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Abstract

We introduce an approximation technique for nonlinear hyperbolic systems with sources that is invariant domain preserving. The
method is discretization-independent provided elementary symmetry and skew-symmetry properties are satisfied by the scheme.
The method is formally first-order accurate in space. Then, we introduce a series of higher-order methods. When these methods
violate the invariant domain properties, they are corrected by a limiting technique that we call convex limiting. After limiting,
the resulting methods satisfy all the invariant domain properties that are imposed by the user (see Theorem 7.24) and is formally
high-order accurate. The two key novelties are that (i) limiting is done by enforcing bounds on quasiconcave functionals; (ii) the
bounds that are enforced on the solution at each time step are necessarily satisfied by the low-order approximation.
c⃝ 2018 Published by Elsevier B.V.
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1. Introduction

The present paper is concerned with the approximation of hyperbolic systems in conservation form with a source
term: {

∂t u +∇·f(u) = S(u), for (x, t) ∈ D×R+,
u(x, 0) = u0(x), for x ∈ Rd .

(1.1)

The space dimension d is arbitrary. The dependent variable u takes values in Rm and the flux f takes values in (Rm)d .
In this paper u is considered as a column vector u = (u1, . . . , um)T. The flux is a matrix with entries fi j (u(x)),
1 ≤ i ≤ m, 1 ≤ j ≤ d and ∇·f(u(x)) is a column vector with entries (∇·f(u))i =

∑
1≤ j≤d ∂x j fi j (u(x)). For any

n = (n1 . . . , nd )T
∈ Rd , we denote f(u)n the column vector with entries

∑
1≤l≤d fil(u)nl , where i ∈ {1:m}. To

simplify questions regarding boundary conditions, we assume that either periodic boundary conditions are enforced,
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or the initial data is compactly supported or constant outside a compact set. In both cases we denote by D ⊆ Rd the
spatial domain where the approximation is constructed. The domain D is the d-torus in the case of periodic boundary
conditions. In the case of the Cauchy problem, D is a compact, polygonal portion of Rd large enough so that the
domain of influence of u0 is always included in D over the entire duration of the simulation.

The objective of the paper is to generalize the techniques that was introduced in Guermond et al. [1] for
the approximation of the compressible Euler equations using continuous finite elements. We want to present an
approximation technique that is almost discretization independent and works with any hyperbolic system with source
term, under some mild assumptions on the source. The formalism encompasses finite volumes, continuous finite
elements and discontinuous finite elements. The method is formally second-order or higher-order in space and can be
made (at least) fourth-order accurate in time by using explicit Runge–Kutta SSP methods. The key ingredients of the
method are as follows: (i) A low-order invariant domain preserving approximation technique using a graph viscosity.
(The viscosity is based on the connectivity graph of the degrees of freedom of the method. One viscosity coefficient
is computed on every edge of the graph.) (ii) A high-order approximation technique. (The method may not be fully
entropy consistent and may step out of the local invariant domain); (iii) A convex limiting technique with guaranteed
bounds. (The bounds in question are obtained by computing auxiliary states on every edge of the connectivity graph.
The convex limiting method works for any quasiconcave functional, i.e., it is possible to limit any quasiconcave
functional of the approximate solution.)

The paper is organized as follows. We recall elementary properties of the hyperbolic system (1.1) in Section 2.
The theory for the low-order method is explained in Section 3. The main result of this section is Theorem 3.6. The
auxiliary states, which play a key role in the convex limiting technique are defined in (3.8). The method is illustrated
in the context of finite volumes, continuous finite elements, and discontinuous finite elements in Section 4. A brief
overview of explicit Runge–Kutta Strong Stability Preserving methods is made in Section 5. The key result of this
section is a reformulation of the Shu–Osher Theorem 5.4 which does not involve any norm. We show therein that only
convexity matters. It seems that the result, as reformulated, is not well known in the literature. We show in Section 6
how higher-order schemes can be constructed. These methods are not necessarily invariant domain preserving. In
passing we revisit an idea initially proposed by Jameson et al. [2, Eq. (12)] which consists of constructing a second-
order graph viscosity by using a smoothness indicator. In Theorem 6.5 we prove that a high-order scheme based on
the smoothness indicator of a conserved scalar component of the system does indeed preserve the bounds (for that
component) that are naturally satisfied by the first-order method. In Theorem 6.8 we present another invariant domain
preserving result for one scalar component of the conserved variables, but in this case the graph viscosity is computed
by using a gap estimate (see Lemma 6.4) instead of a smoothness indicator. To the best of our knowledge, it seems
that both results are original in the context of hyperbolic systems. The convex limiting technique is presented in
Section 7, the key results of this section are Lemmas 7.15, 7.20 and Theorem 7.21. All these results are recapitulated
into Theorem 7.24, which in some sense summarizes the content of the present paper. The idea of using the auxiliary
states (3.8) and convex limiting has originally been proposed in Guermond et al. [1] for the Euler equations. The
proposed generalization to general hyperbolic systems with source term for generic discretizations seems to be new.

Computations illustrating the performance of the abstract results stated in the paper can be found in Guermond and
Popov [3], Guermond et al. [1] for the compressible Euler equations, and in Azerad et al. [4], Guermond et al. [5] for
the shallow water equations.

2. Preliminaries

We recall in this section key properties about the system (1.1) that will be used repeatedly in the paper. The reader
who is familiar with hyperbolic systems with source terms, Riemann problems, and invariant sets is invited to jump
to Section 3.

2.1. Riemann problem space average and maximum wave speed

We consider (1.1) without source term in this subsection, i.e., S(u) = 0. Instead of trying to give a precise meaning
to the solutions of (1.1), which is either a very technical task or a completely open problem, we instead assume that
there is a clear notion of solution for the Riemann problem. That is to say we assume that there exists a nonempty
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admissible set A ⊂ Rm such that for any pair of states (uL , uR) ∈ A×A and any unit vector n in Rd , the following
one-dimensional Riemann problem

∂tv + ∂x (f(v)n) = 0, (x, t) ∈ R×R+, v(x, 0) =

{
vL , if x < 0
vR, if x > 0,

(2.1)

has a unique (entropy satisfying) self-similar solution denoted by v(n, vL , vR, ξ ), where ξ = x
t is the self-similarity

parameter, see for instance Lax [6], Toro [7]. The key result that we are going to use in this paper is that there exists a
maximum wave speed henceforth denoted λmax(n, vL , vR) such that v(n, vL , vR, ξ ) = vL if ξ ≤ −λmax(n, vL , vR) and
v(n, vL , vR, ξ ) = vR if ξ ≥ λmax(n, vL , vR). We assume that λmax(n, vL , vR) can be estimated from above efficiently;
for instance, we refer the reader to Guermond and Popov [8] where guaranteed upper bounds on the maximum wave
speed are given for the Euler equations with the co-volume equation of state. The following elementary result, which
we are going to invoke repeatedly, is an important consequence of the finite speed of propagation assumption:

Lemma 2.1 (Average Over the Riemann Fan). Let (η, q) be an entropy pair for the system (1.1). Let v(t, n, vL , vR) :=∫ 1
2
−

1
2
v(n, vL , vR, ξ ) dx be the average of the Riemann solution over the Riemann fan at time t. Assume that

tλmax(n, vL , vR) ≤ 1
2 , then the following holds true:

v(t, n, vL , vR) =
1
2

(vL + vR)− t
(
f(vR)n− f(vL )n

)
. (2.2)

η(v(t, n, vL , vR)) ≤ 1
2 (η(vL )+ η(vR))− t(q(vR)·n− q(vL )·n). (2.3)

2.2. Invariant sets and invariant domains

We introduce in this section the notions of invariant sets and invariant domains. Our definitions are slightly different
from those in Chueh et al. [9], Hoff [10], Smoller [11], Frid [12]. We associate invariant sets with solutions of Riemann
problems and define invariant domains only for an approximation process; our definition has some similarities with
Eq. (2.14) in Zhang and Shu [13].

Definition 2.2 (Invariant Set). We say that a set B ⊂ A ⊂ Rm is invariant for (1.1) if B is convex and for any pair
(uL , uR) ∈ B×B, any unit vector n ∈ Rd , and any t > 0 such that tλmax(n, vL , vR) ≤ 1

2 , the average of the entropy
solution of the Riemann problem (2.1) over the Riemann fan, say v(t, n, vL , vR), remains in B, and if there exists
τ0 > 0 such that for any U ∈ B and any τ ≤ τ0 the quantity U+ τ S(U) is in B.

We now introduce the notion of invariant domain for an approximation process. Let I be a positive natural number
and let Rh : (Rm)I

→ (Rm)I be a mapping over (Rm)I . Henceforth we abuse the language by saying that a member
of (Rm)I , say U = (U1, . . . ,UI ), is in the set B ⊂ Rm to actually mean that Ui ∈ B for all i ∈ {1: I }.

Definition 2.3 (Invariant Domain). A convex invariant set B ⊂ A ⊂ Rm is said to be an invariant domain for the
mapping Rh : (Rm)I

→ (Rm)I if and only if for any state U in B, the state Rh(U) is also in B.

For scalar conservation equations the notions of invariant sets and invariant domains are closely related to the
notion of maximum principle. In the case of nonlinear hyperbolic systems, the maximum principle property does not
apply and must be replaced by the notion of an invariant domain. To the best of our knowledge, the definition of
invariant sets for the Riemann problem was introduced in Nishida [14], and the general theory of positively invariant
regions was developed in Chueh et al. [9]. The analysis and development of numerical methods preserving invariant
regions was considered in Hoff [10,15], Frid [12]. The objective of this paper is to generalize the invariant domain
preserving method originally developed in Guermond and Popov [3] and the (invariant domain preserving) convex
limiting technique introduced in Guermond et al. [1].

Remark 2.4 (Siff Source Terms). The assumption that there exists a uniform τ0 so that B + τ S(B) ⊂ B for all
τ ∈ [0, τ0] is not reasonable for hyperbolic systems with stiff source terms since it imposes a very severe restriction
on the time step. In this case other strategies must be adopted. We are going to restrict ourselves in the present paper
to source terms that are moderately stiff in the sense of Definition 2.2, and we postpone the extension of the present
work to systems with stiff source terms to a future publication. □
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2.3. Examples

We briefly go over some examples of systems with source terms and show that the proposed definition for invariant
sets is meaningful/useful.

2.3.1. Euler + co-volume EOS
For the compressible Euler equations with covolume of state the dependent variable is u = (ρ,m, E)T, where ρ is

the density, m is the momentum, and E is the total energy. The flux is f(u) = (ρv,m ⊗ v + pI, v(E + p))T where
v := m/ρ and the pressure is given by the equation of state p(1− bρ) = (γ − 1)eρ. The constant b ≥ 0 is called the
covolume and γ > 1 is the ratio of specific heats. We have A := {u | 1 ≥ 1 − bρ ≥ 0, e(u) ≥ 0} and it is shown
in Guermond and Popov [8] that B := {u | 1 ≥ 1− bρ ≥ 0, e(u) ≥ 0,Φ(u) ≥ Φ0} is an invariant set for any Φ0 ∈ R,
where e(u) := E/ρ − 1

2v2 is the specific internal energy, and Φ(u) is the specific physical entropy. In this paper we
call internal energy the quantity ε(u) := ρe(u).

2.3.2. Shallow water
Saint–Venant’s shallow water model describes the time and space evolution of a body of water evolving in time

under the action of gravity assuming that the deformations of the free surface are small compared to the water elevation
and the bottom topography z varies slowly. The dependent variable is u = (h, q)T, where h is the water height and
q is the flow rate in the direction parallel to the bottom. The flux is f(u) = (q, q ⊗ v + 1

2 gh2I)T, where v := q/h
and g is the gravity constant. The source including the influence of the topography and Manning’s friction law is
S(u) = (0, gh∇z− gn2h−γ q∥v∥ℓ2 ), where n is Manning’s roughness coefficient, and γ is an experimental parameter
often close to 4

3 .
It is well-known that A = B := {u | h ≥ 0} is an invariant set for the system without source term. Let u ∈ B and

τ > 0, then u + τ S(u) = (h, q + τ (gh∇z − gn2h−γ q∥v∥ℓ2 ))T, and it is clear that u + τ S(u) ∈ B for any τ ≥ 0
because h ≥ 0 by definition. Hence B is an invariant set according to Definition 2.2 with τ0 = ∞.

2.3.3. ZND model
We now consider the Zel’dovich–von Neumann–Döring model for compressible reacting flows. The dependent

variable is u = (ρ1, ρ2,m, E)T, where ρ1 is the density of the burned gas (fuel), ρ2 is the density of the unburned gas,
m is the momentum of the mixture, and E is the total energy. The flux is f(u) = (ρ1v, ρ2v,m ⊗ v + pI, v(E + p))T

where v := m/(ρ1+ρ2) and the pressure is given by an appropriate equation of state; for instance, for ideal polytropic
gases it is common to adopt the so called γ -law, p = (γ − 1)(E − 1

2ρv2
− q0ρ2), where q0 is the specific energy

of the unburned gas. Denoting by T := p/(ρ1 + ρ2), the source term is S(u) = (κ(T )ρ2,−κ(T )ρ2, 0, 0)T, where
κ(T ) = κ0e−T0/T , where κ0 ≥ 0 is the reaction rate constant and T0 is the ignition temperature (up to multiplication
by the gas constant R).

Denoting ρ := ρ1+ρ2 and setting e(u) := (E− 1
2ρv2
−q0ρ2)/ρ, it can be shown that A = B := {u | ρ1 ≥ 0, ρ2 ≥

0, e(u) ≥ 0} is an invariant set for the homogeneous system, i.e., when S ≡ 0. One can convince oneself that this is
indeed true by realizing that when S ≡ 0, upon denoting E ′ := E − q0ρ2, the dependent variable (ρ,m, E ′) solves
the compressible Euler equations, and it is well-known that {u | ρ ≥ 0, E ′ − 1

2ρv2
≥ 0} is an invariant set.

Now let us establish that for any u ∈ B and any τ ≤ τ0 := κ
−1
0 , the quantity u + τ S(u) is in B. Let u ∈ B and

let τ ≥ 0, then u + τ S(u) = (ρ1 + τκ(T )ρ2, ρ2 − τκ(T )ρ2,m, E)T. Since T := (γ − 1)e(u) ≥ 0, ρ1 ≥ 0, ρ2 ≥ 0,
and τ ≥ 0, it is clear that ρ1 + τκ(T )ρ2 ≥ 0. Moreover, ρ2 − τκ(T )ρ2 = ρ2(1 − τκ(T )) ≥ ρ2(1 − τκ0); hence
ρ2− τκ(T )ρ2 ≥ 0 provided τ ≤ τ0 := κ

−1
0 . Finally, observing that ρ := ρ1+ τκ(T )ρ2+ ρ2− τκ(T )ρ2 > 0, we have

ρe(u+ τ S(u)) = E− 1
2ρv2
−q0ρ2(1− τκ(T )) ≥ E− 1

2ρv2
−q0ρ2 = e(u) ≥ 0, thereby proving that u+ τ S(u) ∈ B.

2.3.4. Euler equations with sources
In some astrophysical applications one may want to solve the compressible Euler equations with Coriolis effects,

gravitation effects and some heat transfer effects due to the emission and/or absorption of radiation. The dependent
variables and the flux are the same as those of Euler’s equations, but the source term is (0,−2Ω×m−ρ∇Φ,−m·∇Φ+
ρH )T, where Ω is the angular velocity of the system, Φ some given gravitation potential, and ρH is a term that
aggregates all the cooling and heating effects. One invariant domain for the homogeneous system is A = B :=
{u | ρ ≥ 0, e(u) ≥ 0}. Let u ∈ B and τ ≥ 0. Then u + τ S(u) = (ρ,m − 2τΩ×m − τρ∇Φ, E − τm·∇Φ + τρH )T.
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The density of the state u + τ S(u) is ρ, which is nonnegative by definition. The specific internal energy of the
state u + τ S(u) is bounded from below as follows: e(u + τ S(u)) ≥ e(u) − τ 2(4Ω2v2

+ (∇Φ)2) + τH . For
instance, for a γ -law equation of state, we have e(u) = c(u)2/(γ (γ − 1)), where c(u) is the speed of sound, and
e(u + τ S(u)) ≥ 0, if τ 2

≤
c(u)2

2γ (γ−1)(4Ω2v2+(∇Φ)2)
and τH ≥ − e(u)

2 . If ∇Φ = g is a constant, then the first condition is

satisfied if τ 2
≤

c(u)2

2γ (γ−1)(4Ω2 M(u)2c(u)2+∥g∥2
ℓ2

)
where M(u) is the local Mach number; assuming that one can establish

that M(u) ≤ Mmax uniformly w.r.t. u, and inf c(u) ≥ cmin > 0, which is required for hyperbolicity to hold, then the
first condition holds if τ ≤ cmin

(2γ (γ−1)(4Ω2 M2
maxc2

min+∥g∥
2
ℓ2

))
1
2

. One can also verify that many astrophysical models for the

heat transfer effect lead to existence of τ ′0 > 0 such that τH ≥ − e(u)
2 for all τ ≤ τ ′0; the details are left to the reader.

