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Despite that, most (if not all) actual implementations of
the projection method assume implicitly one and the sameThis paper investigates the numerical performance of a finite

element implementation of a new incremental fractional-step discrete representation for the two aforementioned veloc-
method to compute steady and unsteady incompressible viscous ity fields. But a single discretization cannot afford the best
flows under general boundary conditions and using unstructured approximation of velocity simultaneously for both the vis-
meshes. A variational framework is adopted which accommodates

cous and inviscid phases of the method. Insufficient consid-two different spaces for representing and approximating the veloc-
eration of this difference lies at the origin of the difficultiesity fields calculated respectively in the viscous and inviscid phases

of the method, but which leads to a very simple numerical scheme which the practical implementation of fractional-step pro-
in terms of only one discrete velocity field. An unconditionally stable jection methods is still encountering at present.
semi-implicit approximation of the nonlinear term is used to elimi- The functional analytic setting which properly accounts
nate any time-step restriction, as far as the numerical stability is

for the different character of the equations of the two half-concerned. Numerical results for five test problems in two dimen-
steps [13, 14] allows us to devise alternative formulationssions are reported to illustrate the flexibility of the proposed

method. Q 1997 Academic Press and spatial discretizations of the fractional-step method and
to study their convergence and stability properties. In par-
ticular, a very simple projection method, based on a Poisson

1. INTRODUCTION equation for pressure increment and eliminating the end-
of-step velocity from the numerical scheme was proposed
in [13, 14] as the most direct technique for simulating incom-The Chorin [4, 5] Temam [30, 29] fractional-step projec-

tion method is by far the most employed method for inte- pressible viscous flows in two- and three-dimensional re-
gions of arbitrary shape under quite general boundary con-grating the incompressible Navier–Stokes equations, espe-

cially in the finite element field (see, e.g., Donea et al. [7] ditions. The aim of this article is to give a brief description
of such a method and to report on the numerical perfor-and Gresho and Chan [12]). Despite that, a rigorous analy-

sis for this kind of methods, with the effect of both temporal mances of a 2D finite element implementation of it.
The content of the paper is organized as follows. Sectionand spatial discretizations taken into account, has been

attempted only recently (Guermond [13, 14]; see also 2 introduces the unsteady Navier–Stokes problem supple-
mented with various kinds of boundary conditions compris-[16, 17]).

An important feature of fractional-step projection meth- ing the specification of tangential components of vorticity
and the imposition of boundary values on pressure. Inods is the structural difference existing between the equa-

tions of the viscous step and those of the incompressible Section 3 the Navier–Stokes problem is formulated in a
variational form after recalling the standard functionalphase of the calculation. In fact the first half-step consti-

tutes an elliptic boundary value problem for an intermedi- tools needed to analyze constrained parabolic problems. In
particular, a semi-implicit approximation of the nonlinearate velocity unknown, accounting for the viscous diffusion

and convection mechanisms, whereas the second half-step convection term is considered. Section 4 introduces the
additional functional analytic tools required to formulaterepresents an essentially inviscid problem which deter-

mines the end-of-step divergence-free velocity field, to- the fracational-step projection method in variational form
and describes an incremental version of the projectiongether with a suitable approximation to the pressure distri-

bution. In particular, boundary conditions of a different method. In Section 5 the issue of the spatial discretization
is discussed. A numerical realization of the equations en-kind have to be imposed on the velocity fields which are

calculated in each of the two half-steps. forcing the incompressibility (the projection step) is consid-
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PROJECTION FEM FOR NAVIER–STOKES EQUATIONS 13

ered which relies on a Poisson problem for the pressure u0 ? nuV1,2
5 b1,2 ? nut50 . (2.3)

(increment). The main result of this section consists in
the algorithm (5.10)–(5.12) that should be implemented in The pressure boundary condition could be specified also
practice. Section 6 describes the implementation of the in the more proper form (p 2 = ? u)uV3

