76].
In the framework of the above assumptions, one can show that for finite
elements of degree 2 at least,

Vh < ho, |[lu—unlp=2) < chllu —unll1,00,0-

However, for piecewise linear approximations in two dimensions, the best error
estimate in the L°°-norm is

Vh < ho, |lu—un|p=0) < chlnh||u—up|ico,0-

Remark 3.25.
(i) Let x; be a mesh node, let d,—,, be the Dirac mass at z;, and assume
that the following problem:

Seek G; € V such that
a(v, Gz) = <59c=ac,-7v>’D’,D7 Vv € Va

is well-posed. Its solution G; is said to be the Green function at point x;. If
it happens that G; € V},, Galerkin orthogonality implies
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0=a(u—up,G;) = (Op=z;,u — un)p,p = u(x;) — un(;),

showing that the error vanishes identically at the mesh nodes. This situation
occurs when approximating the Laplacian in one dimension with Lagrange
finite elements since, in this case, the Green function is continuous and piece-
wise linear; see also Example 3.90 for the Green function associated with a
beam flexion problem.

(ii) When the solution « is not smooth enough, error estimates in weaker
norms can be derived. For instance, under the assumptions of Theorem 3.18
and assuming that the family of meshes {7}, },~0 is quasi-uniform, one can
show (see, e.g., [QuV97, p. 174]) that there exists ¢ such that

_d
Vh, |lu—unllpe() < ch T2 Ul 0,

with [ < k. For instance, if the solution u is in H?(§2), the convergence in the
L°°-norm is first-order in dimension 2, and of order % in dimension 3. It would
scale like h2[In h| provided u € W2°°(£2) and P; finite elements are used.
(iii) Consider the purely diffusive version of problem (3.11). When the
diffusion coefficients do not satisfy assumption (iii) of Theorem 3.21, but are
only measurable and bounded, it is still possible to prove a stability result in
WhP(0) if |p — 2| is small enough. The proof uses the inf-sup condition to

express the stability of the exact problem; see [BrS94, p. 184]. O

3.2.2 Non-homogeneous Dirichlet boundary conditions

Given f € L?(2) and g € H 2 (02), the non-homogeneous version of problem
(3.11) is:
Seek u € H*(£2) such that
a(u,v) = [, fv, Vv e Hi(), (3.28)
Yo(u) =g, in H2(042),

where 7 is the trace operator defined in §B.3.5. We assume that problem
(3.28) is well-posed, namely that the bilinear form a satisfies the assump-
tions of the BNB Theorem on Hg(£2) x H(£2); see §2.1.4 for the theoreti-
cal background. For instance, a may be coercive on Hg(£2). Henceforth, the
reader unfamiliar with fractional Sobolev spaces may replace the assumption
g € Hz(00) by g € C%H(002) (since C*1(D2) C Hz(012) with continuous
embedding; see Example B.32(ii)).

We seek an approximate solution to (3.28) in the discrete space Vj, = L’Ci h
defined in (3.18). Let N be the dimension of V}. Denote by {¢1,...,¢on} the
nodal basis of V;, and by {a1,...,ax} the associated nodes. Recall that the
Lagrange interpolant of a continuous function u on (2 is defined as

N

Thu = Z u(a;)p;.

i=1
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Assuming that g is continuous on 9{2, we introduce its Lagrange interpolant
= > glai)ro(e).
a; €082
Since {¢1,...,¢n} is a nodal basis,
(a; € 002) = (y0(p;) =0). (3.29)
As a result, for u € C°(2) N H(£2),

N
Y0(Znu) =0 ( u(az‘)%) =Y ula)vo(e:)
i=1
= Z u(ai)yo(pi) = Ip (v0(w)),

a; €02

so that v9 o Z, = I o 7, i.e., the trace of the interpolant of a sufficiently
smooth function coincides with the interpolant of its trace.
Consider the approximate problem :

Seek uy € V, such that

a(uh,vh) = fQ fvh, Yo € Vi, (3.30)
~Yo(up) = I,?g, on 012,

where Vo = {vn, € Vi; y0(vn) = 0} C H(£2). Assume that the bilinear form
a satisfies the condition (BNB1y) on Vig X V.

Proposition 3.26. If g is smooth enough to have a lifting in C°(2)N H'(12),
problem (3.30) is well-posed.

Proof. Let u, be a lifting of g in C°(2) N H'(£2). Clearly,

Yo(Zntg) = If (v0(ug)) = I7 (g) = Yo(un).

Therefore, setting ¢, = up, — Zpug yields ¢p, € Vi and a(¢n,vn) = [, fon —
a(Zpug,vp,) for all vy, € Vig. Since the bilinear form a satisfies the condition
(BNB1y,) on Vi X Vi, problem (3.30) is well-posed. O

The approximate problem (3.30) being well-posed, our goal is now to esti-
mate the approximation error u — uy, in the H'- and L?-norms, where u and
up, solve (3.28) and (3.30), respectively. The results below generalize Céa’s
and Aubin—Nitsche Lemmas; see Exercises 3.9 and 3.10 for proofs.

Lemma 3.27. Along with the hypotheses of Proposition 3.26, assume that the
exact solution u is sufficiently smooth for its Lagrange interpolant Zpu to be
well-defined. Set ||a|| := ||a|| g1 (2y,m1(2). Then,

= wnllie < (1+12L) Ju = Zyullr o
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Lemma 3.28. Along with the hypotheses of Lemma 3.27, assume that:

(i) Problem (3.11) has smoothing properties.
(i1) The bilinear form a satisfies the following continuity property: there exists
c such that, for all v € H'(§2) and w € H?($2),

la(v, w)| < c([vllo.e + [M0(@)lo.o2)lw]l2,0-
(iii) There exists an interpolation constant ¢ > 0 such that
Vh, V0 € H*(2), (10 = Znb|l1,0 < chl|f]|2,0-
Then, there exists ¢ such that
Vh, |lu—unllo,e < c(hl|Zru = ull1,e + |Zou — ullo,2 + [ Zng — gllo,00)-

Corollary 3.29. Let 2 be a polyhedron, let {Tp, }1>0 be a shape-reqular family
of geometrically conforming meshes of £2, and let Vj, be a H'-conforming
approzimation space based on Ty and a Lagrange finite element of degree k >
1. Along with the hypotheses of Lemma 3.28, assume that the exact solution
u is in H*T1(£2). Then, there is ¢ such that

Vh, lu—unllo,e + hllu —unllie < ch* Y |ullki,e. (3.31)
Proof. Direct consequence of Lemmas 3.27 and 3.28. ad

Example 3.30. Assumptions (i)—(iii) of Lemma 3.28 are satisfied for the Pois-
son problem posed in dimension 2 or 3 on either a convex polyhedron or a
domain of class C? and for a Lagrange finite element of degree k > 1 using
a shape-regular family of meshes. More precisely, assumption (i) is stated in
§3.1.3. Assumption (ii) results from the identity

Yo e HY (), Yw € H*(2), a(v,w) = / Vo-Vw = —/ vAw +/ v Opw,
2] [?) o9
together with the continuity of the normal derivative operator v; : H2(£2) —
L2(02); see Theorem B.54. Assumption (iii) is a direct consequence of Corol-
lary 1.109. O

3.2.3 Crouzeix—Raviart non-conforming approximation

In this section, we present an example of non-conforming approximation for
the Laplacian based on the Crouzeix—Raviart finite element. Let {2 be a poly-
hedron in R¢ and let u be the solution to the homogeneous Dirichlet problem
with data f € L2({2). Assume that u € H?(£2). This property holds, for
instance, if {2 is convex; see Theorem 3.12.

Let {71, }nh>0 be a shape-regular family of geometrically conforming, affine
meshes of 2. Let P;t, , be the Crouzeix—Raviart finite element space defined
in (1.69). Let
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P;t,h,o = {vh € Ppltyh; VF ¢ FP, / v, = 0}, (3.32)

F

where ]—',? denotes the set of faces of the mesh located at the boundary. Recall
that dim P;t, ho = N}, the number of internal faces (edges in two dimensions)
in the mesh. Since functions in P;t) h,o can be discontinuous, the bilinear form
/, o Vu-Vu must be broken over the elements, yielding:

{ Seek uy, € Pplt,h,O such that (3.33)

an(un,vn) = f(v), Yon € Pl o,

ap(up,vp) = Z / Vup-Vop and f(vh):/ofvh. (3.34)

Set V(h) = P;t7h7O+H&(Q) and for vy, € V(h) define the broken H!-seminorm

1
2
[vnln1,0 = <Z ||Vvh||(2),K> :

KeT,

Equip the space V'(h) with the norm || - [[yn) = [| - [lo,2 + | - [n,1, -

Our goal is to investigate the convergence of the solution to the approx-
imate problem (3.33) in the norm || - ||y/(4). To this end, we must exhibit
stability, continuity, consistency, and approximability properties; see §2.3.1.
To obtain a stability property for problem (3.33), we would like to establish
the coercivity of aj on P}, o. Since P}, o ¢ Hg(£2), this is a non-trivial
result.

Lemma 3.31 (Extended Poincaré inequality). There exists ¢ depending
only on 2 such that, for all h <1,

Yu € V(h), cllullo,e < |uln1,0- (3.35)

Proof. We restate the proof given in [Tem77, Prop. 4.13]; see also [CrG02].
Let w € V(h); then

lufloe < sup M'
verz(2) lvllo,e

For v € L?({2), there exists p € [H'(£2)]? such that V-p = v and ||p||1,0 <
¢ ||vllo,2, where ¢ depends only on 2. Integration by parts yields

(w0)o.0 = (W, Vpoo=— > (Vupox+ > > /(p'nk)%
KET, KeT, Feok /T

where F' is a face of K and ng is the outward normal to K. Consider the
second term in the right-hand side of the above equality. If F' is an interface,



128 Chapter 3. Coercive Problems

F = K,, N K, it appears twice in the sum, and since [, ux,, = [ ux, for
u € V(h), we can subtract from p-ng a constant function on F that we take
equal to png with p = m J 7 P- The same conclusion is valid for faces

located at the boundary since f =0 on such faces. Therefore,

ZZ/p”K ZZ/panu

KeT, FEOK KeT, FEOK

> Z/p )k (u—1),

KeT, FEOK

and using Lemma 3.32 below, this yields

1 1
U, v)o,2 = |[Pllo,2|U|h1,02 CNp\Pl1, KN |UI1K
(u,v)o,2 < |[pllo,e|ul + hipl,xhil
KEIJ—’L

< lpllo.eluln1,0 + chlph,eluln1,0-
Since h < 1, (u,v)o,2 < c||v|o.e|ulr 1,02 and, hence, (3.35) holds. O

Lemma 3.32. Let {Tp}n>0 be a shape-regular family of geometrically con-
forming affine meshes. Let m > 1 be a fived integer. For K € Tp, ¢ €
[HYK)|™, and a face F € 0K, set ¢ = mfbw/) Then, there emists ¢
such that

vh, VK € T, VF € 0K, W € [H'(K)™,  [[¢~Pllor < chi|v]i k. (3.36)

Proof. Let K € Ty, let ¢ € [HY(K)]™, and consider a face F € K. Let K
be the reference simplex and let Tk : K — K be the corresponding affine
transformation with Jacobian Jg. Letting F' = T (F), it is clear that

meas F' meas F'

< (228) 15 = Tl p < o (228 15— Dl g

owing to the Trace Theorem B.52. The Deny—Lions Lemma implies

[ =¥l & < cl¥l; &

Returning to element K and using the shape-regularity of the mesh yields

1 1
—_ 2 _ w\ 2
Hw—wnwsf:(—ms@) 15t e (e ) Il s

meas F'
<Ch hKh 2\1/)\1K<Chx|¢|11<;
thereby completing the proof. O

Corollary 3.33 (Stability). The bilinear form ay, defined in (3.34) is coer-
cive on P;w%o,
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Proof. Direct consequence of the extended Poincaré inequality (3.35). O

Lemma 3.34 (Continuity). The bilinear form ap, defined in (3.34) is uni-
formly bounded on V(h) x V(h).