3. Abstract low-order approximation

In this section we describe a generic invariant domain preserving technique for approximating solutions to (1.1). In
order to stay general we present the method without referring to any particular discretization technique, we are going
to use instead the graph theoretic language to describe the method. The method is illustrated with finite volumes,
continuous elements, and discontinuous elements in Section 4.

3.1. The low-order scheme

To identify properly the time stepping technique, we denote by tn the current time, n ∈ N, and we denote by τ the
current time step size; that is tn+1

:= tn
+ τ . We now address the approximation in space by assuming that we have at

hand some finite-dimensional vector space Xh with some basis {ϕ}i∈V , where ϕn
i : D→ R, for all i ∈ V . We introduce

Xn
h := (Xh)m and denote the approximation of u(·, tn) in Xh by un

h :=
∑

i∈V Un
i ϕi , with Un

i ∈ A ⊂ Rm for all i ∈ Rm .
We do not need to know for the time being what the basis functions {ϕi }i∈V are, but we assume that this setting allows
us to construct an inviscid (very accurate) approximation of u(·, tn+1) in Xh , denoted uG,n+1

h :=
∑

i∈V UG,n+1
i ϕi , as

follows:
mi

τ
(UG,n+1

i − Un
i )+

∑
j∈I(i)

f(Un
j )ci j = mi S(Un

i ), (3.1)

for any i ∈ V , where the numbers {mi }i∈V are assumed to be positive. Note here that we use the forward Euler time
stepping. Higher-order time stepping schemes will be considered in Section 5. For any i ∈ V , the set I(i) is a (small)
subset of V , which we call stencil at i or adjacency list at i . We assume that the following property holds: j ∈ I(i) iff
i ∈ I( j). We assume also that the Rd -valued matrix {ci j }i∈V, j∈I(i) has the following properties:

ci j = −c j i and
∑

j∈I(i)

ci j = 0. (3.2)

The quantities mi , {ci j } j∈I(i), and the set I(i) depend on the discretization that is chosen. We are going to be more
specific in Section 4. We think of (3.1) as the “centered” consistent approximation of (1.1) that delivers optimal
accuracy (for the considered setting) for smooth solutions.

Notice that the above construction allows us to introduce an undirected finite graph (V, E), where for any pair
(i, j) ∈ V×V , we say that (i, j) is an edge of the graph, i.e., (i, j) ∈ E , iff i ∈ I( j) and j ∈ I(i). We say that (V, E)
is the connectivity graph of the approximation.

Since (3.1) is “centered”, it cannot handle properly shocks and discontinuous data. To address this issue we
introduce some artificial dissipation. We do so by using the graph Laplacian associated with the connectivity graph
(V, E). We assume that the graph viscosity {dL,n

i j }(i, j)∈E is scalar and has the following properties:

dL,n
i j = dL,n

ji > 0, if i ̸= j. (3.3)

Although the diagonal value dL,n
ii is not needed, we adopt the convention dL,n

ii := −
∑

j∈I(i)\{i} d
L,n
i j . This convention

will help us shorten some expressions later. We are now in position to define the first-order method on which the rest
of the paper is built. We call low-order update UL,n+1

i the quantity computed as follows:
mi

τ
(UL,n+1

i − Un
i )+

∑
j∈I(i)

f(Un
j )ci j −

∑
j∈I(i)\{i}

dL,n
i j (Un

j − Un
i ) = mi S(Un

i ), (3.4)
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for all i ∈ V . Without further assumptions, the scheme has built-in conservation properties; more specifically, the
following holds true.

Lemma 3.1 (Conservation). Assume that S ≡ 0, then the scheme (3.2)–(3.4) is conservative in the sense that the
following identity holds for any n ∈ N:∑

i∈V

mi UL,n+1
i =

∑
i∈V

mi Un
i . (3.5)

Proof. Using that
∑

j∈I(i) ci j = 0, we rewrite (3.4) in the form

mi

τ
(UL,n+1

i − Un
i )+

∑
j∈I(i)

(f(Un
j )+ f(Un

i ))ci j − dL,n
i j (Un

j − Un
i ) = 0.

Defining FL,n
i j := (f(Un

j )+f(Un
i ))ci j−dL,n

i j (Un
j−Un

i ), the above identity implies that
∑

i∈V mi UL ,n+1
i =

∑
i∈V mi Un

i +∑
i∈V

∑
j∈I(i) FL,n

i j . The assertion is a consequence of the skew-symmetry of ci j and the symmetry of dL,n
i j , i.e.,∑

i∈V
∑

j∈I(i) FL,n
i j = 0. □

Remark 3.2 (Consistency). Although the consistency question will be addressed later, let us say at this point that
consistency is not an immediate consequence of (3.2) and (3.3). Consistency will be achieved provided one can
show that mi

τ
(UL,n+1

i − Un
i ) is an approximation of ∂t u (i.e., a moment with a shape function),

∑
j∈I(i) f(Un

j )ci j

is an approximation of ∇·f(u) (i.e., a moment with a shape function), and mi S(Un
i ) is an approximation of S(u)

(i.e., a moment with a shape function). Note that if all the values {U j } j∈I(i) are constant, the graph viscosity term∑
j∈I(i) dL,n

i j (Un
j−Un

i ) vanishes; which in some sense implies that (3.4) is a first-order consistent perturbation of (3.1).
The scalars mi and the vectors {ci j } j∈I(i) are not uniquely defined and they may take different forms depending on the
method of choice. In sections Sections 4.1–4.3 we will describe three methods based on finite volumes, continuous
finite elements, and discontinuous finite elements, all of which can be written in the form (3.2)–(3.4). □

Remark 3.3 (Algebraic-Fluxes). For further reference it will be useful to define the following quantity which we
henceforth refer to as low-order algebraic flux:

FL,n
i j := (f(Un

j )+ f(Un
i ))ci j − dL,n

i j (Un
j − Un

i ). (3.6)

Algebraic fluxes will be instrumental for the development of limiting techniques in Section 7.3. In particular, the
scheme (3.4) is conveniently rewritten as follows:

mi

τ
(UL,n+1

i − Un
i )+

∑
j∈I(i)

FL,n
i j = mi S(Un

i ). □ (3.7)

Remark 3.4 (Well-Balancing). In general, systems with a source term have time-independent solutions, i.e., fields
solving ∇·f(u) = S(u), and it is often a desirable feature of numerical schemes that they preserve these steady states.
This lead to the notion of well-balancing introduced in Bermudez and Vazquez [16], Greenberg and Leroux [17]; we
also refer to Huang and Liu [18, §3] for early ideas on well-balancing. Although, well-balancing is a very important
notion, it will not be addressed in this paper. □

3.2. Invariant domain preserving graph viscosity

Now we propose a definition of the graph viscosity that makes the algorithm (3.4) invariant domain preserving.
Recall that the discretization setting is still unspecified. Most of the arguments presented in this subsection are
generalizations of those in §3.2, §4.1 and §4.2 of Guermond and Popov [3].

Since
∑

j∈I(i) f(Un
i )ci j = 0 (see property (3.2)) we can rewrite the scheme (3.4) as follows:

mi

τ
(UL,n+1

i − Un
i )+

∑
j∈I(i)\{i}

2dL,n
i j Un

i + (f(Un
j )− f(Un

i ))ci j − dL,n
i j (Un

j + Un
i ) = mi S(Un

i ).
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Then, upon introducing the auxiliary states (recalling that dL,n
i j > 0 by assumption),

U
n
i j :=

1
2

(Un
i + Un

j )− (f(Un
j )− f(Un

i ))
ci j

2dL,n
i j

, (3.8)

with the convention U
n
ii := Un

i , the low-order scheme (3.4) can be rewritten as follows:

UL,n+1
i =

(
1−

∑
j∈I(i)\{i}

2τdL,n
i j

mi

)
Un

i +
∑

j∈I(i)\{i}

2τdL,n
i j

mi
U

n
i j + τ S(Un

i ). (3.9)

A first key observation we make at this point about (3.9) is that upon setting ni j := ci j/∥ci j∥ℓ2 , we realize that U
n
i j

is exactly of the form u(t, ni j ,Un
i ,U

n
j ) as defined in (2.2) with the fake time ti j = ∥ci j∥ℓ2/2dL,n

i j . Then Lemma 2.1
motivates the following definition for the graph viscosity coefficients dL,n

i j :

dL,n
i j := max(λmax(ni j ,Un

i ,U
n
j )∥ci j∥ℓ2 , λmax(n j i ,Un

j ,U
n
i )∥c j i∥ℓ2 ), (3.10)

where recall that λmax(ni j ,Un
i ,U

n
j ) is the maximum wave speed defined in Section 2.1.

Lemma 3.5 (Invariance of The Auxiliary States). Let B ⊂ A be a convex invariant set for (1.1) such that Un
i ,U

n
j ∈ B.

The state U
n
i j defined in (3.8), with dL,n

i j as defined in (3.10), belongs to B.

Proof. Let us set ti j := ∥ci j∥ℓ2/(2dL,n
i j ), then according to Lemma 2.1, we have U

n
i j := u(ti j , ni j ,Un

i ,U
n
j ) ∈ B

if λmax(ni j ,Un
i ,U

n
j )ti j ≤

1
2 . But the definition (3.10) implies that dL,n

i j ≥ λmax(ni j ,Un
i ,U

n
j )∥ci j∥ℓ2 , which is the

CFL condition ti jλmax(ni j , uL , uR) ≤ 1
2 for the conclusions of Lemma 2.1 to hold. This proves that U

n
i j :=

u(t, ni j ,Un
i ,U

n
j ) ∈ B for all j ∈ I(i) since B is a convex invariant set. □

A second important observation about (3.9) is that UL,n+1
i − τ S(Un

i ) is a convex combination of Un
i and the states

{U
n
i j } j∈I(i)\{i} provided τ is small enough. This is the key to the following result.

Theorem 3.6 (Local Invariance). Let n ≥ 0 and let i ∈ V . Assume that τ is small enough so that 1+ 4τ dL,n
ii
mi
≥ 0 and

2τ ≤ τ0. Let B ⊂ A be a convex invariant set for (1.1) such that Un
j ∈ B for all j ∈ I(i), then UL,n+1

i ∈ B.

Proof. Using the definition dL,n
ii :=

∑
j∈I(i)\{i}−dL,n

i j , we first notice that (3.9) can be rewritten as follows:

UL,n+1
i =

1
2

((
1+ 4τ

dL,n
ii

mi

)
Un

i +
∑

j∈I(i)\{i}

4τdL,n
i j

mi
U

n
i j

)
+

1
2

(
Un

i + 2τ S(Un
i )

)
. (3.11)

With obvious notation, let us rewrite the above equation as follows UL,n+1
i =

1
2 W1 +

1
2 W2. Owing to the local CFL

assumption 1 + 4τ dL,n
ii
mi
≥ 0, W1 is a convex combination of Un

i and the collection of states {U
n
i j } j∈I(i)\{i}. But we

have established in Lemma 3.5 that U
n
i j ∈ B. Then, the convexity of B implies W1 is in B. Since B is an invariant set

according to Definition 2.2 and Un
i ∈ B by assumption, the condition 2τ ≤ τ0 implies that W2 := Un

i + 2τ S(Un
i ) is a

member of B. In conclusion, the convexity of B implies that UL,n+1
i =

1
2 W1 +

1
2 W2 is in B. □

Corollary 3.7 (Global Invariance). Let n ∈ N. Assume that the global CFL condition mini∈V
(
1+ 4τ dL,n

ii
mi

)
≥ 0 holds

and 2τ ≤ τ0. Let B ⊂ A be a convex invariant set. Assume that Un
i ∈ B for all i ∈ V , then UL,n+1

i ∈ B for all i ∈ V .

Theorem 3.8 (Entropy Inequality). Let n ≥ 0 and i ∈ V . Assume also that the local CFL condition holds

1 + 2τ dL,n
ii
mi
≥ 0 and 2τ ≤ τ0, then the following local entropy inequality holds true for any entropy pair (η, q)

of the system (1.1):
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mi

τ
(η(UL,n+1

i )− η(Un
i ))+

∑
j∈I(i)

q(Un
j )ci j − dL,n

i j (η(Un
j )− η(Un

i )) (3.12)

≤ mi S(Un
i )·∇η(UL,n+1

i ).

Proof. Let i ∈ V and let (η, q) be an entropy pair for the system (1.1). Then recalling (3.9), the CFL condition and
the convexity of η imply that

η(UL,n+1
i − τ S(Un

i )) ≤
(

1−
∑

j∈I(i)\{i}

2τdL,n
i j

mi

)
η(Un

i )+
∑

j∈I(i)\{i}

2τdL,n
i j

mi
η(U

n
i j ).

Lemma 2.1 implies that η(U
n
i j ) ≤

1
2 (η(Un

i )+ η(Un
j ))− ti j (q(Un

j )·ni j − q(Un
i )·ni j ), with ti j = ∥ci j∥ℓ2/2dL,n

i j ; hence,

mi

τ
(η(UL,n+1

i − τ S(Un
i ))− η(Un

i )) ≤
∑

j∈I(i)\{i}

2dL,n
i j (η(U

n
i j )− η(Un

i ))

≤

∑
j∈I(i)\{i}

dL,n
i j (η(Un

j )− η(Un
i ))− ∥ci j∥ℓ2 (q(Un

j )·ni j − q(Un
i )·ni j ).

Moreover, the convexity of η implies that

η(UL,n+1
i )− τ S(Un

i )·∇η(UL,n+1
i ) ≤ η(UL,n+1

i − τ S(Un
i )).

The conclusion follows from the definitions of ni j , ci j and dL,n
i j . □

Remark 3.9 (Terminology). In order to refer to the scheme (3.4) with (3.10), following [1] we will use the acronym
GMS-GV, standing for Guaranteed Maximum Speed Graph Viscosity. □

Remark 3.10 (Symmetry). Since ci j = −c j i we note that U
n
i j = U

n
ji (see definition (3.8)) which in turn implies that

λmax(ni j ,Un
i ,U

n
j ) = λmax(n j i ,Un

j ,U
n
i ). In conclusion λmax(ni j ,Un

i ,U
n
j )∥ci j∥ℓ2 = λmax(n j i ,Un

j ,U
n
i )∥c j i∥ℓ2 . Note that

these properties may not hold at the boundary if nontrivial boundary conditions are applied. □

Remark 3.11 (Positivity). It may happen that estimating a guaranteed upper bound λmax(n,UL ,UR) on the maximum
wave speed in the Riemann problem is difficult. In this case one has to come up with some informed guess. We now
give a lower bound on λmax(n,UL ,UR) that guaranties positivity if it happens that some components of U, say U, has
to be positive (think of the density and the total energy in the Euler equations or the water height in the shallow water
equations). Let f U : A → Rd be the component of f that corresponds to the component U of U. Assume that B :=
{U ∈ A | U > 0} is an invariant set for (2.1), assume also that the estimate on the maximum wave speed is such that
the λmax(ni j ,Un

i ,U
n
j ) ≥ max

( f U(Un
j )·ni j

Un
j

, 0
)
, then under the same CFL condition as in Theorem 3.6 and Corollary 3.7,

the set B̃ := {U ∈ Rm
| U > 0} ⊆ B is such that

(
Un

i ∈ B, ∀i ∈ V
)
⇒

(
UL,n+1

i ∈ B̃, ∀i ∈ V
)
. Let us finally illustrate

the above result in one space dimension. For instance, for finite volumes and for piecewise linear continuous elements
in one space dimension, one has ci j =

1
2 ni j (see Section 4). Then, for the density in the Euler equations, or for the

water height in the Saint–Venant equations, the above estimate becomes λmax(ni j ,Un
i ,U

n
j ) ≥ max

( 1
2 ni j ·V(Un

j ), 0
)

where V(U) is the velocity. One recognizes here the standard upwind estimate. □

4. Examples of discretizations

In this section we illustrate the GMS-GV scheme described in Section 3 in the following three space discretization
settings: finite volumes, continuous finite elements, and discontinuous elements.