5 c3, which is
proposed method by finite elements using a parabolic inter- equivalent to the simpler form in (2.2) by virtue of the
polation for velocity and a linear interpolation for pressure. incompressibility condition. The boundary conditions in-
The numerical tools employed for generating unstructured volving the normal or tangential components of u couple
Delaunay triangulations and for solving the linear systems the vector components of the velocity field when the
of finite element equations are indicated. The accuracy boundaries V2 and V3 are curved or are flat but oblique
of the method in two dimensions is illustrated by some with respect to the Cartesian axes. The equations for the
convergence tests. Finally, in Section 7 we illustrate the velocity components uncouple even in the presence of
flexibility of the method on five examples: the square cav- boundary conditions for u different from purely Dirichlet
ity, a triangular cavity, the steady flow past a backward- ones, provided that the corresponding boundaries are par-
facing step, the unsteady flow past a NACA0012 airfoil at allel to the Cartesian planes. Note that a nonhomogeneous
large incidence with massive separation, and finally, the term can be included without difficulty in the derivative
unsteady flow past a multibody airfoil with slat and flap boundary condition of Robin type for velocity and that
in landing configuration. The last section is devoted to other types of boundary conditions could be easily ac-
some concluding remarks. counted for, provided that the bilinear form associated

with the Laplace operator is modified accordingly (see
2. THE UNSTEADY NAVIER–STOKES PROBLEM below). The last two boundary conditions in (2.2) are in-

tended to mimic, more or less, conditions at outflow bound-
We want to illustrate the ability of the fractional-step aries.

projection method to accommodate various kinds of
boundary conditions for flows in connected bounded do-

3. THE VARIATIONAL FORMULATION
mains V of Rd (d 5 2 or 3) with a conveniently smooth
boundary V. In particular we will consider the imposition To recast the unsteady problem P in a variational form,
of derivative conditions on velocity and the enforcement we introduce the relevant Hilbert spaces. As usual, L2(V)
of prescribed boundary values on pressure and introduce, denotes the space of real-valued functions, the squares of
accordingly, the following unsteady Navier–Stokes prob- which are square summable in V. We denote the inner
lem: For a given body force f (possibly dependent on time) product in L2(V) by (?, ?) and its norm by u?u0 . H m(V),
and a prescribed divergence-free initial velocity field u0, m $ 0, is the space of functions the derivatives of which,
find a velocity field u and a pressure field p (per unit up to order m, are square summable functions. The space
density) so that at t 5 0, u 5 u0, and at all subsequent times, H m(V), equipped with the norm uuu2m 5 (om

uau50 uDauu20)1/2,
expressed in the multi-index notation, is a Hilbert space.

Furthermore, we introduce
P 5

u
t

2 n=2u 1 (u ? =)u 1 =p 5 f,

= ? u 5 0,

(2.1)
X0 5 hv [ H 1(V) u vuV1

5 0, v ? nuV2
5 0, v 3 nuV3

5 0j (3.1)

M 5 L2(V) (3.2)
the velocity and the pressure are subject to the following

V0 5 hv [ X0 u = ? v 5 0j (3.3)boundary conditions:

J0 5 hv [ L2(V) u = ? v 5 0, v ? nuV1<V2
5 0j. (3.4)

Denote by H 1
0,V3

(V) the space of scalar functions of H 1(V)

uuV1
5 b1;

u ? nuV2
5 b2 ? n, (an 3 u 1 = 3 u) 3 nuV2

5 0;

u 3 nuV3
5 b3 3 n, puV3

5 c3;

(2.2)
the trace of which is zero on V3. The importance of
J0 5 J0,V1,2

(V) and H 1
0,V3

(V) for the incompressible prob-
lem considered here is brought to light by the orthogonal
decomposition of L2(V),where V1, V2, V3 is a partition of V. The functions bi,

i 5 1, 2, 3, c3, and a $ 0 may depend on time and are
L2(V) 5 J0,V1,2

(V) % =(H 1
0,V3

(V)) (3.5)assumed to be suitably smooth on the respective domain
of definition, which is one of the parts of V. Moreover,
the initial and boundary data are assumed to satisfy the which follows from the application of the divergence theo-

rem. The discrete counterpart of this decomposition playscompatibility condition [15; 23, p. 3]
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a key role in the projection technique under the mixed can be used only when Dirichlet conditions are specified
for u or when the boundaries V2 and V3 are flat andboundary conditions considered here.