Proof. Use the fact that, for all u;, € V/(h), |un|n1,0 < |unllvm)- O
Corollary 3.35 (Well-Posedness). Problem (3.33) is well-posed.
Proof. Direct consequence of the Lax—Milgram Lemma. O

Lemma 3.36 (Asymptotic consistency). Let u be the solution to the ho-
mogeneous Dirichlet problem with data f € L?(2). Assume that u € H*($2).
Then, there exists ¢ such that

|f(wn) — an(u, wp)|
”wh”V(h)

Vh, Ywy € Pl 1, 05 < chlulz . (3.37)

Proof. Let wy, € P§t7h70. Since f = —Au,
ap(u,wp) — fwy) = Z /(Vwthffwh) = Z Z /VU'anh-
KeT, VK KeT, Feok U F

Since each face F' of an element K located inside {2 appears twice in the above
sum, we can subtract from wy, its mean-value on the face, wy. If F' is on 02,
it is clear that wy, = 0. Therefore,

ap(u, wp) — f(wy) = Z Z / Vu-ng (wn, —wp).
KeT, Feak 7 F
We can also subtract from Vu its mean-value on F, Vu, yielding
an(u,wp) = flwp) = Y > /(vu—ﬁ).nK(wh — ).
KeT, Feak 7 F

The Cauchy—Schwarz inequality implies

lan(u,wn) = fwn)] < DY [Vu— Vullo pllwn — Tro,r-

KeT, FEOK

Lemma 3.32 yields

1 1
ap(u, wp) — flwp)| < CRp U2, KN [Whl,K
|an(u, wn) = f(wn)| < hiclulz, i hg[wn]

KeT,
1
2
<ch ( Z |ul3 5 Z |wh|i1{> < chlula,ollwallvn,
KeTy KeTy,

leading to (3.37). O
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Lemma 3.37 (Approximability). There exists ¢ such that

Vh, Yu € H*(2) N Hy(£2), igf lu—vnllvpn) < chlulz,e.  (3.38)
vn€PL 1o
Proof. Use Pcl7h70 =P.,NH}N) C P[}t,h,o and Corollary 1.109. O

Theorem 3.38 (Convergence). Under the assumptions of Lemma 3.36,
there exists ¢ such that

Vh, lu—unllyny < chlulz,qo. (3.39)
Proof. Direct consequence of Lemma 2.25 and the above results. O

Finally, an error estimate in the L2-norm can be obtained by generalizing
the Aubin—Nitsche Lemma to non-conforming approximation spaces.

Theorem 3.39 (L-estimate). Along with the assumptions of Theorem 3.38,
assume that the Laplacian has smoothing properties in §2. Then, there exists
¢ such that

Vh, |lu—upllo,e < chlu—uplpi,0- (3.40)

Proof. See [Bra97, p. 108]. |

3.2.4 Discontinuous Galerkin (DG) Approximation

In the previous section, we have investigated a first example of non-conforming
method to approximate second-order elliptic PDEs. Because the degrees of
freedom in the finite element space were located at the faces of the mesh, the
method can be viewed as a face-centered approximation. In this section, we
continue the investigation of non-conforming methods for elliptic problems by
analyzing cell-centered approzimations in which the degrees of freedom in the
finite element space are defined independently on each cell. In the literature,
such methods are often termed Discontinuous Galerkin (DG) methods, and
this terminology will be employed henceforth.

For the sake of simplicity, we restrict ourselves to the approximation of the
Laplacian with homogeneous Dirichlet conditions and data f € L2(£2). As in
the previous section, we assume that the domain {2 is a polyhedron in R¢ in
which the Laplacian has smoothing properties; hence, the exact solution w is
in H?(£2). The material presented below is adapted from [ArBo1].

Mixed formulation. We recast the problem in the form of a mixed system
of first-order PDEs

c=Vu, —Vwo=/f in {2, u=0 on 0f2. (3.41)

From a physical viewpoint, the auxiliary unknown ¢ plays the role of a flux,
and the PDE —V-0 = f expresses a conservation property. The unknown u is
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called the primal variable. Multiplying the first and second equations in (3.41)
by test functions 7 and v, respectively, and integrating formally over a subset
K of 2 yields the weak formulation

/U~T: f/ uV-T+/ UTNE,
K K oK
/0~Vv:/fv+/ VONK,

K K oK

where ng is the outward normal to K.
Let {75, }nh>0 be a shape-regular family of simplicial meshes of the domain
(2, and for k > 1, consider the finite element spaces

(3.42)

Vi, ={v € LY(2);VK € Ty, vjx € Py},
Zp=A{r € [L'(Q)% VK € T, 1k € [Px]"}.

Note that V3, coincides with the space Ptkd,h introduced in §1.4.3. For v € V},
and 7 € X}, let Vyv and V-7 be the functions whose restriction to each
element K € T, is equal to Vv and V-7, respectively. Following [CoS98],
a discrete mixed formulation is derived by summing (3.42) over the mesh
elements:

Seek up, € V3, and o, € X, such that
JoonT=—=[oun Vit + Y ke, Jox GuTnr, VT E X, (3.43)
fggh'vhv:fn fv+ZKETh faKU¢U'nK’ Yo €V,

where the numerical fluxes ¢, and ¢, are approximations to the double-valued
traces at the mesh interfaces of u, and oy, respectively. The numerical fluxes
need not be single-valued at the mesh interfaces.

To specify the numerical fluxes, we introduce an appropriate functional
setting. For an integer [ > 1, let H!(7},) be the space of functions on §2 whose
restriction to each element K € 7, belongs to H'(K). Recall that 7 denotes
the set of interior faces, .7-',? the set of boundary faces, and F), = Fj, U }",? .
The traces on element boundaries of functions in H!(7},) belong to a space
denoted by T'(F). Functions in T'(Fp,) are double-valued on F, and single-
valued on F?. Denote by L?(F}) the space of single-valued functions on J,
whose restriction to each face F € Fj, is in L2(F).

Using the above notation, the numerical fluxes are chosen to be linear
functions

bu H(Ty) — T(Fn),  ¢o: H*(Tp) x [H(T3)]* — [T(Fn)]"

In the present setting, ¢, depends only on uj, while ¢, depends on both wuyp,
and oj,; other settings can be considered as well.

Two properties of the numerical fluxes are important in the analysis of
DG methods: consistency and conservativity.
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Definition 3.40 (Consistency). The numerical flures ¢, and ¢, are said
to be consistent if for any smooth function v € H?(2) N H}(£2),

bu(v) = v £, and ¢o (v, Vv) = Vu£,.

Proposition 3.41. If the numerical fluxes ¢, and ¢, are consistent, the exact
solution u and its gradient Vu satisfy (3.43).

Proof. Straightforward verification. a

Definition 3.42 (Conservativity). The numerical fluzes ¢, and ¢, are
said to be conservative if they are single-valued on Fy,.

Proposition 3.43. Assume that the numerical fluxes are conservative. Let w
be the union of any collection of elements. Then, if (upn,op) solves (3.43),

/f+ 5 qi)g(Uh,O'h)'TLw:O,

where ng, s the outward normal to Ow.
Proof. Take v to be the characteristic function of w. a

Primal formulation. A primal formulation is a discrete problem in which
up, is the only unknown.

To derive a primal formulation, the discrete unknown o must be elimi-
nated through a fluz reconstruction formula, that is, a formula expressing the
discrete flux oy in terms of the discrete primal variable w; only. It is con-
venient to define averages and jumps across faces. Let F' be an interior face
shared by elements K7 and K5, and let n; and ny be the normal vectors to F'
pointing toward the exterior of K7 and K5, respectively. For v € V},, setting
Vi = V|pnk,, i = 1, 2, define the average {-} and jump [-] operators as

{v} =L1(vi+v2) and [v] =wvini +vony oneach F € Fj.
Using a similar notation for 7 € X}, set
{r} = %(7’1 +72) and [r] =71n1 4+ T2n2 oneach F € ]-"}L.

Note that the jump of a scalar-valued function is vector-valued, and vice versa
(to alleviate the notation, we write [7] instead of [r-n]). For F € F?, set
[v] = vn and {7} = 7 where n is the outward normal. Owing to the identity

/QV,L-TH/QT-WZ 3 /OKUT-nK:/ﬂ[[v]]-{T}+/ﬂ{v}[m], (3.44)

KeTy,

holding for all v € V}, and 7 € X}, (3.43) is recast into the form
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/Q onT = —/Q up V}L-T-l-/]:h[[d)u(uh)]]-{T}+/]__;1{¢u(uh)}[[7-]]’
/Q”h'vhv— Th{%(uh,%)}'[[vﬂ—/ [[¢a(uh,0h)]]{v}:/(zfv7

7

(3.45)

for all 7 € X and v € V3. Using (3.44) to eliminate the term [, up V-7 in
the first equation of (3.45) yields

[ovr=[ Gwunrs [ [oul) <l {7+ /. {6u(m) )l (346)

h

Introduce the lifting operators Iy : L2(F) — X and Iy : [L?(Fp)]¢ — Xy,
such that, for ¢ € L%(F}) and p € [L?(F,)]%,

vr e S, /Qh(q)-fz—/ﬂq[[rﬂ, /sz<p>-7=—/fhp~{r}. (3.47)

These lifting operators involve local L2-projections. For instance, for F € F,,
define the operator I : [L*(F)] — X}, such that, for p € [L*(F)]4,

e [ = [ oo

Clearly, the support of {z(p) consists of the one or two simplices sharing F
as a face. For p € [L?(Fn)], it is clear that ly(p) = Y per, lr(p). A similar
construction is possible for the lifting operator [.

Recalling that V;,V;, C X}, and using the above lifting operators, we deduce
from (3.46) the flux reconstruction formula

on = Viun = hi({pu(un) —un}) — la([pu(un) — unl)- (3.48)
Taking now 7 = Vv in (3.46), the second equation in (3.45) yields ap, (up,v) =
Jo fv, where
ah(uh, ’U) = / ththU
fo)

+ [ [u(un) —un]{Vnv} = {¢o(un,on)}[v] (3.49)

Fh
+ [ Adulun) — un}[Vav] — [¢o (un, on){v},
2
with ¢}, evaluated from (3.48). The bilinear form aj, is defined on H?(7},) x
H?(T}). The primal formulation is thus:
Seek uy, € Vj, such that
an(un,v) = [, fv, Yo € V.