4.1. Finite volumes

We now illustrate the construction of the abstract low-order scheme (3.2)–(3.4) in the context of finite volumes
(FV).
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Fig. 1. Finite volume patch arising from a cell-centered discretization (left) and a vertex-centered discretization (right).

4.1.1. Technical preliminaries
We unify our presentation by putting into a single framework the so-called cell-centered and vertex-centered finite

volume techniques, see Fig. 1. We refer the reader to Barth and Ohlberger [19], Eymard et al. [20] for comprehensive
reviews on the finite volume techniques. For any manifold E ⊂ Rd of dimension l we denote by |E | the l-Lebesgue
measure of E . We assume that we have at hand a partition of the computational domain D into polygonal (polyhedral)
cells {Ki }i∈V . We henceforth denote by Th this collection of cells. For any pair of cells Ki , K j having a common
interface, we denote by Γi j := ∂Ki ∩ ∂K j the interface in question. The unit vector on Γi j pointing from Ki to K j is
denoted ni j .

4.1.2. Definitions of (V, E), mi , and ci j

We define the connectivity graph (V, E) by identifying the vertices of this graph with the cells in Th , and we say
that a pair of cells Ki , K j form an edge of the graph, i.e., (i, j) ∈ E , iff the cells Ki and K j share an interface,
i.e., ∂Ki ∩ ∂K j is a (d − 1)-manifold of positive measure. For any i ∈ V we define the adjacency list I(i) to be
the list of all the cells in Th sharing an interface with Ki , i.e., I(i) := { j ∈ V | (i, j) ∈ E}, see Fig. 1. Denoting
by IK j the indicator function of the cell K j , we set Xh := span{IK j } j∈V and then define the approximation space
Xh := (Xh)m

= {
∑

j∈V V j IK j | V j ∈ Rm,∀ j ∈ V}.
Let un

h =
∑

j∈V Un
j IK j ∈ Xh be the approximation of u at time tn , then most first-order finite volume schemes are

written as follows
|Ki |

τ
(UL,n+1

i − Un
i )+

∑
j∈I(i)\{i}

FL,n
i j = |Ki |S(Un

i ),

where FL,n
i j is usually the Lax–Friedrichs/Rusanov flux (integrated over Γi j ):

FL,n
i j :=

|Γi j |

2
(f(Un

j )+ f(Un
i ))ni j − α

L,n
i j (Un

j − Un
i ), (4.1)

where αL,n
i j is some wave speed. Hence, we recover the generic expression (3.4) for the finite volume framework by

setting

mi := |Ki |, ci j :=
|Γi j |

2
ni j , ∀ j ∈ I(i)\{i}, ci i := 0, dL,n

i j := α
L,n
i j . (4.2)

The definition of ci j immediately implies that ci j = −ci j , and the Stokes theorem implies that
∑

j∈I(i) ci j =
1
2

∑
j∈I(i)\{i} ni j |Γi j | =

1
2

∫
∂Ki

n ds = 0, which is the conservation property stated in (3.2). Note that FL,n
i j = −FL,n

ji
since ni j = −n j i . Let us mention in passing that while any family of vectors of the form ci j = αni j |Γi j | satisfies the
conservation constraint (3.2), only the factor α = 1

2 leads to a consistent discretization of the divergence operator.

4.2. Continuous finite elements

We describe in this section one possible implementation of the abstract low-order scheme (3.2)–(3.4) in the context
of continuous finite elements (cG). The set of the d-variate polynomials of degree at most k ∈ N is denoted Pk,d . The
reader who is familiar with [1,3,21] is invited to move to Section 4.3.
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4.2.1. Technical preliminaries
Let (Th)h>0 be a shape-regular sequence of unstructured matching meshes. To keep some level of generality we

assume that the elements in the mesh are generated from a finite number of reference elements denoted K̂1, . . . , K̂ϖ .
For example, the mesh Th could be composed of a combination of triangles and parallelograms in dimension two
(we would have ϖ = 2 in this case); it could also be composed of a combination of tetrahedra, parallelepipeds,
and triangular prisms in dimension three (we would have ϖ = 3 in this case). The diffeomorphism mapping K̂r

to an arbitrary element K ∈ Th is denoted TK : K̂r −→ K . We now introduce a set of reference finite elements
{(K̂r , P̂r , Σ̂r )}1≤r≤ϖ (the index r ∈ {1:ϖ } will be omitted in the rest of the paper to simplify the notation), and we
define the following scalar-valued and vector-valued continuous finite element spaces:

Xh = {v ∈ C0(D;R) | v|K◦TK ∈ P̂, ∀K ∈ Th}, Xh = [Xh]m . (4.3)

The global shape functions are denoted by {ϕi }i∈V and we assume that they satisfy the partition of unity property∑
i∈V ϕi (x) = 1, for all x ∈ D.

4.2.2. Definitions of (V, E), mi , and ci j

We define the connectivity graph (V, E) by identifying the shape functions {ϕi }i∈V with the vertices of the graph.
The edges are defined as follows: we say that two shape functions (or two degrees of freedom) form an edge, i.e.,
(i, j) ∈ E , iff ϕiϕ j ̸≡ 0. For any i ∈ V , the adjacency list I(i) is defined by setting I(i) := { j ∈ V | (i, j) ∈ E}.

Let M be the consistent mass matrix with entries
∫

D ϕi (x)ϕ j (x) dx, i, j ∈ V , and let ML be the diagonal lumped
mass matrix with entries

mi :=

∫
D
ϕi (x) dx. (4.4)

The partition of unity property implies that mi =
∑

j∈I(i)

∫
D ϕ j (x)ϕi (x) dx, i.e., the entries of ML are obtained by

summing the rows of M. In the rest of the paper we assume that mi > 0, for all i ∈ V . This assumption is satisfied
by many families of finite elements.

Let un
h =

∑
j∈V Un

jϕ j ∈ Xh be the approximation of u at time tn , where Xh is the continuous finite element
space defined in (4.3). We approximate f(un

h) by
∑

j∈V f(Un
j )ϕ j . If P̂ is composed of Lagrange elements, then∑

j∈V f(Un
j )ϕ j is the Lagrange interpolation of f(un

h), and in this case the approximation is fully consistent with
the polynomial degree of P̂; otherwise, the approximation is formally at least second-order accurate in space since it
is exact if f is linear. As a result, we have∫

D
∇·(f(un

h))ϕi dx ≈
∑

j∈I(i)

f(Un
j )

∫
D
ϕi∇ϕ j dx =

∑
j∈I(i)

f(Un
j )ci j , (4.5)

where the coefficients ci j ∈ Rd are defined by

ci j =

∫
D
ϕi∇ϕ j dx, ∀ j ∈ I(i). (4.6)

Here we observe that the partition of unity property and definition (4.6) imply that
∑

j∈I(i) ci j =
∑

j∈I(i)

∫
D ϕi∇ϕ j dx

=
∫

D ϕi∇
(∑

j∈I(i) ϕ j
)

dx = 0. On the other hand, the skew-symmetry property ci j = −c j i follows using integration
by parts if D is the d-torus (which is the case for periodic boundary conditions) or if either ϕi or ϕ j vanish at the
boundary of D (which is the case when we solve the Cauchy problem).

4.3. Discontinuous finite elements

We finally describe in this section one possible implementation of the abstract low-order scheme (3.2)–(3.4) in
the context of discontinuous finite elements (dG). This section builds on top of the definitions and notation already
introduced in Section 4.2.1.
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Fig. 2. Discontinuous P1,2 finite element patch (exploded view). Each black dot represents a scalar shape function. In this picture i ∈ I(K ),
card(I(i)) = 7, card(I(K )) = 3, card(I(∂K )) = 9, card(I(∂K i)) = 3, card(I(∂K e)) = 6 and card(I(K )\I(∂K i)) = 0.

4.3.1. Technical preliminaries
Here we clarify/expand on the specific details related to discontinuous spaces. We define scalar-valued and vector-

valued discontinuous finite element spaces as follows:

Xh = {v ∈ L1(D;R) | v|K◦TK ∈ P̂, ∀K ∈ Th}, Xh := [Xh]m . (4.7)

We denote by {ϕi }i∈V the collection of global shape functions generated from the reference shape functions, i.e.,
Xh = span{ϕi }i∈V . Each shape function has support on one cell only. We denote by I(K ) the set of indices of the
shape functions with support in K . Similarly, letting ∂K to be the boundary of the cell K , we denote by I(∂K ) the
set of indices of the shape functions with non-vanishing trace on ∂K :

I(K ) :=
{
i ∈ V | ϕi |K ̸≡ 0

}
, I(∂K ) :=

{
i ∈ V | ϕi |∂K ̸≡ 0

}
. (4.8)

Note that I(∂K ) not only includes indices of shape functions with support in I(K ) but this set also includes indices
of shape functions that do not have support in K (see Fig. 2 for additional geometrical insight). More precisely I(∂K )
is the union of two disjoint sets I(∂K i) and I(∂K e) defined as

I(∂K i) :=
{
i ∈ I(K )

⏐⏐ ϕi |∂K ̸≡ 0
}
, I(∂K e) := I(∂K )\I(∂K i). (4.9)

Finally, we assume that the finite element spaces are always constructed so that the sets of shape functions {ϕ j } j∈I(K )

form a partition of unity over K and the shape functions {ϕ j } j∈I(∂K i), {ϕ j } j∈I(∂K e) form partitions of unity over ∂K ,
i.e., ∑

j∈I(K )

ϕ j |K = 1,
∑

j∈I(∂K i)

ϕ j |∂K = 1, and
∑

j∈I(∂K e)

ϕ j |∂K = 1. (4.10)

4.3.2. Definitions of (V, E), mi , and ci j

We start by defining the undirected graph (V, E). The vertices are identified with the shape functions {ϕi }i∈V . Let
i ∈ V and let K be the unique cell containing the support of ϕi . For any i, j ∈ V , we say that the pair (i, j) is an edge
of the connectivity graph, i.e., (i, j) ∈ E , iff either j ∈ I(K ) or j ∈ I(∂K e) and ϕiϕ j |∂K ̸≡ 0.

The consistent mass matrix and the lumped mass matrix are defined as in Section 4.2; in particular we set

mi :=

∫
D
ϕi (x) dx. (4.11)

Let un
h =

∑
j∈V Un

jϕ j ∈ Xh be the approximation of u at time tn , where Xh is a discontinuous finite element space
defined in (4.7). Let K ∈ Th and i ∈ I(K ). The traditional heuristics for the derivation of dG schemes consists of
integrating by parts on each cell K and introducing a numerical flux f̂ on the boundary ∂K as follows:∫

K
∇·(f(un

h))ϕi dx ≈
∫

K
−f(un

h)·∇ϕi dx +
∫
∂K

f̂nKϕi ds. (4.12)

Upon denoting by un,i
h the interior trace of un

h on ∂K and un,e
h the exterior trace on ∂K , it is common to define the

numerical flux as follows:

f̂nK =
1
2

(f(un,i
h )+ f(un,e

h ))nK + α
n
∂K (un,i

h − un,e
h ), (4.13)
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where αn
∂K > 0 is usually some ad-hoc wave speed. The exact form of αn

∂K is unimportant for the time being; the
sole purpose of the term αn

∂K (un,i
h − un,e

h ) is to stabilize the algorithm. We are just going to assume that this term
introduces a first-order consistency error and that we are perfectly allowed to introduce further modifications to the
discrete divergence operator (4.12) consistent with this assumption. Inserting (4.13) into (4.12) and integrating by
parts, we obtain∫

K
∇·(f(un

h))ϕi dx ≈
∫

K
∇·(f(un

h))ϕi dx (4.14)

+

∫
∂K

1
2 (f(un,e

h )− f(un,i
h ))·nKϕi ds +

∫
∂K
αn
∂K (un,i

h − un,e
h )ϕi ds.

We now consider an idea analogous to (4.5) and we replace f(un
h) on the right-hand side of (4.14) by

∑
j∈V f(Un

j )ϕ j
(where {ϕ j } j∈V are the shape functions of our discontinuous finite element space) to get:∫

K
∇·(f(un

h))ϕi dx ≈
∑

j∈I(K )

f(Un
j )·c

K
i j

+

∑
j∈I(∂K e)

f(Un
j )·c

∂
i j −

∑
j∈I(∂K i)

f(Un
j )·c

∂
i j +

∫
∂K
αn
∂K (un,i

h − un,e
h )ϕi ds,

(4.15)

with the notation

cK
i j :=

∫
K
ϕi∇ϕ j dx, c∂i j :=

1
2

∫
∂K
ϕ jϕi nK ds, (4.16)

The three summations in (4.15) represent a consistent discretization of the divergence operator. In order to condense
these three summations into a single one, and after noticing that j can belong to only one of three possible (disjoint)
subsets: I(K )\I(∂K i), I(∂K i) or I(∂K e), we define the vector ci j by setting:

ci j :=

⎧⎪⎨⎪⎩
cK

i j if j ∈ I(K )\I(∂K i),
(cK

i j − c∂i j ) if j ∈ I(∂K i),
c∂i j if j ∈ I(∂K e).

(4.17)

Therefore, (4.15) can be rewritten as follows:∫
K
∇·(f(un

h))ϕi dx ≈
∑

j∈I(i)

f(Un
j )·ci j +

∫
∂K
αn
∂K (un,i

h − un,e
h )ϕi ds. (4.18)

Lemma 4.1. The set of coefficients {ci j } j∈I(i) defined in (4.17) satisfy the conservation properties (3.2).

Proof. Let us start by proving the skew-symmetry property. Notice that (4.16) is equivalent to

ci j :=

{
cK

i j − c∂i j if j ∈ I(K ),
c∂i j if j ∈ I(∂K e).

Let j ∈ I(K ′). Assume first that K = K ′, then ci j = cK
i j − c∂i j . An integration by parts gives ci j = −cK

ji + c∂i j ,
which implies that ci j = −c j i because i ∈ I(K ′). Assume now that K ̸= K ′ but i ∈ I(∂K ′e), then ci j = c∂i j . But
nK = −nK ′ , hence c∂i j = −c∂j i , which means that ci j = −c j i because i ∈ I(∂K ′e).

Let us now prove that
∑

j∈I(i) ci j = 0. Using that I(K )\I(∂K i), I(∂K i), I(∂K e) is a partition of I(i) and definition
(4.17), we have that∑

j∈I(i)

ci j =
∑

j∈I(K )\I(∂K i)

ci j +
∑

j∈I(∂K i)

ci j +
∑

j∈I(∂K e)

ci j

=

∑
j∈I(K )\I(∂K i)

cK
i j +

∑
j∈I(∂K i)

(cK
i j − c∂i j )+

∑
j∈I(∂K e)

c∂i j

=

∑
j∈I(K )

cK
i j −

∑
j∈I(∂K i)

c∂i j +
∑

j∈I(∂K e)

c∂i j .
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The partition of unity property on K (see (4.10)) implies that
∑

j∈I(K ) cK
i j = 0. The partition of unity property on

∂K (see (4.10)) implies that
∑

j∈I(∂K i) c∂i j =
∫
∂K ϕi nK ds and

∑
j∈I(∂K e) c∂i j =

∫
∂K ϕi nK ds; hence, the last two

summations cancel each other. This completes the proof. □

4.4. Graph viscosity for dG

It is important to notice at this stage, that the formulation of the viscous fluxes
∫
∂K α

n
∂K (un,i

h −un,e
h )ϕi ds in (4.18) is

not compatible with our pursuit of a purely algebraic formulation. Note that the dissipation in (4.18) is active only on
∂K and there is no dissipation in the bulk of K , at least when the polynomial degree of the approximation is larger than
or equal to 1. More precisely, assume for the sake of simplicity that αn

∂K is constant over ∂K . Let us assume also that
the shape functions are Lagrange-based and let {xi }i∈V be the Lagrange nodes associated with {ϕi }i∈V . Then using the
quadrature generated by the Lagrange nodes, one can legitimately approximate the integral

∫
∂K α

n
∂K (un,i

h − un,e
h )ϕi ds

by m∂
i α

n
∂K (un,i

h (xi ) − un,e
h (xi )), where m∂

i =
∫
∂K ϕi ds. This means that if i and j are in I(K ) and i ̸= j (which we

can assume since the polynomial degree is at least 1), then the “stabilizing” term
∫
∂K α

n
∂K (un,i

h − un,e
h )ϕi ds does not

contain any term proportional to un,i
h (xi )−un,i

h (x j ). That is to say, the traditional dG stabilization does not contain any
stabilizing mechanism between the degrees of freedom that are internal to K . It is at this very point that we depart from
the traditional dG formulation: we replace

∫
∂K α

n
∂K (ui

h − ue
h)ϕi ds by the graph Laplacian −

∑
j∈I(i) dL,n

i j (Un
j − Un

i )
which accounts for any possible interactions inside K and with the exterior traces on ∂K . Therefore, we finally replace
(4.18) by∫

K
∇·(f(uh))ϕi dx ≈

∑
j∈I(i)

f(Un
j )·ci j −

∑
j∈I(i)

dL,n
i j (Un

j − Un
i ), (4.19)

and, thus modified, the final dG scheme exactly matches the generic form of the abstract scheme (3.4).