For the sake of simplicity, it is hereafter assumed that parallel to the Cartesian axes. Note also that the coupling
between the velocity components, engendered by the pres-meas(V3) . 0 so that the pressure is uniquely defined in

M. If this hypothesis is not satisfied, we have to take the ence of mixed boundary conditions, appears in the defini-
tion of the test functions of X0.quotient of L2(V) by constants, i.e., M 5 L2(V)/R (see

[17] for other details). The conservative form of the nonlinear term defined in
(3.9) is frequently considered along with the hypothesisA variational version of problem (2.1)–(2.2) reads: For

f smooth enough in time with values in L2(V) and u0 in meas(V3) 5 0. This form can be used also for channel or
exterior flows with an ‘‘outflow’’ boundary, provided thatH 2(V) with = ? u0 5 0 and u0 ? nuV1,2

5 b1,2 ? nut50, find a
pair (u, p) which is smooth in time so that the boundary in question is located downstream, far

enough from any recirculatory zone, so that the condition
u ? nuV3

$ 0 is assured. In practice this treatment of the
nonlinear term can guarantee some ‘‘unconditional’’ stabil-

uut50 5 u0,

u [ H 1(V),

p [ M,
5

uuV1
5 b1,

u ? nuV2
5 b2 ? n,

u 3 nuV3
5 b3 3 n,

(3.6) ity to the numerical scheme [16]. More precisely, its spa-
tially discretized counterpart does not contribute to the
kinetic energy of the solution and boundedness of the
kinetic energy is guaranteed by the viscous dissipation

and such that for all times t . 0 mechanisms.
It is assumed in the following that problem (3.6)–(3.7)

has a unique solution and that this solution is as smooth
as needed and that all of the possible compatibility condi-
tions on the data required by the smoothness of the solution

Su
t

, vD1 a(u, v) 1 b(u, u, v) 2 (p, = ? v)

5 ( f, v) 2 E
V3

c3 v ? n, ;v [ X0,

(= ? u, q) 5 0, ;q [ M.

(3.7)
are satisfied; for a mathematical discussion of these hypoth-
eses the reader is referred to Heywood and Rannacher [19].

4. THE FRACTIONAL-STEP ALGORITHM
Here, to simplify the momentum equation, we have intro-
duced the following notations for the bilinear form, The variational formulation (3.6)–(3.7) is adequate for

approximating the Navier–Stokes equations by means of
a(u, v) 5 n(= ? u, = ? v) 1 n(= 3 u, = 3 v)

(3.8)
coupled solution methods. On the contrary, to build a
fractional-step projection method additional tools are re-

1 n E
V2

a(u 3 n) ? (v 3 n), quired since, as explained in the introduction, this kind of
method implies a separate treatment of the viscous and
incompressible parts of the problem. As a consequence, theand for the trilinear form
appropriate functional setting for a fractional-step method
must accommodate another functional space for represent-

b(u, v, w) 5 ((u ? =)v, w) 1 As(= ? u, v ? w). (3.9)
ing the velocity field calculated in the incompressible invis-
cid step of the method [14], defined as

Note that the trilinear form b(u, v, w) corresponds to the
usual advective term (u ? =)v when u is divergence free.