Clearly, if (up,o0p) € Vi, x X, solves (3.45), then uy, solves (3.50) provided the
flux oy, is reconstructed using (3.48).

(3.50)
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Remark 3.44. If the fluxes are conservative, (3.49) simplifies into
an(uno) = [ FrunVoo = [ [un] {900} + {00 (un, o)Ll
9] Fh
+ [ (@ulun) = () [T

Fh

Error analysis. To estimate the error induced by the approximate problem
(3.50), it is convenient to introduce the space V(h) =V}, + H%(2) N H}(£2).
For v € V(h), set

o= e = lrDIF e

KeT, FEF,
and let
1Yy = [l 1o+ 0+ > hklvl3 - (3.51)
KeTy,

This choice will appear more clearly in the examples presented below.

Lemma 3.45. If {2 has smoothing properties, there ezists c, independent of
h, such that
Yo e V(h), clvllo,e < [v|n1,0+ |v];.

Proof. (1) Using inverse inequalities, one can prove that there exist positive
constants ¢; and ¢y such that

Vp € Bu(F))Y,  cllle()lfe < hetlloldr < cllie (o), 0-
These inequalities can be applied to p = [v] for v € V(h), yielding
Vo e V(h), alvff < Y hpM G F < calvl. (3.52)
FeFn

(2) Let v € V(h) and let ¥ € H}(£2) solve —Ay = v. Since 2 has smoothing
properties, there is ¢ > 0 such that [|[¢]|2,o < ¢||v]o,e2- Then,

g, = = [ovd¥ = [, Vi-Viv = [5 Vi]

1 1
< clv)i,nellvloe + ( > hEl||ﬂU]]||3,F> ( > hFW)ﬁ,F) :

FeFy FeFy

Using a trace theorem and a scaling argument yields

hFWE,F <c (WﬁK + h2F|¢|§,K) < c’\liﬁll%,;« (3.53)

Hence,

0I5, < exlvln.ellvlo.e +ealvlillvlo.e,

and this completes the proof. O
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Remark 3.46. Lemma 3.45 is a discrete Poincaré-type inequality. O

Proposition 3.47 (Well-posedness). Assume that the bilinear form aj, de-
fined in (3.49) satisfies the following properties:

(1) Uniform boundedness on V (h): there exists ¢, > 0, independent of h,
such that

Vo,we V(h), an(w,v) < cpllwllvmylvllvn- (3.54)
(ii) Coercivity on Vj,: there exists c¢s > 0, independent of h, such that
Yo € Vi,  ap(v,v) > cs||v||%/(h). (3.55)
Then, problem (3.50) is well-posed.
Proof. Direct consequence of the Lax—Milgram Lemma. a

Proposition 3.48 (Consistency). Assume that the numerical fluzes ¢, and
¢, are consistent. Then, the exact solution u satisfies

Yo eV, an(u,v) :/ fv.
10,

Proof. Since u € H?(§2), taking 7 = Vju in (3.44) yields, for all v € V},,

/thwvhv = —/QAuv—l—/}_h[[v]]-{th}—&—/f}il{v}[[vhu]].
Since {u} = u, [u] =0, {Vyu} = Vu, [Vpu] =0, and —Au = f,

an(u,0) = /Q fo+ /f [bu(w)]-{Tnv} + (Vi — {60 (o0 () }) [o]
+ [ A0u0) = Vol = [o ()] o}

Owing to the consistency of the numerical flux ¢, ¢,(u) = u. Moreover, the
reconstruction formula (3.48) implies o (u) = Vu. Since the numerical flux
¢ 1s also consistent, {¢q(u,on(u))} = Vu and [¢s (u, op(u))] = 0. Therefore,
all the face integrals vanish. ]

Lemma 3.49 (Approximability). There exists ¢ such that, for all 1 < s <
k+1,

Vh, Yu € HH(Q)NHY®),  inf u—olvay < b ulo.
vEVR

Proof. Let 1 < s < k+ 1. Since V}, contains the H'-conforming Scott-Zhang
interpolant SZ,u of u and since the face jumps of u — SZ,u vanish,

lu— SZnull ) = lu—SZnul} o + Z hiclu — SZpul3 o < ch*CVuf? o,
KEIZ—}L

the last inequality being a direct consequence of Lemma 1.130. O
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Theorem 3.50 (Convergence). Let u be the solution to the homogeneous
Dirichlet problem with data f € L*(f2). Assume that the Laplacian has
smoothing properties in 2 and that uw € H*({2) for some s € {2,...,k+1}. Let
up, be the solution to (3.50). Along with hypotheses (1)—(ii) of Proposition 3.47,
assume that the numerical fluzes ¢, and ¢, are consistent. Then, there exists
¢ such that

Vh, |u-— UhHV(h) < ch571|u|379. (3.56)

Proof. Direct consequence of Lemma 2.25 and the above results. O
An L%-norm error estimate can be obtained using duality techniques.
Definition 3.51 (Adjoint-consistency). The bilinear form ay, is said to be

adjoint-consistent if, for all w € H?(2) N H}($2),
Yo e V(h), ap(v,w)= —/ Awwv. (3.57)
Q
Lemma 3.52. Assume that the numerical fluzes ¢,, and ¢, are conservative.
Then, the bilinear form ay is adjoint-consistent.
Proof. Let w € H*(2)NH(£2) and let v € V (h). Note that [w] = 0, [V,w] =
0, and {Vyw} = Vw. Using (3.44) yields
/ Vio-Vyw = —/ Awv + [v]-Vw.

9] 2 Fh
Since w is smooth, Remark 3.44 implies as (v, w) = [, VhU'Vhw_f]:h [v] - Vw.
The conclusion follows readily. O

Theorem 3.53 (L?-convergence). Under the hypotheses of Theorem 3.50,
assuming that the numerical fluzes ¢,, and ¢, are conservative, there exists c
such that

Vh, |lu—upllo,n < ch’luls . (3.58)

Proof. Let v € H}(£2) be such that —Awy) = u — uy,. Since the Laplacian has
smoothing properties in 2, [¥|2.0 < c|lu — upllo,2- Furthermore, since the
approximate fluxes ¢, and ¢, are conservative, Lemma 3.52 implies

Vo e V(h), an(v,9)= / (u — up)v.
2
Since u — up, € V(h) and the numerical fluxes are consistent,

lu—un g0 = an(u — un, ¥) = ap(u —up, b — SZp0)

< epllu — unllvmy v — SZrllvny < chly

where SZ1 is the Scott—Zhang interpolant of ¢. Conclude using (3.56). O

2,0llw — unllv(n),
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Example 1 (LDG). The so-called Local Discontinuous Galerkin (LDG)
method has been introduced by Cockburn and Shu in 1998 [CoS98] to ap-
proximate time-dependent convection—diffusion problems. Written within the
above framework, it consists of taking the numerical fluxes

bulun) = {éuh} Ol Zz J;*g (3.59)
h>

and _

{on} + Blon] = nphz'[un]  on 7,
{on} —nrhp'[us] on FP.
Here, 8 € [L°°(F})]? is a vector-valued function that is constant on each

interior face, np is a given positive parameter on the face F', and hpr denotes
the diameter of F'. A straightforward calculation yields the following:

Proposition 3.54. The numerical fluzes ¢, and ¢, defined by (3.59)—(3.60)
are consistent and conservative.

b0 (un,on) = { (3.60)

In the LDG method, the flux reconstruction formula (3.48) takes the form
on = Vaun + 11 (B-[un]) + l2([un]),

and the bilinear form ay, is given by

ap(up,v) = /Q Viup-Vpv — /f [urn] {Virv} + {Vrun}v]

“
Fh

+ /Q (1 (BTun]) + a([unD)) - (1 (BLo]) + La([0]))

nehp! fun] [v] + . B-[un] [v] + [Vaur] B-[v]  (3.61)

Proposition 3.55. The bilinear form a; defined by (3.61) is continuous on
V(h) and, provided inf p ng is large enough, it is also coercive on V.

Proof. The proof is only sketched; see [ArB01] and the references therein.

(i) To prove continuity, i.e., property (3.54), the various terms appearing in the
right-hand side of (3.61) must be bounded. Let w,v € V(h). First, it is clear
that [, Viw-Viv < |wlp1,0|v|n1,e. Owing to (3.52), f]:h nphl_,l[[uh]] [v] <
cs|lwljlv|; with ¢3 = cosuppnp. Next, for w € H*(K) and a face F of K,
(3.53) implies

[Vwnll§ p < es(hz'[wl? k + helwl; k).
This in turn implies
1 1
2 2
/ {Vaw}v] < s ( > lwhig+ h%lwg,K> ( > hFlll[[v]]H%,F>
Fh KeT, FEF),

< esllwllvmylvl;-
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The remaining face integrals in (3.61) are bounded similarly. Finally, one can
readily show that

vo e V(R), [lL(B-Dllo.e < csllBllfo iz 0

and
Vo e V(h), [ll2([v]Dllo,e < crlv];.

Using the above estimates, one easily bounds the second integral over {2 in
the right-hand side of (3.61).

(ii) Let us prove the coercivity of ay, i.e., property (3.55). Consider v € Vj,.
It is clear that

%mwzwaﬂ+/nmymﬁwmm

Fh

where the bilinear form b gathers all the remaining terms. It follows from the
first part of the proof that

/ nrhpt[v]? > cs (i%fnp> \v\f and b(v,v) < collvllv(nlvl;-
Fn
Therefore,

an(v,0) 2 [off 1. + s (infne ) [0l2 = collellvn ol;

and the last term in the right-hand side can be lower bounded in the form
2

—collvllvmlvly = —ellvll3 ) — 2[vlf for any positive e. Moreover, using an

inverse inequality on V}, yields

11y < ero(|vlf 1,0+ [0])-
Coercivity follows by taking € small enough and inf p np large enough. a

The above results show that the LDG method approximates the exact
solution to O(h*) in the H'-norm and to O(h**1) in the L?-norm.

Example 2 (NIPG). The so-called Non-symmetric Interior Penalty Galerkin
(NIPG) method has been derived in [OdB98, Ba099] and further investigated
in [RiW99]. Written within the above framework, it consists of taking the
numerical fluxes

- {Uh}+TLK'[[’LLh]] on f}l,
ouup) = {0 on 77, (3.62)
and
d)g(uh, O’h) = {thh} — nph;1 [[uh]] on fh. (363)

Note that ¢,, is not single-valued on F}. A straightforward calculation yields
the following:
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Proposition 3.56. The numerical fluzes ¢, and ¢, given by (3.62)—(3.63)
are consistent, but not conservative.

In the NIPG method, the bilinear form ay, is given by

an(up,v) = /thuh-vhv—i—/fh thﬁl[[Uh]] [v] (3.64)
+/ [unl{Vrv} = {Vrun}[o].
Fh

Proposition 3.57. The bilinear form ay given by (3.64) is continuous on
V(h) and coercive on Vj,.

Proof. Similar to that of Proposition 3.55. a

The above results show that the NIPG method approximates the exact
solution to O(h*) in the H'-norm. However, because of the lack of conser-
vativity in the numerical fluxes, an improved error estimate in the L2-norm
cannot be derived in general.