5. Runge Kutta SSP time integration

Increasing the time accuracy while keeping the invariant domain property can be done by using so-called Strong
Stability Preserving (SSP) time discretization methods. The key idea is to achieve higher-order accuracy in time by
making convex combinations of forward Euler steps. More precisely each time step of a SSP method is decomposed
into substeps that are all forward Euler steps; the final update is constructed as a convex combination of the
intermediate solutions. This section is meant to be a brief overview of SSP methods; we refer the reader to Ferracina
and Spijker [22], Higueras [23], Gottlieb et al. [24] for more detailed reviews. The main result of this section is the
Shu–Osher Theorem 5.4. Our formulation of the result is slightly different from the original statement to emphasize
that this result is only about convexity (i.e., it does not involve any norm, seminorm, or convex functional). The reader
familiar with this material is invited to move to Section 6.

5.1. SSPRK methods

We are going to illustrate the SSP concept with explicit Runge–Kutta methods. Let us consider a finite-dimensional
vector space E , a subset A ⊂ E and a (nonlinear) operator L : [0, T ]×A −→ E . We are interested in approximating
in time the following problem ∂t u + L(t, u) = 0 with appropriate initial condition. We assume that this system of
ordinary differential equations makes sense (for instance L is continuous w.r.t. t and Lipschitz w.r.t. u). We further
assume that there exists a convex subset B ⊂ A and τmax > 0 such that

v + τ L(t, v) ⊂ B, ∀v ∈ B, ∀t ∈ [0, T ], ∀τ ∈ [0, τmax]. (5.1)

Consider a general s stages, explicit Runge–Kutta method identified by its Butcher tableau composed of a matrix
(ai j ){1≤i, j≤s} ∈ Rs×s and a vector (b j ){1≤ j≤s} ∈ Rs

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

(5.2)
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where ci :=
∑i−1

j=1 ai j for i ∈ {2:s}. Let us also set c1 := 0. Let us assume now that the above s stages, explicit
Runge–Kutta method has the following (α − β) representation: There are real coefficients αki , βki with k ∈ {0: i − 1}
and i ∈ {1:s} such that un+1 is obtained by first setting w(0)

= un , then computing

w(i)
=

i−1∑
k=0

αikw
(k)
+ βikτ L(tn

+ γkτ,w
(k)), i ∈ {1:s}, (5.3)

and finally setting un+1
= w(s), where

∑
0≤k≤i−1 αik = 1, γk := ck+1, αik ≥ 0, and βik ≥ 0, for all k ∈ {0: i − 1}

and all i ∈ {1:s}. We further assume that βik = 0 if αik = 0, k ∈ {0: i − 1}, i ∈ {1:s}. Not every s stages, explicit
Runge–Kutta method admits an (α−β) representation. Any Runge–Kutta method that admits an (α−β) representation
as defined above is said to be SSP for a reason that will be stated in Theorem 5.4.

Example 5.1 (Midpoint Rule). The midpoint rule, defined by the Butcher tableau

0
1
2

1
2

0 1
(5.4)

does not have a legitimate (α − β) representation, since it would require that β20 + α21 = 0, which in turn would
imply that either β20 < 0 or α21 < 0. □

Example 5.2 (SSPRK(2,2)). Heun’s method, which is a second-order Runge–Kutta technique composed of two stages,
is SSP. It has the following (α − β) tableau and can be implemented as follows:

α β γ cos

1 1 0
1
2

1
2 0 1

2 1 1

w(1)
= un
+ τ L(tn, un),

w(2)
= w(1)

+ τ L(tn+1, w(1)),

un+1
=

1
2 un
+

1
2w

(2). □

Example 5.3 (SSPRK(3,3), SSPRK(4,3)). The following Runge–Kutta methods, which are third-order and composed
of three substeps and four substeps, respectively, are SSP:

α β γ cos

1 1 0
3
4

1
4 0 1

4 1 1
1
3 0 2

3 0 0 2
3

1
2

α β γ cos

1 1
2 0

0 1 0 1
2

1
2 2

2
3 0 1

3 0 0 1
6 1

0 0 0 1 0 0 0 1
2

1
2

For instance the SSPRK(3, 3) method can be implemented as follows:

w(1)
= un

+ τ L(tn, un), z(1)
= w(1)

+ τ L(tn
+ τ,w(1)),

w(2)
=

3
4

un
+

1
4

z(1), z(2)
= w(2)

+ τ L(tn
+

1
2τ,w

(2)),

un+1
=

1
3

un
+

2
3

z(2). □

5.2. The key result

We henceforth denote

cos := inf
{αik ̸=0, 1≤k+1≤i≤s}

αikβ
−1
ik . (5.5)

The following theorem is the main result of this section.

Theorem 5.4. [Shu–Osher] Assume that the Runge–Kutta method with the Butcher tableau (5.2) is SSP. Let B ⊂ A
be convex. Let un

∈ B and assume that τ ≤ cosτmax, then un+1
∈ B.
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Proof. Let n ≥ 0 and assume that un
∈ B. Let i ∈ {1:s} and assume that w(k)

∈ B for all k ∈ {0: i − 1}. Note that
this assumption is satisfied for i = 1 since w(0)

= un
∈ B. Consider the kth term in (5.3), 0 ≤ k ≤ i − 1. If αik = 0

then βik = 0 by construction, and there is nothing to sum. Assume now that αik > 0. Let us denote rik := βik/αik

and z(i,k)
:= w(k)

+ rikτ L(tn
+ γkτ,w

(k)), then the condition τ ≤ cosτmax implies that rikτ ≤ (βik/αik)cosτmax ≤ τmax,
which, owing to (5.1), is sufficient to ascertain that z(i,k)

∈ B for all k ∈ {0: i−1}. Observing thatw(i)
=

∑i−1
k=1 αki z(i,k),

the condition
∑

0≤k≤i−1 αik = 1 together with 0 ≤ αik , 0 ≤ k ≤ i − 1, implies that w(i) is a convex combination of
z(i,0), . . . , z(i,i−1); hence w(i) is in B since B is convex. In conclusion w(k)

∈ B for all k ∈ {0: i} and all i ∈ {1:s},
thereby proving that un+1

= w(s)
∈ B. □

Remark 5.5 (Literature). Theorem 5.4 has been established in a slightly different form in Shu and Osher [25,
Prop. 2.1] not explicitly invoking convexity. Although our proof is very similar to that in [25], the statement of
Theorem 5.4 is slightly different since it only involves convexity; no norm or seminorm (as in Gottlieb et al. [26,
p. 92]), or convex functional (as in [24, Eq. (1.3)]) is involved. This variant of the theorem does not seem to be very
well known. □

Remark 5.6 (Structure of B). In the original paper [25] and in [26], E is a normed vector space equipped with some
norm ∥ · ∥E . The assumption (5.1) then consists of stating that I + τ L(t, ·) maps any ball B centered at 0 into B for
any s ∈ [0, τmax] and any t ∈ [0, T ]. In particular taking any v ∈ E and defining B to be the ball of radius ∥v∥B

centered at 0, the assumption (5.1) amounts to saying that ∥v + τ L(t, v)∥B ≤ ∥v∥B , which is Eq. (1.3) in [26]. The
norm that is used in [25] is the total variation. In the present paper the assumption (5.1) is more general. We are going
to use it with the following structure: we are going to assume that there are two positive integers I,m ∈ N\{0} such
that E = (Rm)I . Here Rm is called the phase space. Then we assume that there is convex subset of the phase space
B ⊂ Rm such that the assumption (5.1) holds with B := (B)I . All the convex arguments invoked in the rest of the
paper extends to SSP RK techniques with this particular structure. □

6. High-order method

The algorithm that we are going to develop in Section 7 relies on the construction of the low-order invariant domain
preserving solution UL,n+1

i described in Sections 3.1–3.2 and a high-order solution UH,n+1
i that possibly wanders

outside the invariant domain. We are then going to limit the high-order solution by pushing it back into the invariant
domain in the direction of the low-order solution. This limiting technique, which we call convex limiting, will be
explained in Section 7. The purpose of the present section is to present various ways to construct UH,n+1

i .

6.1. Achieving high-order consistency

In this section we describe in broad terms how high-order consistency can be achieved.

6.1.1. Discretization-independent setting
Independently of the space discretization that is used, we henceforth assume that the high-order update UH,n+1

i is
computed as follows:

mi

τ
(UH,n+1

i − Un
i )+

∑
j∈I(i)

FH,n
i j = mi S(Un

i ), (6.1)

where the high-order flux FH,n
i j is assumed to be skew-symmetric; i.e., FH,n

i j = −FH,n
ji for all i ∈ V , j ∈ I(i)

(under appropriate boundary conditions). The skew-symmetry implies that the high-order update is conservative;
i.e.,

∑
i∈V mi UH,n+1

i =
∑

i∈V mi Un
i if S ≡ 0. The expression (6.1) is the only information regarding the high-order

update that will be necessary for the convex limiting technique to be presented in section Section 7.
There are many different techniques to compute high-order consistent fluxes FH,n

i j which depend on the space
discretization of choice. For the sake of completeness, we list some of those in Sections 6.1.2, 6.1.3, and 6.1.4. None
of this material is essential to understand the convex limiting technique explained in Section 7.
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6.1.2. High-order algebraic fluxes: Finite volumes
In the context of finite volume schemes, high-order algebraic fluxes FH,n

i j are obtained as integrals of high-order
numerical fluxes over the interfaces between volumes, i.e., FH,n

i j :=
∫
Γi j

f̂ni j ds where f̂ni j is some numerical flux.
For instance, a widely popular choice of algebraic flux consists of setting:

FH,n
i j :=

∫
Γi j

(
1
2 (f(uH,n,i

h )+ f(uH,n,e
h ))·ni j + dL,n

i j (uH,n,i
h − uH,n,e

h )
)

ds, (6.2)

where the superscripts e and i denote the exterior and interior traces respectively, and uH,n
h is a discontinuous piecewise

polynomial reconstruction (of degree at most k) recovered from the piecewise constant solution un
h =

∑
j∈V Un

j IK j

satisfying the conservation constraint 1
|Ki |

∫
Ki

(uH,n
h − un

h) dx = 0. More precisely uH,n,i
h (x) = limKi∋ y→x uH,n

h ( y) and
uH,n,e

h (x) = limK j∋ y→x uH,n
h ( y). In practice, (6.2) has to be computed using quadrature on the faces of the element.

The choices of numerical flux f̂ni j and reconstruction uH,n
h that could be used in (6.2) are not unique. There is a

massive body of literature on this topic and it is well beyond the scope of the current paper to elaborate further in
this direction; we refer the reader to Barth and Ohlberger [19], Kröner [27], Morton and Sonar [28] for additional
background. For the purpose of the present paper, we are only going to assume that (6.1) holds with skew-symmetric
algebraic fluxes FH,n

i j .

6.1.3. High-order algebraic flux: Continuous finite elements
We now turn our attention to continuous finite elements. In this case high-order consistency can be achieved by

using a degenerate graph viscosity dH,n
i j such that dH,n

i j ≪ dL,n
i j in smooth regions while dH,n

i j ≈ dL,n
i j near shocks. Of

course dH,n
i j must also satisfy the conservation constraints

dH,n
i j = dH,n

ji ≥ 0 if i ̸= j , and
∑

j∈I(i)

dH,n
i j = 0. (6.3)

The algebraic flux looks as the one defined in (3.6) for the low-order method; the only difference here is that we use
the high-order viscosities {dH,n

i j } j∈I(i):

FH,n
i j := (f(Un

j )+ f(Un
i ))ci j − dH,n

i j (Un
j − Un

i ). (6.4)

Higher-order accuracy in space can also be obtained by using the consistent mass matrix instead of the lumped
mass matrix for the discretization of the time derivative. By reducing dispersive errors, this technique is known to
yield superconvergence at the grid points; see Christon et al. [29], Guermond and Pasquetti [30]. In this case the
high-order update is computed by solving the following mass matrix problem:∑

j∈I(i)

mi j

τ
(UH,n+1

j − Un
j )+ (f(Un

j )+ f(Un
i ))ci j − dH,n

i j (Un
j − Un

i ) = mi S(Un
i ). (6.5)

Noticing that mi j = δi j mi + mi j − δi j mi , we can rewrite (6.5) as

mi

τ
(UH,n+1

i − Un
i )+

∑
j∈I(i)

(mi j − δi j mi )
τ

(UH,n+1
j − Un

j )

+ (f(Un
j )+ f(Un

i ))ci j − dH,n
i j (Un

j − Un
i ) = mi S(Un

i ).

(6.6)

Since
∑

j∈I(i)(mi j − δi j mi ) = 0, we add −
∑

j∈I(i)
(mi j−δi j mi )

τ
(UH,n+1

i − Un
i ) = 0 to the identity (6.6) to get

mi

τ
(UH,n+1

i − Un
i )+

∑
j∈I(i)\{i}

(mi j − δi j mi )
τ

(UH,n+1
j − Un

j − UH,n+1
i + Un

i )

+ (f(Un
j )+ f(Un

i ))ci j − dH,n
i j (Un

j − Un
i ) = mi S(Un

i ).

(6.7)

Then (6.1) holds with the following definition for the high-order algebraic flux:

FH,n
i j :=

mi j

τ
(UH,n+1

j − Un
j − UH,n+1

i + Un
i ) (6.8)

+ (f(Un
j )+ f(Un

i ))ci j − dH,n
i j (Un

j − Un
i ).
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In the context of finite difference methods, a scheme with the above structure is said to be linearly implicit as the
numerical fluxes depend linearly on the state UH,n+1

j .
We finally mention a third approach which has antidispersive properties that are similar to (6.5) but does not

require solving a mass matrix problem a each time step. This method consists of approximating the inverse of M by
(ML )−1(I + (ML

−M)(ML )−1), where I is the identity matrix. We refer the reader to Guermond et al. [31, §3.3]
for the details.

6.1.4. High-order algebraic flux: Discontinuous finite elements
Just like for continuous finite elements, high-order consistency is space is obtained for discontinuous finite elements

by replacing the low-order graph viscosity dL,n
i j by a high-order graph viscosity dH,n

i j satisfying the symmetry and
positivity properties stated in (6.3). The corresponding flux in (6.1) is

FH,n
i j := (f(Un

j )+ f(Un
i ))ci j − dH,n

i j (Un
j − Un

i ), ∀I(K ) ∪ I(K e). (6.9)

Like for continuous elements, superconvergence can be obtained by using the consistent mass matrix. A high-order
discontinuous finite element scheme using the consistent mass matrix can be written as follows:∑

j∈I(K )

mi j

τ
(UH,n+1

j − Un
j )+

∑
j∈I(i)

(f(Un
j )+ f(Un

j ))ci j (6.10)

−dH,n
i j (Un

j − Un
i ) = mi S(Un

i ).