The conditions on the trace, the normal trace, and the Hdiv
0 5 hv [ L2(V) u = ? v [ L2(V), v ? nuV1,2

5 0j. (4.1)
tangential trace of the velocity on V1, V2, and V3, re-
spectively, are all essential boundary conditions. The con-
dition involving the tangential components of = 3 u on To relate the two velocity spaces it is necessary to intro-

duce the injection operator i from X0 to Hdiv
0 and its trans-V2 is a natural boundary condition of Robin type. The

pressure boundary condition on V3 is natural as well; pose it from the dual space (Hdiv
0 )9 to X 90. On the other

hand, two divergence operators must be introduced, oneactually, the weak formulation enforces the natural bound-
ary condition (p 2 = ? u)uV3

5 c3, as already noticed. denoted to =? which maps vector fields belonging to X0

onto scalar functions of M and the other denoted by =̂?It should be remarked that the use of the bilinear form
(= ? u, = ? v) 1 (= 3 u, = 3 v) is mandatory when the which is the extension of the latter to the vector space

Hdiv
0 . The respective transpose operators are denoted byboundaries V2 and V3, where the condition prescribed

on velocity is not of a mere Dirichlet type, are curved. On (=?)t and (=̂?)t; note that (=?)t ? 2= since (=?)tp 5 2=p
only if p [ H 1

0,V3
(V). The relationship between the opera-the contrary, the more common bilinear form (=u, =v)
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tors and the spaces is depicted by the following commuta- The viscous step consists in, for k $ 0 and fk11 [ L2(V),
finding an intermediate velocity fieldtive diagram:

uk11 [ H 1(V), 5
uk11

uV1
5 bk11

1 ,

uk11 ? nuV2
5 bk11

2 ? n,

uk11 3 nuV3
5 bk11

3 3 n,

(4.2)

such that

Suk11 2 itûk

dt
, vD1 a(uk11, v) 1 b(uk, uk11, v) (4.3)Even though, in the continuous case the difference be-

tween the spaces X0 and Hdiv
0 may seem subtle (or even

5 ( fk11, v) 1 (fk, = ? v) 2 (=Pk11, v), ;v [ X0.pedantically unwitty), in the spatially discrete case such a
distinction is important since it implies two different dis-

The use of the symbol uk11 to indicate the intermediatecrete counterparts of the divergence operator, and also of
velocity is unusual; but the advantage of adopting such aits transpose the gradient operator.
notation will become evident in the following.The fractional-step method is formulated by introducing

The incompressible (projection) step of the method con-a partition of the time interval [0, T ]: tk 5 k dt for 0 #
sists in finding a pair (ûk11, fk11) withk # K, where dt 5 T/K. To avoid the technical difficulty

of the possible blowup of the estimates at the initial time
induced by the possible lack of regularity of the continuous ûk11 [ Hdiv, ûk11 ? nuV1,2

5 bk11
1,2 ? n,

fk11 [ M,
(4.4)solution, we suppose that the solution has a suitable regu-

larity in time as t R 0.
To circumvent the (theoretical) difficulty due to the pres-

ence of the nonhomogeneous boundary condition on pres- where Hdiv 5 hv [ L2(V) u = ? v [ L2(V)j and such that
sure, we assume that we have at hand a smooth pressure
lifting P(t) so that P(t)uV3

5 c3(t). Hereafter (up to further Sûk11 2 iuk11

dt
, v̂D2 ((fk11 2 fk), =̂ ? v̂) 5 0, ;v̂ [ Hdiv

0 ,notice), we make the change of variable

(=̂ ? ûk11, q) 5 0, ;q [ M.
f(t) 5 p(t) 2 P(t), (4.5)

5. SPATIAL DISCRETIZATION
which implies to enforce the natural boundary condition
f(t)uV3

5 0. 5.1. The Discrete Setting
Now we discretize the problem in time by means of a

We now consider the spatial discretization of a frac-semi-implicit first-order accurate Euler scheme in which
tional-step method, by introducing finite-dimensionalthe advection term is linearized in the conservative form
spaces for approximating the velocity fields u and û and(3.9). The weak formulation of the fractional-step method
the pressure field p involved in the viscous and inviscidin incremental form reads as follows. We assume that
steps of the method.u0 [ H 2(V), with = ? u0 5 0; then we set u0 5 u0. Further-