Remark 3.58.

(i) Because of the skew-symmetric form of the face integrals in (3.64),
infp np needs not be large to ensure the coercivity of aj. However, skew-
symmetry is at the origin of the lack of adjoint-consistency, thus preventing
optimal convergence order in the LZ-norm.

(ii) For a face F' € Fj, one can choose the penalty parameter ng to be
proportional to a negative power of hp, leading to the so-called superpenalty
procedure. It is then possible to recover optimal convergence order for the
error in the L?-norm. The NIPG method with superpenalty is analyzed in
[RiW99]. O

3.2.5 Numerical illustrations

This section presents two examples of finite element approximations to elliptic
PDEs. The purpose of the first example is to illustrate the link between the
convergence order of the finite element approximation and the regularity of the
exact solution. The purpose of the second example is to illustrate qualitatively
the behavior of the solution of advection—diffusion equations depending on
whether advection effects dominate or not.

Convergence tests. Consider the Laplace equation in the domain 2 =
10,1] x ]0,1[ and a positive parameter «. Choose the right-hand side f
and the non-homogeneous Dirichlet conditions so that the exact solution is
u(zy,w2) = (22 + 22)%. Note that u € H*(2) if 0 < a < 1, u € H*(Q) if
1 <a<2 andu € H3N) if 2 < a < 3. In the numerical experiments,
we consider the values a = 0.25, 1.25, and 2.25. A H'-conforming Lagrange
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Fig. 3.1. Errors in the L?-norm (left) and H'-norm (right) as a function of the
mesh step size h: Py finite element and o = 0.25 (4); P2 finite element and a = 0.25
(*); Py finite element and o = 1.25 (x); P, finite element and a = 1.25 (o); P2 finite
element and o = 2.25 (e).

finite element approximation of degree k¥ = 1 or 2 is implemented. The tri-
angulation of (2 is uniform with vertices of the triangles given by (ih, jh),
0<i,7<N+1, where h = ﬁ and N is a given integer.

Figure 3.1 presents the error in the L2- and H'-norms as a function of A.
Results are presented in a log-log scale so that the slopes indicate orders of
convergence. For o = 0.25 and k = 1, the error converges “slowly” to zero
as h — 0, with a slope lower than 1 in the H'-norm and lower than 2 in the
L?-norm. For o = 1.25 and still k = 1, the slope is equal to 1 in the H!-norm
and to 2 in the L?-norm. Moreover, using a higher-order method (k = 2) does
not improve the convergence order. Finally, for a = 2.25 and with a second-
order finite element, the slopes in both the H'-norm and the L?-norm are one
order higher than those obtained with the first-order finite element method, in
agreement with theoretical predictions. As a conclusion, only when the exact
solution is smooth enough does it pay off to use a high-order finite element
method.

Advection—diffusion equation. Consider a two-dimensional flow through
a heated pipe. The flow velocity is assumed to be known, and we want to
evaluate the temperature v inside the pipe at steady-state. The temperature
is governed by the advection—diffusion equation

B-Vu—eAu =0. (3.65)

The pipe is modeled by a rectangular domain {2 with sides numbered clock-
wise from 1 to 4 starting from the left-most side. The flow enters the pipe
through 042, and flows out through 0f23 while the sides 025 and 0§24 are
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Fig. 3.2. Heat transfer problem through a two-dimensional pipe: computational
mesh (top); temperature field for dominant diffusion (center); and temperature field
for dominant advection (bottom).

solid boundaries. Spatial coordinates are denoted by (x1,z2) with the ;-
axis parallel to the pipe axis. Temperature boundary conditions are u = 0
on 921 (cold upstream flow), v = 1 on 923 and 924 (heated boundaries),
and Oju = 0 on 923 (outflow condition). The flow velocity is taken to be
B = (4x2(1 — x2),0). The solution to (3.65) is approximated on the mesh
shown in the top panel of Figure 3.2 using continuous IP; finite elements. The
central panel of Figure 3.2 presents isotherms for a diffusion-dominated case
(e = 1071); the peak temperature is quickly reached on the symmetry axis.
The bottom panel displays isotherms resulting from a moderate diffusion co-
efficient (¢ = 1073). Advection effects are dominant, i.e., the boundary layer
in which the temperature undergoes significant variations remains localized
near the top and bottom boundaries. If advection effects become even more
dominant, the approximation method needs to be stabilized to avoid spurious
oscillations in the solution profile; see Chapter 5.

3.3 Spectral Problems

This section contains a brief introduction to spectral problems and their ap-
proximation by finite element methods. Spectral problems occur when analyz-
ing the response of buildings, vehicles, or aircrafts to vibrations. Henceforth,
we restrict the presentation to a simple model problem: the Laplace operator
with homogeneous Dirichlet conditions. Although this problem is somewhat
simple, it is representative of a large class of engineering applications. As such,
it models membrane and string vibrations.
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Fig. 3.3. Elastic deformation of a membrane: reference configuration {2, externally
applied load f, and equilibrium displacement uw. The boundary 02 of the membrane
is kept fixed.

3.3.1 Modeling a vibrating membrane

Figure 3.3 presents an elastic homogeneous membrane. In the reference con-
figuration, the membrane occupies the domain 2 in R? and is tightened ac-
cording to a two-dimensional stress tensor o € R%2. For the sake of simplic-
ity, we assume that o is uniform and isotropic, i.e., ¢ = 7Z where 7 is the
membrane tension. Apply now a transverse load f and assume first that f
is time-independent. If the strains in the membrane are sufficiently small, the
equilibrium configuration is described by a transverse displacement which is
a function u : 2 — R governed by the PDE

—TAu=f in 2. (3.66)

We assume that the boundary of the membrane is kept fixed, yielding the
homogeneous Dirichlet condition © = 0 on 9f2.

Consider now the time-dependent load f(z,t) = g(z)cos(wt) for (z,t) €
@, where g : {2 — R is a given function, w a real parameter representing
the angular velocity of the excitation, @ = §2 x ]0,T[, and T a given time.
Assuming again that the strains in the membrane remain sufficiently small,
the (time-dependent) displacement u : @ — R is governed by the PDE

POy — TAu = g(x) cos(wt) in Q, (3.67)

where p is the membrane density. Equation (3.67) is a wave equation with
celerity ¢ = (Tp_l)%. It has to be supplemented with initial and boundary
conditions. The initial data comprises the initial value of the displacement
ug(z) and its time-derivative uq(x), i.e., the initial membrane velocity. We
assume that the membrane boundary is kept fixed at all times., i.e., we enforce
a homogeneous Dirichlet boundary condition.

3.3.2 The spectral problem

Consider the spectral problem:
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Seek ¢ € HE(£2), ¥ # 0, and X € R such that
—Ap = A,

for which a weak formulation is
Seek v € HE(£2), 9 # 0, and X € R such that
Jo V-V =X [,vv, Yve Hj(52).

Definition 3.59. Let {\, ¢} be a solution to (3.68). The real \ is called an

eigenvalue of the Laplacian (with homogeneous Dirichlet conditions) and the
function ¢ an eigenfunction.

(3.68)

Theorem 3.60 (Spectral decomposition). Let 2 be a domain in R
Then, the spectral problem (3.68) admits infinitely many solutions. These so-
lutions form a sequence {An, ¥n tnso such that:

(i) {An}n>0 s an increasing sequence of positive numbers, and A\, — 0o.
(i) {%ntn>0 is an orthonormal Hilbert basis of L*(£2).

Proof. This is a consequence of the fact that the injection H{(£2) C L?(§2) is
compact; see Theorem B.46 and [Yos80, p. 284] or [Bre91, p. 192]. O

Example 3.61. For 2 = ]0,1], the eigenvalues of the Laplacian are A\, =
n?n? with corresponding eigenfunctions 1, (z) = sin(nrz). These functions
become more and more oscillatory as n grows. a

The solution u to the wave equation (3.67) can be written as a series
in terms of the Laplacian eigenfunctions. Indeed, set w, = ()\nTp_1>% and
assume w # wy,. Denote by g, = |, o 9¥n the coordinates of g relative to the
orthonormal basis {1, }n>0 and by «, and 8, the coordinates of the initial
data uo and wq, respectively. A straightforward calculation shows that for
w # Wn,

oo

u(z,t) = Z (an cos(wpt) + By sin(wnt)

W—wp

In Sin( 3 t) ot
et (% t))wm).

As w draws closer to one of the w,’s, a resonance phenomenon occurs. In
particular, when w = w,, u(z,t) grows linearly in time.
3.3.3 The Rayleigh quotient

Set a(u,v) = (Vu, Vv)g g for all u, vin H}(£2). This bilinear form is symmet-
ric, continuous, and coercive on H{(£2). The Rayleigh quotient of a function
u € HY($2), u # 0, is defined to be

a(u,u)

R(u) = .
)= Tz,
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Proposition 3.62. Let A1 be the smallest eigenvalue of the spectral prob-
lem (3.68) and let 11 be a corresponding eigenfunction. Then,

M =R = inf R(v).
V=R = inf RG)
Proof. Clearly, \i = R(¢1) > inf,c g1 () R(v). Furthermore, for v € H(02),
the identity v = > ° | vp1), yields

o 2
Zn:l )"ﬂvn > Al- 0

Z:O=1 vi

Proposition 3.63. Let A, be the m-th eigenvalue of problem (3.68) (eigen-
values are counted with their multiplicity and ordered increasingly). Let V,,
denote the set of subspaces of H(£2) having dimension m. Then,

R(v) =

Am = min max R(v). (3.69)
En€Vm vEE,
Proof. Let E,, = span{t1, ..., ¥, } be the space spanned by the m first eigen-
functions. For all v = Y| v,4y, in By,

m
An 02
Zn:l ntn < )\m7

Rv) = S0 <

which yields
Am > min max R(v).
En€Vy veEE,

Consider now E,, € V,,. A simple dimensional argument shows that there
exists v # 0in E,,NE;-_,. Since v can be written in the form v = Y07 0,9,

it is clear that R(v) > A.,. As a result, max,eg,, R(v) > Ap; hence,

Am < min max R(v). O
Em€Vm veEEn

3.3.4 H'-conforming approximation

The spectral problem (3.68) can be solved analytically only in a limited num-
ber of remarkable cases when the domain {2 has a very simple shape. In the
general case, eigenvalues and eigenfunctions must be approximated using, for
instance, a finite element method.

Let {7} }r>0 be a family of geometrically conforming meshes of {2 and
let {Vi}n=0 be the corresponding family of H!-conforming approximation
spaces. Denote by N the dimension of V}. The approximate spectral problem
we consider is the following:

{Seek Yy € Vi, ¥y, # 0, and \j, € R such that (3.70)

Jo Vn-Vo, = Xy [ ¥non,  Vup € V.
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Let {¢1,...,¢n} be a basis of V3, and let ¥}, € RY be the coordinate vector
of ¥y, relative to this base. The approximate problem (3.70) is recast in the
form:

Seek ¥, € RN, ¥, £ 0, and )\, € R such that (3.71)
AWy, = Ay M@y, '
where the stiffness matriz A and the mass matriz M have entries
A 2/ V-V, and M;; = PiPj. (3.72)
Q 0

Because the matrix M is not the identity matrix, problem (3.71) is often
called a generalized eigenvalue problem.