Notice that the mass matrix only involves the dofs in I(K ). As in the continuous case, noting that mi j = δi j mi+mi j−

δi j mi , using the partition of unity properties, and proceeding as in (6.6)–(6.7), we obtain the following definition for
the high-order flux FH,n

i j that is used in (6.1):

FH,n
i j :=

⎧⎪⎪⎨⎪⎪⎩
mi j

τ
(UH,n+1

j − Un
j − UH,n+1

i + Un
i )

+(f(Un
j )+ f(Un

i ))ci j − dH,n
i j (Un

j − Un
i ) if j ∈ I(K ),

(f(Un
j )+ f(Un

i ))ci j − dH,n
i j (Un

j − Un
i ) if j ∈ I(K e).

(6.11)

6.2. Smoothness-based graph viscosity

The objective of this section is to present a method where the high-order graph viscosity in (6.4), (6.8), (6.9), or
(6.11) is obtained by estimating the smoothness of some functional (e.g., an entropy) of the current solution.

6.2.1. Principles of the method
Let un

h =
∑

i∈V Un
i ϕi be the current approximation and let g : A→ R be some functional (examples will be given

below). We define the smoothness indicator associated to g as follows:

αn
i :=

⏐⏐⏐∑ j∈I(i) βi j (g(Un
j )− g(Un

i ))
⏐⏐⏐

max(
∑

j∈I(i) |βi j | |g(Un
j )− g(Un

i )|, ϵi )
, (6.12)

with ϵi = ϵmax j∈I(i) |g(Un
j )|, where ϵ is very small number. This term avoids degeneracy when g(Un

j ) is constant
for all j ∈ I(i); see Remark 6.1. The real numbers βi j are selected to make the method linearity-preserving (see
Berger et al. [32] for a review on linearity-preserving limiters in the finite volume literature). The reader is referred
to Remark 6.2 for the details. Notice that αn

i ∈ [0, 1] for all i ∈ V and αn
i = 1 if g(Ui ) is a local extremum. This

property will play an important role in the proof of Theorem 6.5 which is the main result of Section 6.2.
We now define the high-order graph viscosity by setting

dH,n
i j := dL,n

i j max(ψ(αn
i ), ψ(αn

j )), (6.13)

where ψ ∈ Lip([0, 1]; [0, 1]) is any Lipschitz function from [0, 1] to [0, 1] such that ψ(1) = 1. One typical example
is ψ(α) =

(
max

(
0, α−α0

1−α0

))q with q ≥ 2 and α0 ∈ [0, 1). For instance one can take α0 =
1
2 and q = 4. One need to

be careful though not to take α0 too close to 1 and q not too large since we will see in Theorem 6.5 that the Lipschitz
constant of ψ plays an important role in the properties of the method.



160 J.-L. Guermond, B. Popov and I. Tomas / Computer Methods in Applied Mechanics and Engineering 347 (2019) 143–175

Remark 6.1 (Choices for ϵ). Using double precision arithmetic, the regularization in (6.12) can be done with
ϵ = 10−

16
2 . We have also observed that using ϵ = (mi/|D|)

3
d maintains the second-order accuracy properties of

the method in any Lq -norm, q ∈ [1,∞]. □

Remark 6.2 (Linearity-Preserving βi j ). To be linearity-preserving with continuous finite elements one should obtain
αn

i = 0 if g(un
h) is linear on the support of the shape function ϕi . One simple choice for continuous finite elements

consists of setting βi j =
∫

D ∇ϕi ·∇ϕ j dx (for the time being we do not require βi j > 0 in (6.12)). For discontinuous
elements, one could take βi j =

∫
K ∇ϕ j ·∇ϕi dx −

∫
∂K

1
2∇ϕ j ·nKϕi dx , where K is the unique cell such that i ∈ I(K )

and nK is the unit normal vector on ∂K pointing outward K . For finite volumes, one should get αn
i = 0 if a linear

reconstruction fits all the data {g(Un
j )} j∈I(i). For instance, one can use the mean-value coordinates; see Floater [33,

Eq. 5.1] for the details. Let us finally remark that although using βi j = 1 is not a priori linearity preserving, we have
numerically verified that this choice works reasonably well on quasi-uniform meshes. □

If the coefficients βi j are defined so the linearity-preserving property holds, then the numerator of (6.12) behaves
like h2

∥D2g(u(ξ , tn))∥ℓ2(Rd×d ) at some point ξ , whereas the denominator behaves like h∥∇g(ζ )∥ℓ2(Rd ) at some point
ζ . Therefore, we have αn

i ≈ h∥D2g(ξ )∥ℓ2(Rd×d )/∥∇g(ζ )∥ℓ2(Rd ), that is to say αn
i is of order h in the regions where g

is smooth and does not have a local extremum. This argument shows that dH,n
i j is one order smaller than dL,n

i j (in terms
of mesh size). Hence it is reasonable to expect that the method using dH,n

i j is formally second-order accurate in space.

Example 6.3 (Choosing g(U)). In the context of the shallow water equations one can use the water height as
smoothness indicator. For the compressible Euler equations one can use the density. We are going to prove stability
properties for these two choices in Theorem 6.5, (see also Example 6.6). In general it is a good idea to choose g(U) to
be entropy associated with (1.1) (with or without the source term). We refer the reader to Guermond et al. [1], where
a full set of tests is reported for the compressible Euler equations with the γ -law. The computations therein are done
with g(U) = ρ

γ−1 log(e(U)ρ1−γ ), where e(U) is the specific internal energy □

6.2.2. Stability for scalar components
We now establish some invariant domain preserving properties associated with the smoothness-based graph

viscosity (6.12) when the coefficients βi j are positive. We further specialize the setting by assuming that g : A→ R is
a projection onto one of the scalar components of U. Without loss of generality we set g(U) = U1 with the convention
U := (U1, . . . ,Um)T. From now on, we drop the index 1 to simplify the notation; that is, we set g(U) = U. We
denote by S : A→ R the corresponding scalar component of the source S. One important assumption in this section
is that S ≡ 0, i.e., the scalar component of the source acting on U is zero. The reader is referred to Example 6.6
for illustrations of the technique under consideration for the shallow water equations and the compressible Euler
equations.

We have seen in Theorem 3.6 that the auxiliary states U
n
i j defined in (3.8) play an important role in the stability

analysis. These states are such that if Un
i ,U

n
j ∈ B, where B ⊂ A is some convex invariant set, then U

n
i j ∈ B, provided

that 1 + 2τdL,n
ii

mi
≥ 0, and the low-order graph viscosity dL,n

i j is defined as in (3.10). We denote by U
n
i j the scalar

component of U
n
i j that is of interest to us. Then we set

UM,n
i := max

j∈I(i)
U

n
i j , Um,n

i := min
j∈I(i)

U
n
i j . (6.14)

We set I(i+) := { j ∈ I(i) | Un
i < Un

j } and I(i−) := { j ∈ I(i) | Un
j < Un

i }. To simplify the notation we set

γ n
i := −

2τdL,n
ii

mi
, γ

+,n
i :=

2τ
mi

∑
j∈I(i+)

dL,n
i j , γ

−,n
i :=

2τ
mi

∑
j∈I(i−)

dL,n
i j . (6.15)

The following key “gap lemma” will be invoked later.

Lemma 6.4 (Gap Estimates). Let n ≥ 0, and i ∈ V . We define the gap parameter

θn
i :=

Un
i − Um,n

i

UM,n
i − Um,n

i

, if UM,n
i − Um,n

i ̸= 0; θn
i :=

1
2
, otherwise. (6.16)
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Assume that γ n
i < 1. Let Un+1

i be the high-order update given by (6.1) using either the high-order cG flux (6.4)
or the high-order dG flux (6.9) with any graph viscosity {dH,n

i j } j∈I(i)\{i} defined by dH,n
i j := dL,n

i j max(ψn
i , ψ

n
j ) with

ψn
i , ψ

n
j ∈ [0, 1]. Then,

Un+1
i ≤ UM,n

i − (UM,n
i − Un

i )
(
(1− θn

i )(1− γ n
i )− θn

i (1− ψn
i ) 1

2γ
−,n
i

)
, (6.17)

Un+1
i ≥ Um,n

i + (UM,n
i − Un

i )
(
θn

i (1− γ n
i )− (1− θn

i )(1− ψn
i ) 1

2γ
+,n
i

)
. (6.18)

Proof. There is nothing to prove if UM,n
i − Um,n

i = 0. Let us now assume that UM,n
i − Um,n

i ̸= 0. Subtracting (3.4)
from (6.1) we obtain

UH,n+1
i = UL,n+1

i +
τ

mi

∑
j∈I(i)

(dH,n
i j − dL,n

i j )(Un
j − Un

i ).

Let us focus on the scalar component Un
i . Recalling the auxiliary states U

n
i j defined in (3.8) and recalling that

we have assumed S ≡ 0, the identity (3.11) gives UL,n+1
i = (1 − γi )Un

i +
∑

j∈I(i)\{i}
2τdL,n

i j
mi

U
n
i j . Then setting

U∗,ni :=
1
γ n

i

∑
j∈I(i)\{i}

2τdL,n
i j

mi
U

n
i j , we have UL,n+1

i = (1− γ n
i )Un

i + γ
n
i U∗,ni , and this in turn implies that

UH,n+1
i = (1− γ n

i )Un
i + γ

n
i U∗,ni +

τ

mi

∑
j∈I(i)\{i}

(dH,n
i j − dL,n

i j )(Un
j − Un

i ).

(ii) Using that U∗,ni ∈ conv{U
n
i j } j∈I(i)\{i}, we have U∗,ni ≤ UM,n

i , and we infer that

UH,n+1
i ≤ UM,n

i + (Un
i − UM,n

i )(1− γ n
i )+

τ

mi

∑
j∈I(i)\{i}

(dH,n
i j − dL,n

i j )(Un
j − Un

i ).

Then using that dH,n
i j ≤ dL,n

i j , since max(ψn
i , ψ

n
j ) ≤ 1, the above inequality gives

UH,n+1
i ≤ UM,n

i + (Un
i − UM,n

i )(1− γ n
i )+

τ

mi

∑
j∈I(i−)

(dL,n
i j − dH,n

i j )(Un
i − Un

j )

≤ UM,n
i + (Un

i − UM,n
i )(1− γ n

i )+
τ

mi

∑
j∈I(i−)

(dL,n
i j − dH,n

i j )(Un
i − Um,n

i ).

Now using that UM,n
i − Um,n

i ̸= 0 and that Un
i is in the convex hull of UM,n

i and Um,n
i , we have Un

i =

θn
i UM,n

i + (1 − θn
i )Um,n

i where θn
i ∈ [0, 1] has been defined in (6.16). Hence, Un

i − Um,n
i = −θn

i (Um,n
i − UM,n

i )
and Un

i − UM,n
i = (1− θn

i )(Um,n
i − UM,n

i ). With these definitions, the above inequality is rewritten as follows:

UH,n+1
i ≤ UM,n

i + (Um,n
i − UM,n

i )
(

(1− θn
i )(1− γ n

i )− θn
i
τ

mi

∑
j∈I(i−)

(dL,n
i j − dH,n

i j )
)
.

(iii) Using that dH,n
i j ≥ dL,n

i j ψ
n
i and ψn

i ≥ 0, we infer that −dH,n
i j ≤ −dL,n

i j ψ
n
i , which in turn implies the following

inequalities:

UH,n+1
i ≤ UM,n

i + (Um,n
i − UM,n

i )
(

(1− θn
i )(1− γ n

i )− θn
i (1− ψn

i )
τ

mi

∑
j∈I(i−)

dL,n
i j

)
≤ UM,n

i + (Um,n
i − UM,n

i )
(
(1− θn

i )(1− γ n
i )− θn

i (1− ψn
i ) 1

2γ
−,n
i

)
.

(iv) The other estimate is obtained similarly. More precisely, using that U∗,ni j ≥ Um,n
i , we infer that

UH,n+1
i ≥ Um,n

i + (UM,n
i − Um,n

i )(1− γ n
i )+

τ

mi

∑
j∈I(i+)\{i}

(dH,n
i j − dL,n

i j )(UM,n
i − Un

i )

≥ Um,n
i + (UM,n

i − Um,n
i )

(
θn

i (1− γ n
i )− (1− ψn

i )(1− θn
i ) 1

2γ
+,n
i

)
,

which completes the proof. □

We now formulate the main result of this section.
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Theorem 6.5. Let ψ ∈ Lip([0, 1]; [0, 1]) be such that ψ(1) = 1 and with Lipschitz constant kψ . Consider the scheme
(6.1) using either the high-order cG flux (6.4) or the high-order dG flux (6.9) with the graph viscosity defined in (6.13).
Assume that g(U) = U in (6.12). Assume that all the coefficients βi j in (6.12) are positive and there existsϖ ♯

∈ (0,∞)
uniform with respect to the mesh sequence (Th)h>0, such that maxi∈V (max j∈I(i) βi j/min j∈I(i) βi j ) ≤ ϖ ♯. Let i ∈ V
and n ≥ 0. Then, under the local CFL condition γ n

i ≤
1

1+kψ c♯
, where c♯ = ϖ ♯ maxi∈V card(I(i)) (this number is

uniformly bounded with respect to the mesh sequence), the scheme is locally invariant domain preserving for the
scalar component U: i.e., UH,n+1

i ∈ [Um,n
i ,UM,n

i ].

Proof. Note first that if UM,n
i = Um,n

i , then UH,n+1
i = Un

i ∈ [Um,n
i ,UM,n

i ] irrespective of the value of dH,n
i j , which

proves the statement. Let us assume now that UM,n
i ̸= Um,n

i . If θn
i =

Un
i −Um,n

i
UM,n

i −Um,n
i
∈ {0, 1}, then either Un

i = Um,n
i or

Un
i = UM,n

i . In this case, αn
i = 1 and ψ(αn

i ) = 1; as a result, dH,n
i j = dL,n

i j max(1, ψ(α j )) = dL,n
i j for all j ∈ I(i),

which implies that UH,n+1
i = UL,n+1

i ∈ [Um,n
i ,UM,n

i ]. Finally, let us assume that 0 < θn
i < 1. Observing that

∥y| − |x∥ = max(−|x | + |y|, |x | − |y|), we infer that −∥y| − |x∥ ≤ |y| − |x | for all x, y ∈ R. This inequality in turn
implies that

1− αn
i = 1−

⏐⏐⏐∑ j∈I(i+) βi j |Un
j − Un

i | −
∑

j∈I(i−) βi j |Un
j − Un

i |

⏐⏐⏐∑
j∈I(i) βi j |Un

j − Un
i |

≤

∑
j∈I(i) βi j |Un

j − Un
i | +

∑
j∈I(i+) βi j |Un

j − Un
i | −

∑
j∈I(i−) βi j |Un

j − Un
i |∑

j∈I(i) βi j |Un
j − Un

i |

≤ 2

∑
j∈I(i+) βi j (Un

j − Un
i )∑

j∈I(i) βi j |Un
j − Un

i |
≤ 2

∑
j∈I(i+) βi j (UM,n

j − Un
i )

min j∈I(i) βi j (|UM,n
i − Un

i | + |U
m,n
i − Un

i |)

≤ 2
UM,n

i − Un
i

UM,n
i − Um,n

i

max j∈I(i) βi j

min j∈I(i) βi j
card(I(i+)) ≤ 2c♯(1− θn

i ),

where c♯ = ϖ ♯ maxi∈V card(I(i)) is a number uniformly bounded with respect to the mesh sequence. Likewise we
have

1− αn
i ≤ 2c♯θn

i .