Let X0,h be a finite-dimensional subspace of X0. We en-more, we assume that we have at hand f(t 5 0) and that
dow X0,h with the norm of H 1(V). Furthermore, we intro-f(0) [ H 1(V); then we set f0 5 f(0). Then, we define two
duce X90,h and the dual space of X0,h (X0,h and X 90,h aresequences of approximate velocities huk [ Xbkj and hûk [
identical in terms of vector spaces but their norms areHdiv

bk?nj1 and one sequence of approximate pressure hfk [
different). Likewise, we define Mh a finite dimensionalM j, k $ 1, calculated in two successive separate steps, the
subspace of M that we endow with the norm of L2(V).former accounting for the viscosity effect and the latter to

We assume that X0,h and Mh are internal approximationsenforce incompressibility and evaluate the pressure field.
of X0 and M in the sense that they satisfy the following
properties (see, e.g., Bernardi and Raugel [1], Girault and
Raviart [11], or Quarteroni and Valli [24] for other details).1 Xb is a shorthand for Xb1,b2

?n,b3
3n whilst H div

b?n is a shorthand for
Hdiv

b1,2
?n . There is some , $ 1 such that, for all v [ H ,11(V) > X0
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and for all q [ H ,(V) > M, there are approximations version of the operator =?. We define =̂h? : X̂0,h R Mh so
that for every couple (v̂, q) in X̂0,h 3 Mh we have eitherrhv [ X0,h and rhq [ Mh such that

• (=̂h ? v̂, q) 5 (= ? v̂, q) if X̂0,h , Hdiv
0 or

uv 2 rhvu0 1 huv 2 rhvu1 # ch,11uvu,11, uq 2 rhqu0 # ch,uqu,, • (=̂h ? v̂, q) 5 2 (v̂, =̂hq) if Mh , H 1
0,V3

(V).

Of course this definition makes sense thanks to the compat-
where , represents, roughly speaking, the degree of the ibility we require between X̂0,h and Mh. The relation be-
polynomial interpolation of velocity (more precisely, in tween =h? and =̂h? is such that =̂h? is an extension of =h?
case of finite element interpolation, , is the degree of and it

h=̂h 5 =h, where we have set =h 5 2(=h?)t and
interpolation of the velocity, and the degree of interpola- =̂h 5 2(=̂h?)t; in other words we have the following com-
tion of the pressure, ,9, is assumed to satisfy 0 # , 2 1 # mutative diagram:
,9 # ,; see below).

We introduce now a discrete version of the divergence
operator: =h? : X0,h R Mh so that for all vh [ X0,h and
qh [ Mh, (=h ? vh, qh) 5 (= ? vh, qh). The stability and
convergence analysis of the scheme to be presented below
requires that =h? is surjective (cf. [17]); that is, X0,h and
Mh are compatible in the sense that they satisfy the inf-
sup condition [2]

'b . 0, inf
qh[Mh

sup
vh[X0,h

(=h ? vh, qh) $ buvhu1 uqhu0. (5.1) Note that =̂h? is subjective since =̂h? is an extension of =h?.
The null space of =̂h? playing an important role in the

spatially discrete projection method, we define
It must be remarked that the approximate method to

Ĵ0,h 5 ker(=̂h?). (5.2)be described hereafter is not restricted to finite element
interpolations, but it can accommodate any kind of spatial
interpolation method which is compatible with the varia- The definitions above enable us to build a discrete counter-
tional framework, such as, e.g., spectral interpolations part of the aforementioned orthogonal decomposition
PN/PN22. L2(V) 5 J0,V1,2