Proposition 3.64. The matrices A and M defined in (3.72) are symmetric
positive definite. Furthermore, the spectral problem (3.71) admits N (positive)
eigenvalues (counted with their multiplicity).

Proof. The symmetry and positive definiteness of the matrices A and M di-
rectly results from the fact that they are Gram matrices; see also Remark 2.20.
Orthogonalizing the quadratic form associated with A with respect to the
scalar product induced by M yields N positive reals {Ap1,...,A\pn} and a
basis {@p,1,...,¥,n} of RV such that, for 1 <i,j < N,

(Yhi, AW )N = Anidij, (Yni, M) N = dij,
where (-, )y denotes the Euclidean product in RY. As a result,
AW = Api MW, 1<i<N,

showing that the \p;’s are the eigenfunctions of the generalized eigenvalue
problem (3.71) and that the ¥,;’s are the corresponding eigenvectors. a

3.3.5 Error analysis

Let {tn1,...,¥rn} be an orthonormal basis of eigenvectors in Vj, i.e.,
(Yni, ¥nj)o,e = 6;5 for 1 < 4,5 < N, and assume that the enumeration of
these vectors is such that A\ < ... < A\pn.

Henceforth, m > 1 denotes a fixed number, and we assume that h is small
enough so that m < N. Set V,;, = span{¢1,...,¥n}, and define S,, to be the
unit sphere of V,,, in L?(£2). Introduce the elliptic projector ITj, : H}(2) — V},
such that a(ITpu — u,vp) = 0 for all v, in V4, and define

Ohm — Uiel}gfm ||Hhv||079. (3.73)
Lemma 3.65. Let 1 <m < N. Assume opy # 0. Then,

Am < Anm < Ao (3.74)
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Proof. The first inequality is a simple consequence of Proposition 3.63. Fur-
thermore, since op,, # 0, Ker(I1,) NV, = {0}; hence, the Rank Theorem
implies dim(I1,V;,) = m. Adapting the proof of Proposition 3.63, one readily
infers

Iy, IT
Mom € max 2w _ o ollTn, D)
wlitv ol veve I3,
Hence,
a(v,v) vll3 1
Apm < mMax ———=— < max R(v) max ———5— = —— max R(v).
vV [[IIpv|§ o ~ vEVm vV [[In0||§ o 0y vESm

Then, use A, = maxyecs,, R(v) to conclude. O

Remark 3.66. It is remarkable that, independently of the approximation
space (provided conformity holds), the N eigenvalues of the approximate prob-
lem (3.71) are larger than the corresponding eigenvalues of the exact problem
(3.68). Eigenvalues are thus approximated from above. a

Lemma 3.67. Let 1 < m < N. There is c¢(m), independent of h, such that

o3, >1—c(m) max v — M|} o (3.75)

Proof. Let v € Sp,. Let (V;)1<i<m be the coordinate vector of v relative to
the basis {11, ..., %, }. It is clear that [[v[|§ ; = 221 <<, Vi> = 1. In addition,

[ IT5|[3. ¢, is bounded from below as follows:
w0150 = 015,20 — 2(v,v = Tyv)o.o- (3.76)
Using the symmetry of a and the definition of ITjv yields
(v,v = IIv)o,0 = Z Vi(hi, v — Hpv)o,0 = Z %a(wuv — Iv)

1<i<m 1<i<m ~*

= > %Q(%—thi,v—nhv)

1<i<m ~*

Jal ’
)\—HU*HWHLQ Z 145 — il o

1 1<i<m

IN

IN

a
Vil ~ Mg sup fw— Dywl.q
1 wWES,
_ -
<+m 3 sup |lw thHLQ'
1 weS,

Then, the desired estimate is obtained by inserting this bound into (3.76) and
setting c(m) = Qﬁ% O
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Lemma 3.68. Assume that the sequence of approzimation spaces {Vp}n>o is
endowed with the following approximability property:

Yo € H} (), flblir%) (U;irélf‘./; llv— Uh||1’_()> =0. (3.77)

Then, for all m > 1, there is ho(m) such that, for all h < ho(m),

0 < Aim — Am < 2Ame(m) max inf v — vp||? . (3.78)
VESm VREV) ’
Proof. Let m > 1 be a fixed number, and assume that h is small enough so
that m < N. Since S,, is compact, there is vg in S,, such that sup,cg,  |lv —
HthiQ = ||vo — H}ﬂ)o”in. Owing to (2.24),

1
llall\2
llvo — Hpvoll,0 < ( o ) vig/’ lvo — vnll1,0-

Since m is fixed, (3.77) implies that there is ho(m) such that, for all h < hg(m),
c(m)||lvo— Muwol3 ¢ < 1. Then, observing that 1+2z > =~ forall 0 < z < §
and using (3.75) yields

1 2e(m) o — Hywol[f 0 = 1+ 2e(m) sup o= HyolfE > 72
VESM

Conclude using (3.74). o

To analyze the approximation error for eigenvectors, we assume, for the
sake of simplicity, that the eigenvalues are simple.

Lemma 3.69. Let 1 < m < N and set ppy = MaXi<itm<N ﬁ If

Am 18 simple, there is ho(m) and a choice of eigenvector such that, for all
h S hO(m);

me - whmHO,Q < 2(1 + phm)”'(/)m - thm||07.(2~ (379)

Proof. (1) Note that owing to Lemma 3.68, \;,; — A; as h — 0. Hence, since
Am 1s simple, ppy, is uniformly bounded when h is small enough.

(2) Define vpm = (Ip¥m, Yhm)o,.2Whm and let us evaluate || IIn4m — Vpm|lo,02-
Note first that

(oo, )0, = 5a(Wnis M) = 5= 1) = 57 (W, nidoo
hi hi

Ahi

Hence, (I tm, Yni)o,2 = 5225 (Ym — Mnthm, Pni)o,0- As a result,

Tntom = vmll3.0 = D (ntbm, ¥ni) o < Phonlom — Tntom 3 0. (3.80)
1<iAm<N

(3) Let us now estimate [|1pm — Vnmllo,0- Since
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H¢7n||0,9 - ||wm - UhnL”O,Q S HU}LmHO,Q S ||wm||0,ﬂ + ||¢m - U}LmHO,Q:
and |[¢Ymllo,2 = 1, we infer [|vpmllo,2 — 1] < |¥m — Vhmllo,e- But,
1Vrm = Vhmllo,2 = |(ThYm — Yhms Yrm)o,2| = [(Tnbm, Yrm)o,o — 1.

Assume that 9., is chosen so that (IIYm, Yrm)o.n > 0. Then, ||vpmllo.n =
(ITpYm, Yhm)o.0, yielding

[¥hm = vhmllo,2 < [¥m — vhmllo, e (3.81)

(4) To conclude, use the triangle inequality together with (3.80) and (3.81):
[¥m = Yamllo,2 < ¥m — Hptmllo,e + ([ Habm — vhmllo,2 + [[vam = Yrmllo,e
< 2(I¢om — Hpt¥mllo. + HIntm — vhm
The conclusion follows from (3.80). O

Theorem 3.70. Let 1 <m < N. If \,, is simple, there is ho(m) and a choice
of eigenvector such that, for all h < ho(m),

0,2)-

1V — Yrmllo,2 < c2(m)||Vm — Hpthm||o,0, (3.82)
[%m = Ynmll1,e < c1(m) max v;il,relg/h lv—vnll1,0- (3.83)

Proof. Estimate (3.82) is a direct consequence of Lemma 3.69. To control
1¥m — Yrmll1,0, use the coercivity of a as follows:

al[thm, — ¢hm”%(z < a(Vm — Yhm, Ym — Vhm)
= )\hm + )\m - 2)\m(wm7 1phm)[),ﬂ
= Am — Am + /\mem - ¢hm||(2),_o~

Then, (3.83) is a consequence of the above equality, together with Lemmas 3.68
and 3.69. O

Corollary 3.71. Let 1 < m < N. Assume that the approximation setting is
such that there is k > 1 and c¢1(m) so that inf,es, |[Inv — vl|o,0 + bl v —
v|[1.0 < e1(m)hF*L. Then, there are ca(m), cs(m), ca(m), independent of h,
such that, if h is sufficiently small, the following estimates hold:

A < M < A+ ca(m) B2EN2, . (3.84)

Moreover, if the eigenvalue ., is simple,
{ ||1/}m - whmHO,Q < CS(m) hk+1)\ma

%m — Ynmll1.2 < ca(m) h¥ A,

and the constants ca(m), cs(m), ca(m) grow unboundedly as m — +oo. If Ap,
is multiple, 1, can be chosen so that (3.85) still holds.

(3.85)

Proof. Simple consequence of Lemma 3.68 and Theorem 3.70. O

Remark 3.72. The above corollary shows that when h is fixed, the accuracy
of the approximation decreases as m increases since ca(m), cs(m), and c4(m)
grow unboundedly as m — +00; see §3.3.6 for an illustration. O
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Fig. 3.4. Left: Finite element approximation to the eigenvalues of the Laplacian in
one dimension. Right: Eightieth eigenfunction for the exact problem (dashed line)
and for the approximate problem (solid line).

3.3.6 Numerical illustrations

In one dimension. Consider the spectral problem for the Laplacian posed
in the domain {2 = ]0, 1[, whose solutions are the pairs

Dy b} = {m?n?, sin(mmz)} for m > 1.

Consider now a uniform mesh of {2 with step size h = ﬁ and a P; Lagrange
finite element approximation. A straightforward calculation shows that the
matrices A and M are tridiagonal and given by

1
A= Etridiag(—l,Q7 1), M = %tridiag(l,él, 1).

The eigenvalues of the approximate problem (3.71) are easily shown to be

6 (1 — cos(mh)

Am =5\ o0y | 1<m<N.
4 h? 2—|—cos(m7rh)) "

The left panel in Figure 3.4 presents the first 100 eigenvalues of both the exact
and the approximate problems, the latter being obtained with a mesh con-
taining N = 100 points. The exact eigenvalues are approximated from above,
as predicted by the theory. We also observe that only the first eigenvalues are
approximated accurately. Eigenfunctions corresponding to large eigenvalues
oscillate too much to be represented accurately on the mesh; see the right
panel in Figure 3.4. To approximate the m-th eigenvalue with a relative accu-
racy of €, i.e., [Apm — Am| < €A, @ mesh with step size lower than g must be
used. In the present example, only the first 10 eigenvalues are approximated
within 1% accuracy.
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N

Fig. 3.5. Two domains on which the Laplacian has the same spectrum: the hen-
shaped domain (left) and the arrow-shaped domain (right). The coarsest meshes
used for the finite element approximation are shown. The length scale is such that

the area of the two domains is equal to % and that the meshes correspond to h = %.