Let kψ be the Lipschitz constant of ψ . Then 1− ψ(αn
i ) = ψ(1)− ψ(αn

i ) ≤ kψ (1− αn
i ). This in turn implies that

(1− θn
i )(1− γ n

i )− θn
i (1− ψ(αn

i )) 1
2γ
−,n
i ≥ (1− θn

i )(1− γ n
i )− kψc♯θn

i (1− θn
i )γ n

i

≥ (1− θn
i )(1− (1+ kψc♯θn

i )γ n
i ) ≥ 0,

provided γ n
i ≤

1
1+kψ c♯

. Similarly, provided again that γ n
i ≤

1
1+kψ c♯

, we have

θn
i (1− γ n

i )− (1− θn
i )(1− ψ(αn

i )) 1
2γ
+,n
i ≥ θn

i (1− γ n
i )− kψc♯θn

i (1− θn
i )γ n

i

≥ θn
i (1− (1+ kψc♯(1− θn

i ))γ n
i ) ≥ 0,

The conclusion follows from Lemma 6.4. □

Example 6.6 (Shallow Water/Euler Equations). The above technique can be used to solve the Saint–Venant equations.
In this case one can use the water height as smoothness indicator. This technique can also be used to solve the
compressible Euler equations. In this case one can use the density as smoothness indicator. Let us denote by U the
scalar component that is chosen for the smoothness indicator. Then the scheme (6.1) using the high-order flux (6.4)
or (6.9) with the graph viscosity defined in (6.13) with g(U) = U satisfies the local maximum/minimum principle
UH,n+1

i ∈ [Um,n
i ,UM,n

i ] for all i ∈ V under the appropriate CFL condition. This means in particular that the water
height (or the density) stays positive. □

Remark 6.7 (Literature). The origins of the smoothness-based viscosity can be found in e.g., Jameson et al. [2, Eq.
(12)], see also the second formula in the right column of page 1490 in Jameson [34]. A version of Theorem 6.5 for
scalar conservation equations is proved in Guermond and Popov [21]. To the best of our knowledge, it seems that
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Theorem 6.5 as stated here for hyperbolic systems and generic discretizations is original. The technique presented
here shows similarities with that proposed in Burman [35, Thm. 4.1] and Barrenechea et al. [36, Eq. (2.4)–(2.5)].
The quantity (αn

i )p, p ≥ 2, is used in [35] to construct a nonlinear viscosity that yields the maximum principle and
convergence to the entropy solution for Burgers’ equation in one dimension. It is used in [36] for solving linear scalar
advection–diffusion equations. □

6.3. Greedy graph viscosity

We continue with a technique entirely based on the observations made in Lemma 6.4, irrespective of any
smoothness considerations. As in Section 6.2.2, we specialize the setting by assuming that there is one scalar
component of U, say U, for which the source term is zero, i.e., S ≡ 0.

Let i ∈ V and n ≥ 0. Let θn
n , γ−,ni , and γ+,ni be the quantities defined in (6.15)–(6.16) for all i ∈ V . We recall that

Lemma 6.4 is quite general and just requires that S(U) ≡ 0 and ψn
i , ψ

n
j ∈ [0, 1]. Let us set

ψn
i := max

(
1− 2(1− γ n

i ) min
(

1
γ
−,n
i

1− θn
i

θn
i

,
1
γ
+,n
i

θn
i

(1− θn
i )

)
, 0

)
, (6.19)

if θn
i ̸∈ {0, 1} and ψn

i = 1 otherwise. Then we set

dH,n
i j := dn

i j max(ψn
i , ψ

n
j ), ∀i ∈ V, ∀ j ∈ I(i)\{i}. (6.20)

We now formulate the main result of this section.

Theorem 6.8 (Greedy Graph Viscosity). Consider the scheme (6.1) using either the high-order cG flux (6.4) or
the high-order dG flux (6.9) with the graph viscosity defined in (6.20) using the definitions (6.15)–(6.16) with Um,n

i ,
UM,n

i defined in (6.14). Assume that γ n
i ≤ 1, then the scheme is locally invariant domain preserving for the scalar

component U: i.e., UH,n+1
i ∈ [Um,n

i ,UM,n
i ].

Proof. Note first that if UM,n
i = Um,n

i , then Un+1
i = Un

i ∈ [Um,n
i ,UM,n

i ] irrespective of the value of dn
i j , which proves

the statement. If θn
i ∈ {0, 1}, then ψn

i = 1 implies that dn
i j = dL,n

i j max(1, ψn
j ) = dL,n

i j for all j ∈ I(i)\{i}, which
again implies that Un+1

i = Un
i ∈ [Um,n

i ,UM,n
i ]. Finally, let us assume that 0 < θn

i < 1. The definition of ψn
i in

(6.19) implies that ψn
i ≥ 1 − 2 1−γ n

i
γ
−,n
i

1−θn
i

θn
i

, which in turn gives θn
i (ψn

i − 1) 1
2γ
−,n
i + (1 − γ n

i )(1 − θn
i ) ≥ 0. This is the

condition in Lemma 6.4 that shows that Un+1
i ≤ UM,n

i , see (6.17). Similarly, we have ψn
i ≥ 1 − 2 1−γ n

i
γ
+,n
i

θn
i

1−θn
i

, which

gives (ψn
i − 1)(1− θn

i ) 1
2γ
+,n
i + (1− γ n

i )θn
i ≥ 0. This is the condition in Lemma 6.4 that shows that Um,n

i ≤ Un+1
i , see

(6.18). □

Remark 6.9 (Small CFL Number). Note in (6.19) that the quantity ψn
i is almost equal to 1 when Un

i is not a local
extremum and the local CFL number γ n

i is small. This shows that the method becomes greedier as the CFL number
decreases; thereby the name of the method. □

Remark 6.10. [Min–Max] The greedy graph viscosity based on (6.19) explicitly involves the bounds Um,n
i and UM,n

i ,
whereas the smoothness-based graph viscosity using (6.12) does not. □

6.4. Commutator-based graph viscosity

The objective of this section is to construct the high-order graph viscosity so that the method is entropy consistent
and close to be invariant domain preserving. In other words, we do not want to rely on the (yet to be explained)
limiting process to enforce entropy consistency. For instance one naive choice consists of using dH,n

i j = 0, which
gives the maximum accuracy for smooth solutions, but as shown in Lemma 4.6 in Guermond and Popov [21] one
can construct simple counterexamples with Burgers’ equation such that the resulting method is maximum principle
preserving, after limiting, but does not converge to the entropy solution. A better option consists of estimating an
entropy residual/commutator as suggested in [21, §5.1], [1, §3.4], [5, §6.1].
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The key idea consists of measuring the smoothness of an entropy by measuring how well the chain rule,∇·(F(u)) =
(∇η(u))T

∇·(f(u)), is satisfied by the discretization at hand. Given an entropy pair (η(v), F(v)) for (1.1) we set
η

max,n
i := max j∈I(i) η(Un

j ), η
min,n
i := min j∈I(i) η(Un

j ), ϵi = ϵmax j∈I(i) |η(Un
j )| and ∆ηn

i = max( 1
2 (ηmax,n

i −η
min,n
i ), ϵi ),

then the so-called entropy viscosity, or commutator-based graph viscosity, is defined by setting

N n
i :=

∑
j∈I(i)

(F(Un
j )− (∇η(Un

i ))Tf(Un
j ))·ci j , (6.21)

dH,n
i j := min(dL,n

i j ,max(
|N n

i |

∆ηn
i
,
|N n

j |

∆ηn
j
)). (6.22)

The normalization in (6.22) and the choice of entropy are not unique; we refer the reader to [1] where relative entropies
are used.

7. Convex limiting

In this section we develop a general limiting framework to preserve convex invariant sets and (more generally)
quasiconcave constraints. This work is aligned with the ideas presented in Khobalatte and Perthame [37], Perthame
and Qiu [38], Perthame and Shu [39] in the context of finite volume methods. We also refer the reader to Zhang and
Shu [40,41], Jiang and Liu [42] for recent/related developments in the context of dG methods. The ideas presented in
this section are slightly more general as they naturally extend beyond the Finite Volume/dG methods. The approach
that we propose is related to flux-limiting techniques like the flux-corrected transport method by Boris and Book [43],
Zalesak [44].

7.1. Quasiconcavity

We have seen in Section 3 that the low-order solution UL,n+1
i satisfies some “convex bounds” and, in principle, we

would like the high-order solution to satisfy these “convex bounds” as well. But, before proceeding any further, we
need to define clearly what we mean by convex bounds. We also need to give a precise statement about the bounds
that are naturally satisfied by the first-order method. These are the two objectives of the present section and the next
one Section 7.2.

In general, the convex bounds mentioned above can be described in terms of upper contour sets of quasiconcave
functions and lower contour sets of quasiconvex functions. For the sake of completeness we recall the definitions of
quasiconcavity and quasiconvexity.

Definition 7.1 (Quasiconcavity). Given a convex set B ⊂ Rm , we say that a function Ψ : B → R is quasiconcave if
the set Lχ (Ψ ) := {U ∈ B | Ψ (U) ≥ χ} is convex for any χ ∈ R. The sets Lχ (Ψ ) are called upper contour sets.

We are going to make use of the following equivalent definition.

Lemma 7.2 (Quasiconcavity). Let B ⊂ Rm be convex set. A function Ψ : B→ R is quasiconcave iff for every finite
set S ⊂ N, every corresponding set of convex coefficients {λ j } j∈S (i.e.,

∑
j∈S λ j = 1 and λ j ≥ 0 for all j ∈ S), and

every corresponding collection of vectors {U j } j∈S in B, the following holds true:

Ψ
(∑

j∈S

λ j U j

)
≥ min

j∈S
Ψ (U j ). (7.1)

Definition 7.3 (Quasiconvexity). A function Ψ : B→ R is quasiconvex if −Ψ is quasiconcave.

Note that Jensen’s inequality implies that concave/convex functions are quasiconcave/quasiconvex (respectively).
The reader is referred to Avriel et al. [45] for further properties of quasiconcave/convex functions. We now give a
result that is useful to prove that a function is quasiconcave.

Lemma 7.4. Let B ⊂ Rm be a convex set. Let R : B → (0,R) be a positive function. Let Ψ : B → R and assume
that the product RΨ is concave. Then Ψ is quasiconcave if one of the following two assumptions is satisfied: (i) R is
affine or (ii) R is convex and Ψ is nonnegative.
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Proof. Let {λ j } j∈S be a set of convex coefficients. Let {Un
j } j∈S be members of B. Let us set χ := min j∈S Ψ (U j ). Let

Φ(U) := R(U)(Ψ (U)−χ ). Notice that if R is affine, or if R is convex and Ψ is nonnegative, then−χR(U) is concave.
As a result, Φ is concave since R(U)Ψ (U) and −χR(U) are both concave and the sum of two concave functions is
concave (this may not be the case for the sum of quasiconcave functions). Notice also that min j∈S Φ(U j ) ≥ 0 because
R ≥ 0 and min j∈S Ψ (U j )− χ ≥ 0. Hence

Φ
(∑

j∈S

λ j U j

)
= R

(∑
j∈S

λ j U j

)(
Ψ

(∑
j∈S

λ j U j

)
− χ

)
≥

∑
j∈S

λ jΦ(U j ) ≥ 0.

This in turn implies that Ψ (
∑

j∈S λ j U j ) ≥ χ = min j∈S Ψ (U j ), which proves the assertion owing to Lemma 7.2. □

Example 7.5 (Entropy). Let η : B→ R be any entropy for (1.1) (recall that entropies are convex by definition), then
Ψ (U) = −η(U) is quasiconcave. □

Example 7.6 (Specific Entropy). Let η : B → R be any entropy for (1.1). Let R : B → (0,∞) be a positive
linear function, then Lemma 7.4 implies that Ψ (U) = −η(U)/R(U) is quasiconcave. One can think of this function
as a specific entropy in the case of the shallow water equations (R(U) is the water height), or the case of the Euler
equations (R(U) is the density). □

Let us now give examples of quasiconcave functionals in the context of the compressible Euler equations with an
arbitrary equation of state. The conserved variables in this case are U := (ρ,m, E)T.

Example 7.7 (Density). We set B := Rd+2, Ψ (U) := ρ. The functional Ψ : B→ R is linear, hence it is quasiconcave.
Note the following functional Ψ (U) = −ρ is also quasiconcave. □

Example 7.8 (Total Energy). We set B := Rd+2, Ψ (U) := E . The functional Ψ : B → R is linear, hence it is
quasiconcave. Note the following functional Ψ (U) = −E is also quasiconcave. □

Example 7.9 (Internal Energy). We set B := {U = (ρ,m, E)⊤ ∈ Rm
| ρ > 0} and introduce the internal energy

ε(U) := E − m2

2ρ . A direct computation shows that the functional ε : B→ R has a negative semi-definite Hessian for
every equation of state, thereby proving that ε is concave, hence quasiconcave. □

Let us now illustrate the use of Lemma 7.4 with R(U) = ρ.

Example 7.10 (Specific Internal Energy). Let B := {U = (ρ,m, E)⊤ ∈ Rm
| ρ > 0}, and introduce the specific

internal energy e(U) := ε(U)
ρ
=

E
ρ
−

m2

2ρ2 . Clearly R(U) := ρ is convex; moreover, Φ(U) := R(U)e(U) = E−m2

2ρ = ε(U)
is the internal energy, which we know is a concave function for any equation of state. Hence we conclude from
Lemma 7.4 that the specific internal energy is quasiconcave for any equation of state. Notice in passing that this
argument proves that the set {U := (ρ,m, E)⊤ | ρ ≥ ρ0, e(U) ≥ e0} is convex for any ρ0, e0 ∈ (0,∞). □

Example 7.11 (Generalized Specific Entropies). We set B := {U ∈ Rm
| ρ > 0, e(U) > 0}. Let η : B → R be a

generalized entropy as defined in Harten [46, Eq. (2.10a)], Harten et al. [47, Thm. 2.1]. Then using Lemma 7.4 with
R(U) = ρ and Ψ (U) = η(U)/R(U), we conclude that the specific entropy s(U) := ρ−1η(U) is quasiconcave. Note
in passing that we have proved that the set {U := (ρ,m, E)⊤ | ρ > ρ0, e(U) > ρ0, s(U) > s0} is convex for any
ρ0, e0 > 0 and any s0 ∈ R. We refer the reader to Theorem 8.2.2 from Serre [48] for other properties of this set. □

Example 7.12 (Kinetic Energy). We set B := {U = (ρ,m, E)⊤ ∈ Rm
| ρ > 0}. Let Ψ (U) = − 1

2ρ
−1m2 be the

(negative) kinetic energy. It is clear that Φ(U) = − 1
2 m2 is concave, then using Lemma 7.4 with R(U) = ρ, we

conclude that the (negative) kinetic energy is quasiconcave. □

We finish with a result that is useful to transform quasiconcave functionals.

Lemma 7.13. Let Ψ : B→ R be a quasiconcave function. Let L : R→ R be a nondecreasing function, then L ◦Ψ
is quasiconcave.
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Proof. Let us use the characterization (7.1). Since L is nondecreasing, we have L ◦ Ψ (
∑

j∈S λ j U j ) ≥
L(min j∈S Ψ (U j )). Let k ∈ S be such that Ψ (Uk) := min j∈S Ψ (U j ). Then, for any j ∈ S, we have Ψ (Uk) ≤ Ψ (U j ),
which implies that L◦Ψ (Uk) ≤ L◦Ψ (U j ). Hence L(min j∈S Ψ (U j )) = L(Ψ (Uk)) = min j∈S L(Ψ (U j )). In conclusion
L ◦Ψ (

∑
j∈S λ j U j ) ≥ min j∈S L ◦Ψ (U j ), which proves the assertion. □

Example 7.14 (Specific Entropy). Let us illustrate the use of Lemma 7.13 with the compressible Euler equations,
and, to simplify the argument, let assume that the equation of state is the γ -law. Consider the physical specific entropy
Ψ (U) = 1

γ−1 log(ε(U)ρ−γ ), where ε(U) is the internal energy. This function is quasiconcave owing to Lemma 7.4
with R(U) = ρ, since ρΨ (U) is known to be concave. Then using Lemma 7.13 we conclude that Ψ̃ (U) = ε(U)ρ−γ is
quasiconcave. □

7.2. Bounds

In this section we define the bounds that we are going to use to limit the high-order solution. The following result
will play a key role in the rest of the paper, since it tells us precisely what are the “convex bounds” that the low-order
solution produced by the GMS-GV scheme satisfies.