(V) % =(H 1
0,V3

(V)), which reads
Passing to the approximation of the inviscid projection

step, we define X̂0,h to be a finite-dimensional subspace of X̂0,h 5 Ĵ0,h % =̂h(Mh). (5.3)
L2(V) and endow X̂0,h with the norm of L2(V); for the sake
of simplicity we assume that X0,h , X̂0,h (in terms of vector We are now finally able to define the spatially discrete
space) and we denote by ih the continuous injection of X0,h version of the incremental fractional-step method. Define
into X̂0,h; the transpose of ih is the L2 projection of X̂90,h two sequences of approximate velocities huk

h [ Xbk,hj and
onto X 90,h. Note that X̂0,h is an internal approximation of hûk

h [ X̂bk?n,hj and one sequence of approximate pressures
L2(V) for X0,h is an approximation of X0 and X0 is dense hfk

h [ Mhj as follows. The viscous step reads: find
in L2(V). Furthermore, we assume that X̂0,h and Mh are uk11

h [ Xbk11,h ,
compatible in the sense that

• either X̂0,h is conformal in Suk11
h 2 it

hûk
h

dt
, vhD1 a(uk11

h , vh) 1 b(uk
h, uk11

h , vh)
(5.4)

5 ( fk11, vh) 1 (fk
h, = ? vh) 2 (=Pk11, vh), ;vh [ X0,h.Hdiv

0 5 hv [ L2(V) u = ? v [ L2(V), v ? nuV1,2
5 0j

The incompressible (projection) step of the method con-
• or Mh is conformal in H 1

0,V3
(V). sists in finding ûk11

h [ X̂bk11,n,h and fk11
h [ Mh such that

For instance, a possible choice is X̂0,h 5 X0,h, but we can
also choose X̂0,h , Hdiv

0 ; in the following we will concentrate
on the choice X̂0,h , L2(V) and Mh , H 1

0,V3
(V) (see [14]

Sûk11
h 2 ihuk11

h

dt
, v̂hD2 ((fk11

h 2 fk
h), =̂h ? v̂h) 5 0, ;v̂h [ X̂0,h,

(=̂h ? ûk11
h , qh) 5 0, ;qh [ Mh.for other details).

The analysis of the fractional-step equations in spatially
discrete form requires us to introduce another discrete (5.5)
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Remark. Problem (5.5) is well posed since =̂h? is surjec- (5.7) and the condition pk11
huV3

5 ck11
3,h which is satisfied thanks

to the chosen lifting and the Dirichlet condition fk11
huV3

5 0tive. The pair
in Poisson problem (5.8).

ûk11
h and dt =̂h(fk11

h 2 fk
h)

5.3. Algorithm with the End-of-Step Velocity Eliminated
represents the decomposition of the injected intermediate

In practice it is not convenient to use Eq. (5.7) directly,velocity ihuk11
h in Ĵ0,h % =̂h(Mh); in other words, ûk11

h 5
since it contains the end-of-step velocity ûk

h which belongsPĴ0,h
(ihuk11

h ), where PĴ0,h
is the operator of orthogonal pro-

to a space different from that of the intermediate velocityjection of X̂0,h onto Ĵ0,h.
uk11

h , and it contains a lifting P(t) which is somewhat arbi-
trary. The purpose of this section is to show that the end-5.2. The Projection Step as a Poisson Problem
of-step velocity and the pressure lifting can be eliminated.

We now choose Mh as an internal approximation of Since the pressure lifting is arbitrary, for k $ 0, we
H 1

0,V3
(V) (recall that in the previous sections we only re- define Pk11

h [ Nh so that Pk11
huV3

5 ck11
3,h and

quired Mh , L2(V)) and denote it by N0,h, to make this
distinction explicit. We also choose

(=Pk11
h , =qh) 5 0 ;qh [ N0,h.