Shape Hen Arrow
. 1 1 1 1 1 1
Mesh size 1 3 6 1 3 6

Eigenvalue 1 | 11.16 10.44 10.24 | 11.03 10.42 10.24
Eigenvalue 2 | 16.37 15.09 14.76 | 16.19 15.06 14.75
Eigenvalue 3 | 24.45 21.67 20.98 | 24.07 21.64 20.98

Table 3.2. First three eigenvalues for the hen- and arrow-shaped domains obtained
with a first-order finite element method on three meshes of increasing refinement.

In two dimensions. Relating the spectrum and the shape of a two-dimen-
sional membrane is a nontrivial task. For instance, knowing the spectrum
{AMn}m>1, is it possible to reconstruct the shape of the domain 2 (or, in
other words, can we hear the shape of a drum)? The answer is negative, as
proven recently by Gordon and Webb [GoW96] who discovered two domains
in R? having exactly the same spectrum. These domains take on the shape of
a “hen” and an “arrow” as depicted in Figure 3.5. We verify numerically that
the first eigenvalues of these two domains indeed coincide. Eigenvalues are
computed using the P; Lagrange finite element on a sequence of three meshes
that are successively refined. The coarsest meshes are displayed in Figure 3.5;
results are presented in Table 3.2. Both sets of eigenvalues converge to a
common limit as h — 0. The first two eigenfunctions are shown in Figure 3.6.

3.4 Continuum Mechanics
This section is concerned with PDE systems endowed with a multicomponent

coercivity property. Important examples include those arising in continuum
mechanics. Hereafter we restrict ourselves to linear isotropic elasticity. The
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Fig. 3.6. Two first eigenfunctions for the hen-shaped domain (top) and for the
arrow-shaped domain (bottom). Courtesy of E. Cances (ENPC).

first part of this section introduces a setting for the mathematical analysis
and the finite element approximation of continuum mechanics problems in
this framework. The second part focuses on some problems related to beam
flexion.

3.4.1 Model problems and their weak formulation

The physical model. The domain {2 C R? represents a deformable medium
initially at equilibrium and to which an external load f : £2 — R3 is applied.
Our goal is to determine the displacement field u : 2 — R? induced by f once
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the system has reached equilibrium again. We assume that the deformations
are small enough so that the linear elasticity theory applies.

Let o : 2 — R33 be the stress tensor in the medium. The equilibrium
conditions under the external load f can be expressed as

Vot f=0 i (3.86)
Let e(u) : 2 — R33 be the (linearized) strain rate tensor defined as
e(u) = L(Vu+ Vu'). (3.87)

In the framework of linear isotropic elasticity, the stress tensor is related to
the strain rate tensor by the relation

o(u) = Mr(e(w)Z + 2ue(u),

where A and p are the so-called Lamé coefficients, and Z is the identity matrix.
Using (3.87), the above relation yields

o(u) = N(Vu)Z + p(Vu + Vub). (3.88)

The Lamé coeflicients A and p are phenomenological coefficients. Owing to
thermodynamic stability, these coefficients are constrained to be such that
©>0and A+ % > 0. Moreover, for the sake of simplicity, we shall henceforth
assume that A\ and p are constant and that A > 0. In this case, owing to the
identity V- (e(u)) = % (Au+ V(V-u)), (3.86) and (3.88) yield

—pAu— A+ p)V(V-u) = f in £2.

The model problem (3.86)—(3.88) must be supplemented with boundary con-
ditions. We investigate two cases: a mized problem in which the displacement
is imposed on part of the boundary, and a pure-traction problem in which the
normal component of the stress tensor is imposed on the entire boundary. The
pure-displacement problem in which the displacement is imposed on the entire
boundary can be treated as a special case of the mixed problem.

Remark 3.73.

(i) The coefficient A + 24 describes the compressibility of the medium;
very large values correspond to almost incompressible materials.

(ii) Instead of using A and p, it is sometimes more convenient to consider
the Young modulus E and the Poisson coefficient v. These quantities are
related to the Lamé coefficients by

A

3A+2p
A p

= and V=
H A+

NO[—=

The Poisson coefficient is such that —1 < v < %, and owing to the assumption
A > 0, we infer v > 0. An almost incompressible material corresponds to a
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om— |1 o

Fig. 3.7. Example of a mixed problem in continuum mechanics.

Poisson coeflicient very close to %

(iii) The linear isotropic elasticity model is in general valid for problems
involving infinitesimal strains. In this case, the medium responds linearly to
externally applied loads so that one can normalize the problem and consider
arbitrary loads.

(iv) The finite element method originated in the 1950s when engineers
developed it to solve continuum mechanics problems in aeronautics; see, e.g.,
[Levs3, ArK67] and the references cited in [Ode91]. These problems involved
complex geometries that could not be easily handled by classical finite differ-
ence techniques. At the same time, theoretical researches on the approxima-
tion of linear elasticity equations were carried out [TuC56]. In 1960, Clough
coined the terminology “finite elements” in a paper dealing with linear elas-
ticity in two dimensions [Clo60]. O

Mixed problem and its weak formulation. Consider the partition 02 =
02p U Sy illustrated in Figure 3.7. The boundary 9f2p is clamped, whereas
a normal load g : 02y — R3 is imposed on Af2n. The model problem we
consider is the following:

Vio(u)+f=0 in {2,

o(u) = N(V-u)Z + p(Vu + Vul) in £, (3.80)
u=0 on df2p,

o(u)yn=g on ON2x.

To derive a weak formulation for (3.89), take the scalar product of the
equilibrium equation with a test function v : £2 — R3. Since [, — (V-0 (u))-v =
Joo(w):Vv — [, v-o(u)n and o(u):Vv = o(u):e(v) owing to the symmetry

of o(u),
/Qa(u):s(v)—/GQUJ(U)%:/Q]‘%

The displacement u and the test function v are taken in the functional space
Von = {v € [H'(2)]*; v =0o0n 802p}, (3.90)

equipped with the norm |jv|;,o = Zle llvill1,2 where v = (v1,v2,v3)T. The
weak formulation of (3.89) is thus:
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{ Seek u € Vpn such that (3.91)

a(u,v) = [, fv+ f{mN gv, Yv €& Vpn,

with the bilinear form
a(u,v):/ J(u):s(v):/ /\V-uV~v+/ 2pe(u):e(v). (3.92)
Q 2 Q

In continuum mechanics, the test function v plays the role of a virtual dis-
placement and the weak formulation (3.91) expresses the principle of virtual
work.

Proposition 3.74. Let 2 be a domain in R3, consider the partition 012 =
082p U 02\, and assume that the measure of 0f2p is positive. Let A\ and
w be two coefficients satisfying u > 0 and X > 0. Let f € [L*(2)]® and
g € [L?(0092x)]3. Then, the solution u to (3.91) satisfies

—pAu— A+ p)V(Vu) = f a.e in {2, (3.93)
u =0 a.e ondp, and o-n =g a.e. on Of2N.
Proof. Straightforward verification. ad

Pure-traction problem and its weak formulation. The pure-traction
problem consists of the following equations:

Vo(u)+ f=0 in (2,
o(u) = M(V-u)T 4+ p(Vu + VuT) in 02, (3.94)
o(u)yn=yg on 0f2.

It is natural to seek the solution and take the test functions in [H!(£2)]3.
Proceeding as before yields the problem:

10 OV3
{ Seek u € [H'(£2)]° such that (3.95)

a(u,v) = [, fo+ [5o9v, Yoe [H(2)]

The bilinear form a is still defined by (3.92). The difficulty is that a be-
comes singular on [H!(£2)]3. To see this, introduce the set R = {u €
[HY(2)]%; u(z) = a + B x x}, where a and 8 are vectors in R® and where
x denotes the cross-product in R3. A function in R is called a rigid displace-
ment field since it corresponds to a global motion consisting of a translation
and a rotation.

Lemma 3.75. The following equivalence holds:

(u € R) < (Vv e [H )], alu,v) =0).
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Proof. Let u € R. Clearly, V-u = 0 and e(u) = 0. Therefore, a(u,v) = 0 for
all v € [H(£2)]3. Conversely, if a(u,v) = 0 for all v € [H}(2)]?, take v = u
to obtain

a(u, ) =/ ANV-u)? +/ 2ue(u):e(u) =0,
0 0
implying that e(u) = 0. Moreover, the fact that, for all j, k with 1 < j, k < 3,
8jkui = ak(ajui) = 8}9(251'3‘) — aiakUj = aj(QEik) — 8iajuk
= akEij + 8j5ik — aiﬁjk =0,
implies that all the components u; of u are first-order polynomials. Hence,
u(z) = a + Bz,

with a € R3 and B € R33. Moreover, e(u) = 0 implies B + BT = 0, showing
that the matrix B is skew-symmetric. Therefore, there exists a vector 8 € R3
such that Bx = 8 x x. This shows that u € R. O

Taking v € R in (3.95), Lemma 3.75 shows that a necessary condition
for the existence of a solution to (3.94) is that the data f and g satisfy the
compatibility relation

Yv e R, / fo +/ gv=0. (3.96)
Q 00

Note that (3.96) expresses that the sum of the externally applied forces and
their moments vanish. Furthermore, it is clear that the solution u, if it exists,
is defined only up to a rigid displacement. Conventionally, we choose to seek
the solution u such that [,u = [, Vxu = 0 (note that both quantities are
meaningful if u € [H*(£2)]%). This leads to the following weak formulation:

Seek u € Vy such that
(3.97)
a(u,v) = [ fv+ [5o9v, Yve W,
with
VN = {ue [H'(02)]?; / u=0; / VXUZO}, (3.98)
[0 0
equipped with the norm || - |1, 0.

Proposition 3.76. Let 2 be a domain in R3. Let A and u be two coefficients
satisfying 1 > 0 and X > 0. Let f € [L*(2)]? and let g € [L?>(002)]3. Assume
that the compatibility condition (3.96) is satisfied. Then, the solution u to
(3.97) satisfies (3.93) and o-n = g a.e. on Of2.

Proof. Straightforward verification. ad
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3.4.2 Well-posedness

The coercivity of the bilinear form a defined in (3.92) relies on the following
Korn inequalities:

Theorem 3.77 (Korn’s first inequality). Let 2 be a domain in R3. Set
le()lo,2 = ([, e(v):e(v))2. Then, there exists ¢ such that

Vo e [Hy(Q)F, cllvlie < lle@)]o.e. (3.99)

Proof. Let v € [H}(£2)]3. Since v vanishes at the boundary,
/WW Z/avj i) Z/

—Z/ (03v3)(05v5) /( )

A straightforward calculation yields

/ e(v)e(v) = %/ (Vo + Vol): (Vo + VoT)
2 I7)

%/ VUIV’U—F%/ \AVI
Q Q

= %/ Vv:Ver%/ (V)2 > %/ Vu:Vu = %|v|ig.
0] 2 2

Hence, [v[] ;, < 2[le(v)]| ;- Tnequality (3.99) then results from the Poincaré
inequality applied componentwise. a

Theorem 3.78 (Korn’s second inequality). Let 2 be a domain in R3.
Then, there exists ¢ such that

voe [H (R, clvlhe <le®lloe + v (3.100)

Proof. See [Cia97, p. 11] or [DuL72, p. 110]. O

Proposition 3.79 (Mixed problem). Let 2 be a domain in R® and let
02p C 902 have positive measure. Let f € [L*(2)]? and let g € [L?(02n)]3.
Then, problem (3.91) is well-posed and there exists ¢ such that

Vf e [L?(0)]3, Vg € [L*(002x)]3,

< c(Ifo.2 + lgllo.oax)-

Moreover, (3.91) is equivalent to the variational formulation

i ([ @07 duf et [ pa- [ o).
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Proof. If 002p = 092, Vpn = [Hi(£2)]3. Coercivity then results from Korn’s
first inequality since

vu e [HUDP,  a(u,u) > 2% e > clull o

If 002p & 082, coercivity results from Korn’s second inequality and a com-
pacity argument; see the proof of Proposition 3.81. Conclude using the Lax—
Milgram Lemma and Proposition 2.4. O

Remark 3.80. Given a displacement u, the quantity J(u) represents the to-
tal energy of the deformed medium (2. The quadratic terms correspond to
the elastic deformation energy and the linear terms to the potential energy
associated with external loads. O

Proposition 3.81 (Pure-traction problem). Let 2 be a domain in R3.
Assume that f € [L*(£2)] and g € [L?(002)]? satisfy the compatibility condi-
tion (3.96). Then, problem (3.97) is well-posed and there exists ¢ such that

vf e [L2(Q)P, ¥g € [L*(02)]°, lullLe < c(llfllo.e + lgllo.on)-

Moreover, (3.97) is equivalent to the variational formulation

min () @+ duf e = [ ra- [ ga).