Lemma 7.15 (Natural Bounds on the GMS-GV Scheme). Let B ⊂ A ⊂ Rm be a convex set and Ψ : B → R be a

quasiconcave functional. Let n ≥ 0, i ∈ V , and assume that 1+ 4τ dL,n
ii
mi
≥ 0 and 2τ ≤ τ0. Assume that Un

j ∈ B for all

j ∈ I(i). Let {U
n
i j } j∈I(i) be the auxiliary states defined in (3.8). Consider the following quantity:

Ψmin
i := min(Ψ (Un

i + 2τ S(Un
i )), min

j∈I(i)
Ψ (U

n
i j )). (7.2)

Then, the first-order update UL,n+1
i computed with the GMS-GV scheme (see (3.4) plus (3.10)) is in B and satisfies the

following inequality:

Ψ (UL,n+1
i ) ≥ Ψmin

i . (7.3)

Proof. Using the assumptions, 1 + 4τ dL,n
ii
mi
≥ 0 and 2τ ≤ τ0, we first observe that (3.11) shows that UL,n+1

i is a
convex combination of the states Un

i + 2τ S(Un
i ) and {U

n
i j } j∈I(i)\{i} which are all in B; hence UL,n+1

i is in B. Then the
conclusion follows readily by using the quasiconcavity property (7.1). □

Remark 7.16 (Quasiconcavity vs. Quasiconvexity). Since any quasiconvex function can be transformed into
a quasiconcave function by a sign change, the above lemma gives Ψ (UL,n+1

i ) ≤ Ψmax
i := max(Ψ (Un

i +

2τ S(Un
i )),max j∈I(i) Ψ (U

n
i j )) for any quasiconvex function Ψ : B ⊂ A → R. Therefore, in order to alleviate the

language, we will henceforth refrain from mentioning quasiconvexity and will formulate every “convex bounds” in
terms of quasiconcave functionals only. □

Remark 7.17 (Invariant Set vs. Local Bound). Notice that Lemma 7.15 contains two statements that are of different
nature. The first one is an invariant domain property: (Un

j ∈ B, ∀ j ∈ I(i))⇒ (UL,n+1
i ∈ B). Since B does not depend

on i ∈ V , this local assertion can be reformulated into a global statement (Un
i ∈ B, ∀i ∈ V)⇒ (UL,n+1

i ∈ B, ∀i ∈ V).
The second statement Ψ (UL,n+1

i ) ≥ Ψmin
i is a local bound that can be viewed as a local “generalized minimum

principle”. This bound cannot be made uniform; it is local in time and space, since Ψmin
i depends on i and n. □

Remark 7.18 (Relaxation). The reader must be aware that in general the bound Ψmin
i defined in (7.2) must be slightly

relaxed in order to go beyond second-order accuracy in space in the L1-norm. We refer the reader to Section 7.6 for
implementation details on relaxation techniques. □
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7.3. Abstract framework

In the sections Sections 6.1.2–6.1.4 we have seen that most high-order methods can be written in the algebraic
form

mi

τ
(UH,n+1

i − Un
i )+

∑
j∈I(i)

FH,n
i j = mi S(Un

i ), (7.4)

with FH,n
i j ∈ Rm satisfying the skew-symmetry constraint FH,n

i j = −FH,n
i j for all j ∈ I(i) (whether we use the

consistent mass matrix for the discretization for the time derivative or not), where the superscript H denotes high-
order. Subtracting (3.7) from (7.4) and reorganizing we get mi UH,n+1

i = mi UL,n+1
i +

∑
j∈I(i)\{i} τ (FL,n

i j − FH,n
i j ). This

expression can be rewritten into the following important identity:

mi UH,n+1
i = mi UL,n+1

i +

∑
j∈I(i)\{i}

An
i j , (7.5)

where An
i j := τ (FL,n

i j − FH,n
i j ) ∈ Rm . The convex limiting technique to be explained in the next section relies heavily

on (7.5). Note that (by construction) we have that An
i j = −An

ji , which means that
∑

i∈V mi UH,n+1
i =

∑
i∈V mi UL,n+1

i ;
that is to say, the high-order and the low-order solution have the same mass whether the source term S is present or
not.

7.4. Convex limiting

Without loss of generality, we consider a family of quasiconcave functionals {Ψi }i∈V , Ψi : B→ R where B ⊂ Rm

is a convex set and Ψi (UL,n+1
i ) ≥ 0 for each i ∈ V . Our goal is to modify the high-order update so that the modified

high-order update satisfies the same quasiconcave constraints as the low-order solution and has the same mass as the
high-order update.

Taking inspiration from the flux-corrected transport methodology, we introduce symmetric limiting parameters
ℓi j = ℓ j i ∈ [0, 1], i, j ∈ V , and we define the limited solution Un+1

i as follows:

mi Un+1
i := mi UL,n+1

i +

∑
j∈I(i)\{i}

ℓi j An
i j . (7.6)

Notice that Un+1
i = UL,n+1

i if ℓi j = 0 for all j ∈ I(i)\{i} and Un+1
i = UH,n+1

i if ℓi j = 1 for all j ∈ I(i)\{i}; hence,
Ψi (Un+1

i ) ≥ 0 when ℓi j = 0. Our goal is to find a set of coefficients ℓi j as close to 1 as possible so that Ψi (Un+1
i ) ≥ 0.

Lemma 7.19 (Conservation). The limiting process is conservative for any choice of coefficients ℓi j if ℓi j = ℓ j i for any
j ∈ I(i)\{i}.

Proof. the skew-symmetry of An
i j together with the symmetry of the limiter ℓi j implies that

∑
i∈V

∑
j∈I(i)\{i} ℓi j An

i j =

0; therefore
∑

i∈V mi Un+1
i =

∑
i∈V mi UL,n+1

i . □

The expression (7.6) goes back to the flux-corrected transport framework pioneered by Boris and Book [43],
Zalesak [44]. The reader can further explore some current developments for flux-corrected transport methods in the
books Kuzmin et al. [49,50]. At this point we depart from the existing flux-corrected transport literature and follow [1]
instead. We rewrite (7.6) as follows:

Un+1
i =

∑
j∈I(i)\{i}

λ j (UL,n+1
i + ℓi j Pn

i j ), with Pn
i j :=

1
miλ j

An
i j , (7.7)

where {λ j } j∈I(i)\{i} is any set of strictly positive convex coefficients (see Remark 7.22), i.e.,
∑

j∈I(i)\{i} λ j = 1, λ j > 0
for all j ∈ I(i)\{i}. The following two lemmas should convince the reader that it is possible to estimate ℓi j efficiently
by doing one-dimensional line-searches only.
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Lemma 7.20. Let Ψi (u) : B → R be a quasiconcave function. Assume that the limiting parameters ℓi j ∈ [0, 1] are
such that Ψi (UL,n+1

i + ℓi j Pn
i j ) ≥ 0, for all j ∈ I(i)\{i}, then the following inequality holds true:

Ψi

( ∑
j∈I(i)\{i}

λ j (UL,n+1
i + ℓi j Pn

i j )
)
≥ 0.

Proof. Let L0(Ψi ) := {U ∈ B | Ψi (U) ≥ 0}. By definition all the limited states UL,n+1
i + ℓi j Pn

i j are in L0(Ψi ) for all
j ∈ I(i)\{i}. Since Ψi is quasiconcave, the upper contour set L0(Ψi ) is convex. Hence, the convex combination∑

j∈I(i)\{i} λ j (UL,n+1
i + ℓi j Pn

i j ) is in L0(Ψi ), i.e., Ψi
(∑

j∈I(i)\{i} λ j (UL,n+1
i + ℓi j Pn

i j )
)
≥ 0, which concludes the

proof. □

Theorem 7.21. For every i ∈ V and j ∈ I(i), let ℓi
j be defined by

ℓi
j =

{
1 if Ψi (UL,n+1

i + Pn
i j ) ≥ 0,

max{ℓ ∈ [0, 1] | Ψi (UL,n+1
i + ℓPn

i j ) ≥ 0} otherwise.
(7.8)

The following two statements hold true: (i) Ψi (UL,n+1
i + ℓPn

i j ) ≥ 0 for every ℓ ∈ [0, ℓi
j ]; (ii) Setting ℓi j = min(ℓi

j , ℓ
j
i ),

we have Ψi (UL,n+1
i + ℓi j Pn

i j ) ≥ 0 and ℓi j = ℓ j i .

Proof. (i) First, if Ψi (UL,n+1
i + Pn

i j ) ≥ 0 we observe that Ψi (UL,n+1
i + ℓPn

i j ) ≥ 0 for any ℓ ∈ [0, 1] because
UL,n+1

i ∈ L0(Ψi ), UL,n+1
i + Pn

i j ∈ L0(Ψi ) and L0(Ψi ) is convex. Second, if Ψi (UL,n+1
i + Pn

i j ) < 0, we observe that
the segment {UL,n+1

i + ℓPn
i j | ℓ ∈ [0, 1]} crosses the level set ∂{Ψi (U) ≥ 0} because Ψi (UL,n+1

i ) ≥ 0. Notice also
that the quasiconcavity of Ψi implies that ℓi

j is uniquely defined since the segment {UL,n+1
i + ℓPn

i j | ℓ ∈ [0, 1]} can
cross the level set ∂{Ψi (U) ≥ 0} only once; moreover, for any ℓ ∈ [0, ℓi

j ] we have Ψi (UL,n+1
i + ℓPn

i j ) ≥ 0 because
UL,n+1

i ∈ L0(Ψi ), UL,n+1
i + ℓi

j P
n
i j ∈ L0(Ψi ) and L0(Ψi ) is convex. (ii) Since ℓi j = min(ℓi

j , ℓ
j
i ) ≤ ℓi

j , the above
construction implies that Ψi (UL,n+1

i + ℓi j Pn
i j ) ≥ 0. Note finally that ℓi j = min(ℓi

j , ℓ
j
i ) = ℓ j i . □

Remark 7.22 (Choice of Convex Coefficients). There are infinitely many possible choices for the strictly positive
convex coefficients {λ j } j∈I(i)\{i} in (7.7). Note that it is even possible to choose a different set {λ j } j∈I(i)\{i} for each
i ∈ V without affecting the results presented in this paper. We have not made any theoretical attempt to exploit
these additional degrees of freedom in order to optimize the convex limiting technique. All the computations reported
in Guermond et al. [1] have been done with the simplest choice λ j :=

1
card(I(i))−1 for all j ∈ I(i)\{i} for all i ∈ V .

Other choices have been explored computationally but none turned out to be more efficient than the others. It might
be interesting though to explore this question further; for instance, other choices of convex coefficients could help
preserve some symmetries. □

Remark 7.23 (Multiple Limiting). In general we have to consider families of quasiconcave functionals {{Ψi }i∈V}l∈L,
Ψ l

i : Bl
→ R, where Bl

⊂ Rm is the convex admissible set of the functional Ψ l
i . The list L describes the nature of the

functionals; this list could encompass any of the functionals shown in Examples 7.5 to 7.12. The list L is sometimes
ordered in the sense that Bl ′

⊂ Bl if l ′ ≥ l. Let us illustrate this concept with the compressible Euler equations.
Usually one starts with B1

= Rm to enforce a local minimum principle on the density (which implies positivity of
the density). We can also take B2

= R to enforce a local maximum principle on the density by using Ψ (U) = −ρ.
Then we can consider B3

= {U ∈ B1
| ρ > 0} to enforce a local minimum principle on the (specific) internal energy

(which implies positivity of the (specific) internal energy). We finally set B4
= {U ∈ B2

| e(U) > 0} to enforce a
local minimum principle on the specific entropy. □

The following result is the main conclusion of the paper.

Theorem 7.24. Let {Ψ l
: Bl
→ R}l∈L, be a family of quasiconcave functionals, where the sets Bl

⊂ Rm are convex

for all l ∈ L. Let B : {U ∈ Rm
| Ψ l(U) ≥ 0, ∀l ∈ L}. Let n ≥ 0. Assume that mini∈V (1 + 4 dL,n

ii
mi

) ≥ 0 and τ ≤ 2τ0.
Consider the quasiconcave functionals {Ψ l

i }i∈V,l∈L defined by Ψ l
i (U) = Ψ l(U)−Ψ l,min

i with Ψ l,min
i defined in (7.2). Let
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ℓ
i,l
j be the limiter computed by using (7.8) for any i ∈ V , j ∈ I(i)\{i}, l ∈ L. Let ℓi j = min(minl∈L ℓ

i,l
j ,minl∈L ℓ

j,l
i ).

Let Un+1
i be defined in (7.7). Assume that B is an invariant set for (1.1), then B is an invariant domain, i.e.,

(Un
i ∈ B, ∀i ∈ V)⇒ (Un+1

i ∈ B, ∀u ∈ V).

Proof. Notice first that B is convex since it is the intersection of convex sets B =
⋂

l∈L{U ∈ Rm
| ψ l(U) ≥ 0}. Since

B is a convex invariant set for (1.1), the CFL assumption together with Theorem 3.6 implies that UL,n+1
i ∈ B for all

i ∈ V . Then Theorem 7.21 can be applied because Ψ l
i (UL,n+1) ≥ 0. This theorem then implies that Ψ l(Un+1

i ) ≥ Ψ l,min
i

for all l ∈ L. Moreover, Un
i + 2τ S(Un

i ) ∈ B and U
n
i j ∈ B, then owing to the CFL assumption and definition (7.2), this

implies that Ψ l,min
i ≥ 0. In conclusion Ψ l(Un+1

i ) ≥ 0 for all l ∈ L, which implies that Un+1
i ∈ B. □

Remark 7.25 (SSP Extension). Owing to Remark 5.6, Theorem 7.24 extends to any SSP RK time stepping provided
the limiting is done at the end of each elementary forward Euler substep. □

7.5. Implementation details

The objective of this section is to give further details on the convex limiting technique introduced above in order to
help the reader to implement it.

7.5.1. Pseudocode of the limiting algorithm
Given a set of quasi-convex functionals {Ψi }i∈V , Ψi : B → R, such that Ψi (UL,n+1

i ) ≥ 0 with convex set B,
Algorithm 1 enforces the quasi-concave constraints Ψi (Un+1

i ) ≥ 0 for each i ∈ V . This pseudocode attempts to
reflect as accurately as possible the way convex limiting is coded in practice. Basically, convex limiting is done in
two loops over the set of the global degrees of freedom V: the first loop (lines 1 to 14) computes the matrix ℓi

j in
general non-symmetric form; the second loop (lines 15 to 19) computes the final symmetric limiter ℓi j . Lemma 7.20
explains why the limiters ℓi

j estimated in the first loop are large enough to enforce the constraint Ψi (Un+1
i ) ≥ 0 for

each i ∈ V . Theorem 7.21 explains why the symmetrization (shrinkage) of the limiters done in the second loop still
produces limiters compatible with these constraints. We have found that initializing ℓi with the lines 2–6 instead of
setting ℓi = 1 reduces the number of times the line-search in line 11 is executed.

Algorithm 1 Convex Limiting

1: for i ∈ V do
2: if Ψi (UH,n+1

i ) ≥ 0 then
3: ℓi := 1
4: else
5: ℓi := max{ℓ ∈ [0, 1] | Ψi (UL,n+1

i + ℓ(UH,n+1
i − UL,n+1

i )) ≥ 0}
6: end if
7: for j ∈ I(i)\{i} do
8: if Ψi (UL,n+1

i + ℓi Pn
i j ) ≥ 0 then

9: ℓi
j := ℓi

10: else
11: ℓi

j := max{ℓ ∈ [0, ℓi ] | Ψi (UL,n+1
i + ℓPn

i j ) ≥ 0}
12: end if
13: end for
14: end for
15: for i ∈ V do
16: for j ∈ I(i)\{i} do
17: ℓi j := min{ℓi

j , ℓ
j
i }

18: end for
19: end for
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7.5.2. Transforming Ψi (U) ≥ 0 into a quadratic constraint
As mentioned in the previous subsection, the line-search invoked in line 5 and line 11 of Algorithm 1 could

be computationally expensive. However, it happens sometimes that the constraint of interest Ψi (U) ≥ 0 can be
transformed into Ψ̃i (U) ≥ 0 where Ψ̃i is a quadratic function, not necessarily quasi-concave. In this case it is possible
to design a very efficient algorithm for the line-search.

Example 7.26 (Internal Energy). To illustrate the above statement, let us consider the compressible Euler equations

with some arbitrary equation of state. Let us set B = {U := (ρ,m, E)⊤ | ρ > 0}, ε(U) := E −
|m|2

ℓ2
2ρ (internal

energy), and Ψi (U) := ε(U) − εmin
i . We have seen in Example 7.9 that Ψi : B → R is quasiconcave (actually

Ψi : B→ R is concave). It is clear that one has Ψi (U) ≥ 0 iff Ψ̃i (U) := ρε(U)− ρεmin
i ≥ 0 for all U ∈ B. Notice that

ρε(U) = Eρ − 1
2 m2 and ρεmin

i are quadratic polynomials of the conserved variables; hence, Ψ̃i (U) is quadratic (but
a simple computation shows also that Ψ̃i is not quasiconcave). In conclusion, instead of doing the line-search with
Ψi (U) := ε(U)− εmin

i , one can do the line-search with the quadratic functional Ψ̃i (U) = ρε(U)− ρεmin
i . □

We now state an abstract result that formalizes the above observation.