X̂0,h 5 X0,h 1 =N0,h. (5.6)

The algorithm is initialized by setting u0
h 5 u0,h, whereNote that this definition makes sense for, N0,h being a

u0,h is an approximation of the initial data u0 in Xb(0),h.subspace of H 1
0,V3(V), =N0,h is in L2(V), that is to say, X̂0,h

Then we suppose that an approximate initial pressure p0
his a subspace of L2(V) as required by the theory developed

is available or can be calculated by means of some first-in [17]. We also define Nh the finite element space com-
order algorithm. There are numerous choices to do this, butposed of the degrees of freedom of N0,h plus those living
the way of calculating this approximation is not important,on V3.
provided it is first-order accurate in time and space.In this framework the viscous step amounts to looking

For k $ 1, the end-of-step velocity uk
h can be eliminatedfor uk11

h in Xbk11,h so that we have
from the intermediate step. Indeed, for k $ 1 we have
(recall that it

h=̂h 5 =h)Suk11
h 2 it

hûk
h

dt
, vhD1 a(uk11

h , vh) 1 b(uk
h, uk11

h , vh)
(5.7)

it
hûk

h 5 uk
h 2 dt =h(fk

h 2 fk21
h ).5 ( fk11, vh) 2 (=fk

h, vh) 2 (=Pk11
h , vh) ;vh [ X0,h,

where Pk11
h is some good approximation of P(tk11). Thanks As a result, for k $ 1, the intermediate step reads: find a

to the choice N0,h , H 1
0,V3

(V), we can prove that =̂h is the velocity field uk11
h [ Xbk11,h such that

restriction of = to N0,h (in the distributional sense). As a
result the projection step can be formulated as follows:
find fk11

h in N0,h so that Suk11
h 2 uk

h

dt
, vhD1 a(uk11

h , vh) 1 b(uk
h , uk11

h , vh)

(=(fk11
h 2 fk

h), =qh) 5 2
(= ? uk11

h , qh)
dt

;qh [ N0,h, (5.8)
5 ( f k11, vh) 2 (=(2fk

h 2 fk21
h ), vh) 2 (=P k11

h , vh).

and then set (in terms of distributions)
The pressure lifting can be eliminated from this equation
if we replace P k11

h by 2P k
h 2 P k21

h ; this change of sourceûk11
h 5 uk11

h 2 dt =(fk11
h 2 fk

h). (5.9)
term introduces an error of order dt2, but it does not affect
the stability of the algorithm for we modify only a sourceTherefore, the projection step amounts to solving a discrete
term. The intermediate step takes the final form: for k 5Poisson equation with a homogeneous Neumann condition
0, we look for u1

h [ Xb1,h such that, for all vh [ X0,h ,on V1 < V2 and a Dirichlet boundary condition on V3;
cf. also Rannacher [25].

Note that, as a consequence of the time-stepping of a
fractional kind, the boundary condition (p 2 = ? u)uV3

5 Su1
h 2 u0

h

dt
, vhD1 a(u1

h , vh) 1 b(u0
h , u1

h , vh) (5.10)c3 is enforced through two separate conditions: the natural
condition = ? uk11

uV3
5 0 accounted for in the weak equation 5 ( f 1, vh) 2 (=p0

h , vh).
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For k $ 1, find a uk11
h [ Xbk11,h such that, for all vh [ X0,h , interpolation is (P2/P1) for which , 5 2 and it will be

considered in the following; other possible interpolations
are (P1 bubble/P1) or (P1 iso P2/P1), for which , 5 1 (cf.Suk11

h 2 uk
h

dt
, vhD1 a(uk11

h , vh) 1 b(uk
h , uk11

h , vh) Girault and Raviart [11] for a review on this issue).(5.11)
Coming to the approximation of the viscous step (5.11)5 ( f k11, vh) 2 (=(2pk

h 2 pk21
h ), vh).

(as well as (5.10)), we note that the conservative form of
the nonlinear term defined in (3.9) leaves the CartesianFor k $ 0, the projection step reads: find fk11

h [ N0,h
components of the velocity unknown uk11

h uncoupled, assuch that, for all qh [ N0,h ,
far as the advection term is concerned. Thus, we can intro-
duce a ‘‘scalar’’ counterpart of the trilinear form b(u, v,