Proof. Coercivity results from Korn’s second inequality and from the Petree—
Tartar Lemma. Indeed, set X = Vy, Y = [L?(2)]*3, and A: X > u s e(u) €
Y. Lemma 3.75 implies that the operator A is injective. Set Z = [L?(£2)]? and
let T be the compact injection from X into Z. Korn’s second inequality yields

Vue X, |ullx < c(l|Aully +[Tull2).

Applying the Petree—Tartar Lemma yields |ul|x < c||Aully for all u € X,
ie.,

Yu e W, |ul

1.2 <cle(w)o.n-

This inequality shows that the bilinear form a is coercive on Vy. To complete
the proof, use the Lax—Milgram Lemma and Proposition 2.4. a

3.4.3 Finite element approximation

For the sake of simplicity, we assume that {2 is a polyhedron.
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H'-conforming approximation. We consider a H'-conforming finite ele-
ment approximation of problems (3.91) and (3.97) based on a family of affine,
geometrically conforming meshes {7, },~0 and a Lagrange finite element of
degree k > 1 denoted by {I/(\',ﬁ, f}

To approximate the mixed problem, we assume, for the sake of simplicity,
that 0f2p is a union of mesh faces. Hence, the approximation space

VE = {u, € [CO(2)*; VK € Th, vn o Tic € [P)*; v =0 on 882p},

is Vpn-conforming. Consider the discrete problem:

Seek up, € VIF such that
{ eek up, . suc a (3.101)

a(un,vn) = [o f-on + fa_QN gop, Vo, € ViF
Proposition 3.82 (Mixed problem). Let u solve (3.91) and let up, solve

(3.101). In the above setting, limp_o ||u — unl|l1,0 = 0. Furthermore, if u €
[HHY(2)]2 N Vo for some l € {1,...,k}, there exists ¢ such that

Vh, |u—uplio <chlulii o

Proof. Direct consequence of Céa’s Lemma and Corollary 1.109 applied com-
ponentwise. 0

Remark 3.83. It is not possible to apply the Aubin—Nitsche Lemma to derive
an error estimate in the [L%(£2)]*-norm because the mixed problem is not
endowed with a suitable smoothing property. a

For the pure-traction problem, one possible way to eliminate the arbitrary
rigid displacement is the following:

(i) Impose the displacement of a node, say ag, to be zero.

(ii) Choose three additional nodes a1, aq, as, and three unit vectors 71, 7o,
73 such that the set {(a; —ag) x 7i }1<i<3 forms a basis of R?, and impose
the displacement of the node a; along the direction 7; to be zero.

This procedure leads to the approximation space
WE = {v, € [C°(2))% VK € T, vy 0 Tk € [P
vp(ag) = 0; vp(a;)m =0,4=1,2,3},

and to the discrete problem:

{ Seek uy, € W} such that (3.102)

a(un,vn) = [ fon+ [50 90, Vo, € WE.
Proposition 3.84 (Pure-traction problem). Let u solve (3.91) and let up,

solve (3.102). In the above setting, limy_o ||u — upl|1,2 = 0. Furthermore, if
u € [HFH )2 N Wy for some l € {1,...,k}, there exists ¢ such that
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Vh, |lu—unl1e < ch'lulip,0.
In addition, if £2 is convexr and g = 0, there is ¢ such that
Vh, |lu—upllo,e < ch™*Hulig, o

Proof. Use Céa’s Lemma, together with Corollary 1.109, to obtain the H!-
error estimate. Furthermore, the homogeneous pure-traction problem posed
over a convex polyhedron is endowed with a smoothing property [Gri92,
p. 135]. The L2-error estimate then results from the Aubin-Nitsche Lemma.

O

Crouzeix—Raviart approximation. Non-conforming finite element approx-
imations to the equations of elasticity can be considered using the Crouzeix—
Raviart finite element introduced in §1.2.6. For pure-traction problems, the
main difficulty in the analysis is to prove an appropriate version of Korn’s sec-
ond inequality. This result can be established for non-conforming piecewise
quadratic or cubic finite elements, but is false for piecewise linear interpo-
lation. For Crouzeix—Raviart interpolation, appropriate modifications of the
method are discussed in [Fal91, Rua96].

One important advantage of non-conforming approximations is that they
yield optimal-order error estimates that are uniform in the Poisson coefficient
v. Such a property is particularly useful when modeling almost incompress-
ible materials since it is well-known that, in this case, H!'-conforming finite
elements suffer from a severe deterioration in the convergence rate; see §3.5.3
for an illustration.

Numerical illustrations. As a first example, consider the horizontal de-
formations of a two-dimensional, rectangular plate with a circular hole. The
triangulation of the plate is depicted in the left panel of Figure 3.8. The left
side is clamped, the displacement (1,0) is imposed on the right side, and zero
normal stress is imposed on the three remaining sides. There is no external
load, and the Lamé coefficients are such that 2 = 1. The plate in its equi-
librium configuration is shown in the right panel of Figure 3.8. P; Lagrange
finite elements have been used.

The second example deals with the three-dimensional body illustrated in
Figure 3.9. A transverse load is imposed at the forefront of the body. The
approximate solution has been obtained using first-order prismatic Lagrange
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Fig. 3.8. Deformation of an elastic plate with a hole: reference configuration (left);
equilibrium configuration (right).
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Fig. 3.9. Three-dimensional continuum mechanics problem in which a transverse
load is applied to the forefront of the body; reference and equilibrium configurations
are presented; approximation with prismatic Lagrange finite elements of degree 1.
Courtesy of D. Chapelle (INRIA).

finite elements. Figure 3.9 presents the reference and the equilibrium config-
urations.

3.4.4 Beam flexion and fourth-order problems

The physical model. We investigate a model for beam flexion due to Tim-
oshenko; see, e.g., [Bat96]. Consider the horizontal beam of length L shown
in Figure 3.10. The z-coordinate is set so as to coincide with the beam axis.
The beam is clamped into a rigid wall at = 0. Impose a distributed load
[ = (fs, fy) in the (z,y)-plane and a distributed momentum m parallel to
the z-axis. Impose further a point force F' = (F,, F};) and a point momentum
M at the beam extremity located at © = L. Assuming that the axis of the
beam remains in the (z,y)-plane, the beam flexion can be described by the
displacement u = (ug,u,) of the points along the axis and by the rotation
angle 6 of the corresponding transverse sections.

In the Timoshenko model, the tangential displacement u, uncouples from
the unknowns u,, and . Setting £2 =0, L[, u, solves —u/l = 2= f, in £2 with
boundary conditions u,(0) = 0 and u},(L) = ggF,, where F is the Young
modulus and S is the area of the beam section. Thus, a one-dimensional
second-order PDE with mixed boundary conditions is recovered.

To alleviate the notation, we now write v instead of w,, f instead of f,,
and F' instead of F}. The displacement u and the rotation angle 6 satisfy the
PDEs

—(u" -0 = T and —~0" — (v —0) = 2, (3.103)
EI EI

where [ is the inertia moment of the beam, v = W, and ~ is an empirical

correction factor (usually set to %) Boundary conditions for v and 6 are
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Uz

Fig. 3.10. Timoshenko model for beam flexion.

u(0) =0, 6(0)=0, (' —0)(L) = %F 0'(L) = %M. (3.104)

‘Weak formulation and coercivity. Let v be a test function for the normal
displacement u and let w be a test function for the rotation angle 6. Multiply
the first equation in (3.103) by v, the second by w, and integrate by parts over
2 to obtain the weak formulation:

{ Seek (u,0) € X x X such that V(v,w) € X x X, (3.105)

a((u,0), (v,w)) = 2 [[o(fv+mw) + Fu(L) + Mw(L)],

where

a((u,0), (v,w)) = /979’(;/ +/ (W —0)(v' —w), (3.106)

fo)
and X = {v € H*(£2); v(0) = 0}. Equip the product space X x X with the
norm ||(u,0)||xxx = ||ull1,2 + ||0|l1,2- One readily verifies the following:

Proposition 3.85. Let f and m € L*(£2). If the couple (u,0) solves (3.105),
it satisfies (3.103) a.e. in 2 and the boundary conditions (3.104).

Theorem 3.86 (Coercivity). Let v > 0, let f,m € L*(£2), and let F,M €
R. Then, problem (3.105) is well-posed. Moreover, (u,8) solves (3.105) if and
only if it minimizes over X x X the energy functional

J(u,0) = %/97(9/)%%/9(1/—9)2—% [/Q(fu+me)+pu(L)+M9(L)]

Proof. The key point is to verify the coercivity of the bilinear form a defined
by (3.106). A straightforward calculation yields

a((u,0), (u, 0)) :/(27(9')2+/Q(u/)2+/902—2/99u’.