Lemma 7.27. Let Ψ : B ⊂ Rm
→ R. Let UL

∈ B and assume that Ψ (UL) ≥ 0. Let Ψ̃ : B → R, let P ∈ Rm ,
and assume that there is ℓmax

∈ [0, 1] such that Ψ (UL
+ ℓP) ≥ 0 iff Ψ̃ (UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓmax]. Assume
that Ψ̃ is quadratic and let a := 1

2 P⊤D2Ψ̃P, b := DΨ̃ (UL) ·P and c := Ψ̃ (UL). Let ℓmin be the smallest positive
root of the equation aℓ2

+ bℓ + c = 0, with the convention that ℓmin
:= 1 if the equation has no positive root. Let

ℓi
j := min(ℓmin, ℓmax), then Ψ (UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓi
j ].

Proof. Let us first observe that Ψ̃ (UL
+ ℓP) = aℓ2

+ bℓ+ cℓ =: g(ℓ) for all ℓ ∈ [0, ℓmax]; hence, Ψ (UL
+ ℓP) ≥ 0

iff g(ℓ) ≥ 0 for all ℓ ∈ [0, ℓmax]. If there is no positive root to the equation aℓ2
+ bℓ + c = 0, then the sign of

g(ℓ) over [0,∞) is constant. The assumption g(0) = c := Ψ (UL) ≥ 0, implies that g(ℓ) ≥ 0 for all ℓ ∈ [0,∞).
That is, Ψ (UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓmax], and in particular this is true for all ℓ ∈ [0, ℓi
j ] since in this case

ℓi
j := min(ℓmin, ℓmax) ≤ ℓmax. Otherwise, if there is at least one positive root to the equation g(ℓ) = 0, then denoting

by ℓmin the smallest positive root, we have g(ℓ) ≥ 0 for all ℓ ∈ [0, ℓmin] (if not, there would exist ℓ1 ∈ (0, ℓmin) s.t.
g(ℓ1) < 0 and the intermediate value theorem would imply the existence a root ℓ∗ ∈ (0, ℓ1) which contradicts that
ℓmin is the smallest positive root). This argument implies again that Ψ (UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓi
j ]. □

Example 7.28 (Kinetic Energy). Coming back to the compressible Euler equations or the shallow water equations,
the above technique can be applied to enforce the local maximum principle on the kinetic energy Ψi (U) ≥ 0, with
Ψi (U) = Ψ (U) − Ψmin

i and Ψ (U) = − 1
2ρ
−1m2 with B = {U := (ρ,m, E)T

| ρ > 0}. (Notice that because of the
sign convention Ψmin

i is the maximum of the kinetic energy over the states {U
n
i j } j∈I(i) and the state Un

i + 2τ S(Un
i ).

Hence the constraint Ψi (U) ≥ 0 amounts to enforcing a local maximum principle on the kinetic energy.) We
have shown in Example 7.12 that Ψi is quasiconcave. In this case Lemma 7.27 can be applied with the functional
Ψ̃i (U) = ρΨi (U) = − 1

2 m2
− ρΨmin

i which is clearly quadratic. Note that Ψ̃i (UL
+ ℓP) ≥ 0 iff Ψi (UL

+ ℓP) ≥ 0
provided ρ(UL

+ ℓP) ≥ 0. Hence before applying Lemma 7.27, one must compute the limiter ℓmax, which depends
on UL and P, such that ρ(UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓmax]. This technique has been introduced in [5, §6.4] in the
context of the shallow water equations. □

Remark 7.29 (Parameter ℓmax). The purpose of the parameter ℓmax appearing in the statement of Lemma 7.27 is to
ascertain that stating that Ψ (U+ ℓP) ≥ 0 is equivalent to stating that Ψ̃ (U+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓmax]. The limiter
ℓmax depends on UL and P and must be computed before applying Lemma 7.27; see Example 7.28. □

7.5.3. Transforming Ψi (U) ≥ 0 into a concave constraint
It is sometimes possible to transform a quasiconcave constraint into a concave constraint. This type of transforma-

tion is useful, since designing efficient and robust line-search procedures for general quasiconcave functionals is not
a trivial task, whereas it is always possible to use the Newton–secant algorithm presented in Section 7.5.4 for concave
functionals.
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For instance, let Ψ : B→ R be a quasiconcave function, then referring to Lemma 7.4, it is sometimes possible to
find R : B→ (0,∞), positive and convex, such that RΨ is concave. This is indeed the case for any “specific” entropy
as described in Example 7.6. The following lemma formalizes this observation.

Lemma 7.30. Let B ⊂ Rm be a convex set. Let Ψ : B→ R and R : B→ (0,∞). Assume that Φ := RΨ : B→ R
is concave. Let UL

∈ B and assume that Ψ (UL) ≥ 0. Let P ∈ Rm and let ℓmax ∈ [0, 1] be such that UL
+ ℓP ∈ B for

all ℓ ∈ [0, ℓmax]. Let Ψmin
∈ R. Assume that either (i) R is affine or (ii) Ψmin

≥ 0 and R is convex. Then the following
statements hold true:

(i) Ψ (UL
+ ℓP)−Ψmin

≥ 0 iff Φ(UL
+ ℓP)−Ψmin R(UL

+ ℓP) ≥ 0 for all ℓ ∈ [0, ℓmax];
(ii) the map [0, ℓmax] ∋ ℓ ↦→ Φ(UL

+ ℓP)−Ψmin R(UL
+ ℓP) ∈ R is concave.

Proof. (i) Since UL
+ ℓP ∈ B for all ℓ ∈ [0, ℓmax], we infer that R(UL

+ ℓP) > 0 for all ℓ ∈ [0, ℓmax]. Hence, the first
assertion is a consequence of the assumption R(UL

+ℓP) > 0 for all ℓ ∈ [0, ℓmax]. (ii) Observe that−Ψmin R : B→ R
is concave if R : B → R is affine. Observe also that −Ψmin R : B → R is concave if R : B → R is convex and
Ψmin

≥ 0. Hence the second assertion is just a consequence of the concavity of Φ : B→ R. □

Example 7.31 (Specific Entropy). Let us illustrate the use of Lemma 7.30 with the compressible Euler equations.
Assume to simplify the argument that the equation of state is the γ -law. Consider the physical specific entropy
Ψ (U) = 1

γ−1 log(ε(U)ρ−γ ) and the quasiconcave constraint Ψ (U) − Ψmin
i ≥ 0. Line-searches for this quasiconcave

functional may be delicate (lines 5 and 11 in Algorithm 1), not only because it is not strictly concave, but also because
of the presence of the logarithm. We have seen in Example 7.14 that this constraint can be transformed into another
quasiconcave constraint Ψ̃ (U) − Ψ̃min

i ≥ 0 with Ψ̃ (U) := ε(U)ρ−γ = exp((γ − 1)Ψ (U)). Let us assume that the
solution at the previous time step Un is such that Ψ̃min

i ≥ 0 for all i ∈ V , which is reasonable since it requires the
internal energy and the density to be nonnegative at tn . Then using R(U) = ργ , which is convex over B = {U | ρ > 0},
using that R(U)Ψ̃ (U) = ε(U) is concave, and Ψ̃min

i ≥ 0, and invoking Lemma 7.30, we finally transform (again) the
above quasiconcave constraint into the concave constraint ε(U)− ργ Ψ̃min

i ≥ 0. Notice in passing that, for the γ -law,
enforcing positivity of the density and the above local minimum principle on the specific entropy (ε(U)−ργ Ψ̃min

i ≥ 0)
guarantees positivity of the internal energy. □

The parameter ℓmax appearing in the statement of Lemma 7.30 arises naturally when one performs convex limiting
for more than one functional. More precisely, before applying 7.30 one must sure that UL

+ℓP ∈ B for all ℓ ∈ [0, ℓmax]
by convex limiting so that R(UL

+ ℓP) > 0. For instance, in the setting of Example 7.31, the parameter ℓmax is the
limiter that must be computed to ascertain that the density of the state UL

+ ℓP is positive over the interval [0, ℓmax].

7.5.4. Line-search: The Newton–secant solver
Unless the function g(ℓ) := Ψi (UL,n+1

+ ℓPn
i j ) has a special structure (say, linear or quadratic), the line-searches

invoked at lines 5 and 11 in Algorithm 1 require the use of an iterative procedure. Without claiming originality, we now
show how the line-searches can be done by using the Newton–secant algorithm to guarantee that Ψi (UL

+ ℓi
j P

n
i j ) ≥ 0

independently of the tolerance that is given to the algorithm to estimate ℓi
j .

Let us assume that g(ℓ) ∈ C2([0, 1];R) is strictly concave and g(0) > 0. Let us set ℓ0
l = 0. Let us assume

also that there exists ℓ0
r ∈ (0, 1] such that g(ℓ0

r ) < 0. Hence there exists a unique number ℓ∗ ∈ (ℓ0
l , ℓ

0
r ) such

g(ℓ0
l ) > g(ℓ∗) = 0 > g(ℓ0

r ). Our goal is now to estimate iteratively ℓ∗ from below, up to some fixed tolerance. Notice
that in this particular setting Newton’s algorithm converges from above; that is, Newton’s algorithm will always return
an approximate value of ℓ∗ that is larger than ℓ∗, (unless g is quadratic). The following lemma describes an iterative
process (ℓk

l , ℓ
k
r )→ (ℓk+1

l , ℓk+1
r ), k ≥ 0, such that

ℓ0
l < · · · < ℓk

l < ℓk+1
l < · · · ≤ ℓ∗ ≤ . . . < ℓk+1

r < ℓk
r < · · · < ℓ0

r

Lemma 7.32 (One Iteration Update). Let ℓk
l < ℓk

r . Let g ∈ C2([ℓk
l , ℓ

k
r ];R). Assume that g′′(ℓ) < 0 for all ℓ ∈ [ℓk

l , ℓ
k
r ].

Assume that g(ℓk
l ) > 0 and g(ℓk

r ) < 0.

(i) Let sk
l :=

g(ℓk,r )−g(ℓk,l )
ℓk,r−ℓk,l and sk

r := g′(ℓk,r ). Then sk
l < 0 and sk

r < 0.
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(ii) Let ℓk+1
l and ℓk+1

r be defined by

ℓk+1
l := ℓk

l −
g(ℓk

l )
sk

l
, ℓk+1

r := ℓk
r −

g(ℓk
r )

sk
r
.

Then ℓk
l < ℓk+1

l < ℓ∗ < ℓk+1
r < ℓk

r .

Proof. The inequalities ℓk
l < ℓk+1

l < ℓ∗ are standard properties of the secant algorithm. The inequalities
ℓ∗ < ℓk+1

r < ℓk
r are standard properties of Newton’s algorithm. The details are left to the reader. □

Algorithm 2 Newton–Secant solver

Require: k = 0, kmax ≥ 1, ℓl < ℓr , g(ℓl) > 0, g(ℓr ) < 0, tol > 0
1: while k ≤ kmax and ℓr − ℓl > tol do
2: k := k + 1
3: ℓaux

l := ℓl

4: if g(ℓl) > g(ℓr ) then
5: sl :=

g(ℓr )−g(ℓl )
ℓr−ℓl

▷ Condition ℓr − ℓl > 0 checked in line 1

6: ℓl := ℓl −
g(ℓl )

sl
7: else
8: break
9: end if

10: if ℓl > ℓr or g(ℓl) < 0 then ▷ Assumes g(ℓr ) < 0
11: ℓl := ℓ

l,aux

12: break
13: end if
14: if g′(ℓr ) < then
15: ℓr := ℓr −

g(ℓr )
g′(ℓr )

16: else
17: break
18: end if
19: if g(ℓr ) > 0 then ▷ Condition ℓr − ℓl > 0 will be checked in line 1
20: break
21: end if
22: end while
23: return ℓ j

i := ℓl

In Algorithm 2, line 1 checks the stopping criteria. The “break” statements (or “exit” statements, depending on
the programming language) force the code out of the while loop, redirecting the control to Line 23. One may reach
break statements due to roundoff errors. Lines 4–9 is the secant update (approximation from the left), while Lines
14–18 define the Newton update (approximation from the right). Lines 10–13 and 19–21 are sanity checks. The
Newton–secant update preserves the order ℓk

l < ℓk+1
l < ℓ∗ < ℓk+1

r < ℓk
r (see Lemma 7.32), however some crossover

may occur after some iterations because of round-off errors (due to the nature of floating-point arithmetic). Notice that
the output of interest is the one produced by the secant update (see line 23), since the output produced by Newton’s
method violates the inequality that we want to satisfy.

Remark 7.33 (Deficiencies of Newton’s Method). If we assume that g(ℓ) is strictly concave over [0, 1], which is the
case of interest here, one can construct counterexamples illustrating that Newton’s method can either not converge or
produce an output that violates the bound that we want to enforce. For instance, if the initial guess ℓ0

∈ [0, 1] for
Newton’s method is such that ℓ0 > ℓ∗ (i.e., g(ℓ0) < 0), then Newton’s method produces a sequence {ℓk

}k∈N satisfying
ℓ∗ < ℓk for all k ∈ N. This implies that g(ℓk) < 0 for all k ∈ N, which is incompatible with the constraint that we
want to satisfy. On the other hand, if g reaches a maximum at ℓc ∈ (0, ℓ∗) and the initial guess is such that ℓ0

∈ (0, ℓc),
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then the sequence {ℓk
}k∈N wanders outside the internal [0, 1]. Assuming that g(ℓ) is well defined outside [0, 1], the

sequence {ℓk
}k∈N may converge to a negative solution. □

Remark 7.34 (Actual Performance). The convergence rate of Algorithm 2 is at least 1.618 because it combines the
second-order Newton method with the

√
5+1
2 -order secant method. In practice, we have verified that Algorithm 2

rarely ever requires more than three iterations to reach tolerances such as tol = 10−10 (see Guermond et al. [1]). Most
frequently one exits the loop after reaching machine accuracy error. □

7.6. Relaxing the bounds

In general the quantity Ψmin
i defined in (7.2) is accurate enough to make the limited high-order solution second-

order in the L1-norm in space. But it is too tight to make the method higher-order or even second-order in the L∞-norm
in the presence of smooth extrema. The situation is even worse when using the specific physical entropy to limit the
high-order solution. For instance, it is observed in Khobalatte and Perthame [37, §3.3] that strictly enforcing the
minimum principle on the specific (physical) entropy for the compressible Euler equations degrades the converge
rate to first-order; it is said therein that “It seems impossible to perform second-order reconstruction satisfying the
conservativity requirements . . . and the maximum principle on ε(u)”. We confirm this observation. To recover full
accuracy in the L∞-norm for smooth solutions, one must relax the bound Ψmin

i .
To avoid repeating ourselves, we refer the reader to Guermond et al. [1, §4.7] where we explain how the bound

Ψmin
i should be relaxed. In a nutshell, one proceeds as follows: For each i ∈ V , we set

∆2Ψi =
1∑

j∈I(i)\{i} βi j

∑
j∈I(i)\{i}

βi j (Ψ (Un
i )−Ψ (Un

j )),

where the coefficients βi j are meant to make the computation linearity-preserving (see Remark 6.2). Then we compute
the average

∆2Ψi :=
1

2card(I(i))

∑
i ̸= j∈I(i)

(
1
2
∆2Ψi +

1
2
∆2Ψ j ),

and finally the relaxation is done by redefining Ψmin
i as follows:

Ψmin
i ← max((1− sign(Ψmin

i )ri )Ψmin
i ,Ψmin

i − |∆2Ψi |),

where ri = ( mi
|D| )

1.5
d . Notice that ri ∈ (0, 1). The somewhat ad hoc threshold (1−sign(Ψmin

i )rh) is never active when the
mesh size is fine enough. This term is just meant to be a safeguard on coarse meshes. For instance, for the compressible
Euler equations, when Ψ (U) is either the density (or the internal energy), this threshold guarantees positivity of the
density (or the internal energy) because in this case (1− sign(Ψmin

i )ri ) ≥ 0. The exponent 1.5 is somewhat ad hoc; in
principle one could take ri = ( mi

|D| )
δ
d with δ < 2.
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