Let x> 0. Use inequality (A.3) with parameter u, together with the Poincaré
inequality cqollv]o,2 < ||v'||lo, valid for all v € X, to obtain
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1
a((0,6). (6)) 2 168 g+ [ul} g+ 161, — 1B 0~ 10
1 Y 0
> (1= 2 ) o+ J0R0+ (3 +1- 1) 1013 0

Taking p =1+ 2 cQ yields

702
2 v
o(w0),(0.0)) 2 772 ulf o+ 510R 2 2@l )
with a(y) = ZHCQ inf(1,¢4/(1 + %c3)) > 0; since v > 0, a is coercive.
Conclude using the LaX Milgram Lemma and Proposition 2.4. O

Discrete approximation. Let 7, be a mesh of {2 with vertices 0 = xy <
21 <...<zy <xyy1 = L where N is a given integer. Consider a conforming
P, Lagrange finite element approximation for both u and 6. The approxima-
tion space we consider is thus

X ={vn €C°(02); Vi € {0,..., N}, pjj.zs11] € Prs va(0) = 0},

yielding the approximate problem:

{ Seek (un,0r) € Xp x X, such that, V(vy,ws) € Xp X Xp, (3.107)

a((un,0n), (vn,wn)) = 251/ (fon +mwp) + Fop(L) + Mwy(L)].
Theorem 3.87. Let 7T;, be a mesh of 2. Along with the assumptions of The-
orem 3.86, assume that w and 0 € H*((2) for some s > 2. Then, setting
I = min(k,s — 1), there exists ¢ such that, for all h,
lu—unl1,0+ 10— Onl1,0 < ch max(|ulit1,0, 0]i41,0),
[lu = unllo, + 16 = Onllo,

max(|uli1,0,0)14+1,0)-

Proof. The estimate in the H'-norm results from Céa’s Lemma and from
Proposition 1.12 applied to u and 6. The estimate in the L2-norm results
from the Aubin—Nitsche Lemma. Indeed, one easily checks that the adjoint
problem is endowed with the required smoothing property. a

Navier—Bernoulli model and fourth-order problems. A case often en-
countered in applications arises when the parameter v becomes extremely
small. In the limit v — 0, the Navier-Bernoulli model is recovered

v —60=0 on {2,

meaning that the sections of the bended beam remain orthogonal to the axis.
Assuming that m = 0, EI = 1, and that the beam is clamped at its two
extremities, the normal displacement u is governed by the fourth-order PDE
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u””" = f in 2 with boundary conditions u(0) = u(L) = v'(0) = /(L) = 0,
leading to the weak formulation:

{ Seek u € H3(£2) such that (3.108)

fOL u'v" = fOL fv, Vove HE ().

Proposition 3.88. Let f € L*(£2). Then, problem (3.108) is well-posed.
Moreover, problem (3.108) is equivalent to minimizing over HZ(82) the en-

ergy functional J(v) = 3 [,(v")? = [, fv.
Proof. Left as an exercise. 0O

We consider a H?-conforming approximation to problem (3.108) using a
Hermite finite element approximation. Taking the boundary conditions into
account leads to the approximation space

Xgo = {Uh S Cl(ﬁ); Vi € {O, . ,N}, Vh|[zi,@ie1] € Ps;
vun(0) = v4(0) = vn(L) = v (L) = 0},

and the discrete problem:

{ Seek uj, € X3, such that (3.100)

1 1
Jo upv = [y fon, Yun € X3

Proposition 3.89. Let 7, be a mesh of 2. Let f € L?(2), let u solve (3.108),
and let up, solve (3.109). Then, there exists ¢ such that, for all h,

lu — unllo, + hlu — unl1,0 + WP u — upl2,.0 < ch?|| fllo,e-

Proof. Left as an exercise. a

Example 3.90. Consider a unit-length beam clamped at its two extremities.
Apply a unit load f = 1. Approximate problem (3.109) using uniform meshes
with step size h = %, %, %, and %. The left panel in Figure 3.11 presents
the error along the beam. We observe that the error vanishes at the mesh
points. This is because, in this simple one-dimensional problem, the Green
function associated with (3.108) belongs to the approximation space X 20; see
Remark 3.25 for a justification. The right panel in Figure 3.11 presents the
error in the L2?-norm, H'-seminorm, and H2-seminorm. Convergence orders

are 4, 3, and 2, respectively, as predicted by the theory. a

Remark 3.91. The two-dimensional version of problem (3.108) is to seek
u € HZ($2) such that

Audv= [ fv, VYve HZND). (3.110)
2 Q
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Fig. 3.11. Hermite finite element approximation for a beam flexion problem. Left:

Error distribution along the beam for various mesh sizes; h = % (dashed), 2—10

(dotted), and 55 (solid). Right: Error in the L*-norm (solid), H'-seminorm (dotted),
and H?-seminorm (dashed) as a function of mesh size.

This problem models, for instance, the bending of a clamped plate submitted
to a transverse load; see [Des86, Cia97]. Regularity results for problem (3.110)
are found in [GiR86, p. 17], [Cia91, p. 297], and [Gri92, p. 109]. Finite element
approximations are discussed, e.g., in [Cia91, p. 273]; see also [GiR86, p. 204]
for a related mixed formulation of problem (3.110) in the context of the Stokes
equations in dimension 2. O

3.5 Coercivity Loss

Coercivity loss occurs when some model parameters take extreme values. In
this case, although the exact problem is well-posed, discrete stability is ob-
served only if very fine meshes are employed. The examples addressed in this
section are:

(i) Advection—diffusion problems of the form (3.2) with dominant advection.
(ii) Elastic deformations of a quasi-incompressible material.
(iii) Elastic bending of a very thin Timoshenko beam.

The scope of this section is not to fix the above-mentioned problems, but to
highlight the mathematical background related to coercivity loss. We identify
the model parameter taking extreme values, and by letting this parameter
approach zero, we derive formally a problem with no coercivity, i.e., typically
involving a saddle-point or a first-order PDE. Such problems are thoroughly
investigated in Chapters 4 and 5.

3.5.1 The setting
Consider the problem:

{ Seek u € V such that (3.111)

ap(u,v) = f(v), VYwey,



3.5. Coercivity Loss 165

where V' is a Hilbert space, f € V', and a,, is a continuous, coercive, bilinear
form on V x V. The form a, depends on the phenomenological parameter 7
that will subsequently take arbitrarily small values. Set ||a,| := ||a,||v,v and
denote by a, the coercivity constant of a,, i.e.,

a, = inf 7%(“’ u)
T uev ||u||%,

Definition 3.92. Coercivity loss occurs in (3.111) if
ol
n—0 Qy

Remark 3.93. By analogy with the terminology adopted for linear systems
in §9.1, coercivity loss amounts to the ill-conditioning of the form a. O

Let V}, be a V-conforming approximation space and assume, as is often the
case in practice, that V}, is endowed with the optimal interpolation property

VueWw, inf |lu—onllv < eh*|lullw,
v €V

where W is a dense subspace of V' and ¢; is an interpolation constant. Let wup,
be the solution to the approximate problem:
Seek uy, € Vj, such that
an(un,vn) = f(vp), Yoy € V.
Assuming that the exact solution w is in W yields the error estimate
a
= unlly < 192l g
Qn

If problem (3.111) suffers from coercivity loss, this estimate does not yield any
practical control of the error. Obviously, keeping 7 fixed and letting h — 0,
convergence is achieved. However, the mesh size is limited from below by the
available computer resources. Therefore, it is not always possible in practice
to compensate coercivity losses by systematic mesh refinement. Some explicit
examples where this situation occurs are detailed below.

3.5.2 Advection—diffusion with dominant advection
Let £2 be a domain in R%. Consider the advection—diffusion equation
—vAu+ B-Vu=f in (2, (3.112)

where v > 0 is the diffusion coefficient, 3 : 2 — R? the advection velocity,
and f : {2 — R the source term. Following §3.1, we consider the bilinear form
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Fig. 3.12. Finite element approximation of an advection—diffusion equation with
dominant advection: h =~ % and Py approximation (top left); h = 21—0 and P; ap-

proximation (top right); h = % and P; approximation (bottom left); h = 21—0 and

P, approximation (bottom right).

an(u,v):/QZ/Vu-VU—I—/QU(ﬂ-Vu).

The parameter n = W measures the relative importance of advective
[

Lo (02)]

and diffusive effects. Assuming 7 < 1 implies

l[an|| -0 (”ﬂ”[Lw(Q)]d) _0 (1) 1,
Ckn v n

leading to coercivity loss.

Figure 3.12 presents various approximate solutions to the advection—
diffusion equation (3.112). The domain {2 is the unit square in R2. We impose
u = 1 on the right side, u = 0 on the left side, and 0,,u = 0 on the two other
sides. The diffusion coefficient is set to v = 0.002, the advection velocity is
constant and equal to 8 = (1,0), and the source term f is zero. The exact
solution is

e —1

. .
ev —1

u(xy,x2) =
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Since the diffusion coefficient v takes very small values, the exact solution u
is almost identically zero in {2 except in a boundary layer of width v located
near the right side where u sharply goes from 0 to 1. Three unstructured
triangulations of the domain {2 are considered: a coarse mesh containing 238
triangles (triangle size h & 10) an intermediate mesh containing 932 triangles
(trlangle size h =~ %) and a fine mesh containing 3694 triangles (triangle 51ze
h =~ —) The P, Galcrkm solution is computed on the three meshes: h =~ 10,
top left panel; h = %, top right panel; and h ~ E’ bottom left panel. The Py
Galerkin solution computed on the intermediate mesh is shown in the bottom
right panel. We observe that spurious oscillations pollute the approximate
solution in the four cases presented. Oscillations are larger on the two coarser
meshes and for the P; approximation.

In the limit 7 — 0, the diffusion term is negligible and the solution u is
governed by a first-order PDE. Hence, to understand and fix the problems
associated with coercivity loss, it is important to analyze the limit first-order
PDE; this is the purpose of Chapter 5.

3.5.3 Almost incompressible materials

Almost incompressible materials, such as rubber, are characterized by Lamé
coefficients A and p with a very large ratio % Another equivalent characteriza-

tion is that the Poisson coefficient v is very close to % In §3.4.1 we introduced
the bilinear form

an(u,v) = /\V-uV~v+/ 2ue(u):e(v),
o) I7)

where e(u) is the strain rate tensor. When the ratio n = £ is very small, one

verifies that \ )
||a’77|| =0 (_) =0 (_) > 17
Q) H n

leading to coercivity loss.

Consider a horizontal elastic flat plate with three internal holes; see Fig-
ure 3.13. The left side is kept fixed, the displacement (1,0) is imposed on the
right side, and zero normal stress is imposed on the remaining external sides
as well as on the three internal sides. No internal load is applied, and the

Fig. 3.13. Deformations of a horizontal, flat plate with three holes: maximal stresses
(left); Tresca stresses (right).
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ratio of the Lamé coefficients is 2 = 100. Figure 3.13 presents Tresca stresses
and maximal stresses obtained with a P; Lagrange finite element approxima-
tion. We observe that spurious oscillations pollute the discrete solution; in
the literature, this phenomenon is often referred to as locking.

When 2 > 1, one can show that V-u — 0. Introducing a new scalar
unknown p in place of the product —AV-u yields

o= _pI + 2”‘6(”)7
Vau=0.

Since Au = 2V-¢(u) when V-u = 0, the governing equations of an incom-
pressible medium in the framework of linear elasticity become

—pAu+Vp = f,
V-u=0.

Formally, we recover the Stokes equations often considered to model steady,
incompressible flows of creeping fluids. The new unknown p can be identi-
fied with a pressure. The Stokes equations are endowed with a saddle-point
structure. The analysis of this class of problems is the purpose of Chapter 4.

3.5.4 Very thin beams

Referring to §3.4.4 for more details, the bilinear form arising in Timoshenko’s
model of beam flexion is

o ((.0), (v,)) = |

9]

v0'w' + /Q(u' —-0)(v' — w),

where u is the normal displacement of the beam axis and 6 the rotation angle
of the beam section. The parameter 7 is simply equal to v. When v < 1, the
proof of Theorem 3.86 shows

Qp v n

leading to coercivity loss. Note that v < 1 when the ratio between the inertia
moment and the section of the beam is