(=(fk11
h 2 fk

h), =qh) 5 2
(= ? uk11

h , qh)
dt

. w) as

bs(u, v, w) 5 ((u ? =)v, w) 1 !s(= ? u, vw).Thanks to the particular choice we have made for the
pressure lifting, the projection step can be equivalently
written in the (final) form: for k $ 0, find pk11

h [ Nck11
3,h ,h On the other hand, the bilinear form a(u, v) of the

such that, for all qh [ N0,h , viscous term in the momentum equation does couple the
vector components of u, except when Dirichlet conditions
for velocity are prescribed on the entire boundary and in(=(pk11

h 2 pk
h), =qh) 5 2

(= ? uk11
h , qh)
dt

. (5.12)
other particular circumstances. In these cases, the general
bilinear form (3.8) can be replaced by the standard bilinear

Hence, the pressure lifting is eliminated from the algorithm form for a scalar equation
that is implemented in practice: (5.10)–(5.12).

as(u, v) 5 n(=u, =v).Remark. Note that, since the end-of-step velocity does
not appear any more in the algorithm, the weird velocity
space X̂0,h is completely eliminated from practical calcula- When a complete velocity uncoupling is possible, each
tions. Cartesian component uk11

i,h , i 5 1,..., d, of the intermediate
velocity can be obtained by solving the scalar problem:The description of the proposed incremental fractional-

step projection method is concluded by reminding the fol-
lowing result established in [17]. 1

dt
(uk11

i,h , vh) 1 as(uk11
i,h , vh) 1 bs(uk

h , uk11
i,h , vh)

THEOREM. Under convenient regularity assumptions on
the data f, u0 , b, and if dt is small enough, the solution to
the incremental projection scheme (5.10)–(5.12) satisfies the 5

1
dt

(uk
i,h, vh) 1 ( f k11

i , vh) 2 (i(2pk
h 2 pk21

h ), vh).
error bounds:

max
0#k#K

uu(t k) 2 uk
hu0 1 max

0#k#K
uu(t k) 2 ûk

hu0 # c[u, p](dt 1 h,11), After introducing a suitable finite element representation
of the variables, the equation above assumes the matrix
formFdt OK

k50
uu(tk) 2 uk

hu21G1/2

1 Fdt OK
k51

up(tk) 2 pk
hu20G1/2

# c[u, p](dt 1 h,), F 1
dt

M 1 nK 1 B(Uk)GUk11
i 5 Sk11

i ,

where , is the interpolation degree of the velocity.

where M and K are the mass and stiffness matrices of a6. FINITE ELEMENT IMPLEMENTATION
scalar problem, B(U) denotes the matrix representation
of the operator bs(uh , ?, vh) and Ui is the vector of nodal6.1. Finite Element Equations
values of the velocity component ui,h . Furthermore, the

To construct a finite-element-based approximation of source term Sk11
i is defined by

the projection method it is necessary to find a pair of
polynomial representations for the velocity and pressure
which satisfies the inf-sup condition (5.1). Finite elements Sk11

i 5
1
dt

MUk
i 1 MFk11

i 2 Gi (2Pk 2 Pk21),
satisfying this condition are well known: the most natural
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where G denotes the matrix of the gradient operator, P is tutions are required to determine the velocity in two
(three) dimensions and one substitution to determinethe vector of nodal values of pressure interpolation, and

the remaining symbols have an obvious meaning. the pressure.
The Poisson problem for pressure is solved on the pres-The finite element equation for the incompressible

steps reads sure mesh using P1 polynomial interpolation on this mesh.
The symmetric matrix of the corresponding equation sys-
tem is factorized once and for all before the time ad-

K̂(Pk11 2 Pk) 5 2
1
dt

D̂ ? Uk11, vancement.
Although all results to be presented in this work were

computed using direct solution methods, iterative tech-
where K̂ denotes the stiffness matrix associated with pres-

niques can also be considered and employed very easily. In
sure interpolation and D̂ represents the weak form of the

particular, in the calculation of accurate transient solutions,
divergence operator acting on vector fields interpolated at

which demands rather small values of dt, the factorization
a higher order than pressure.

of the changing sparse but nonsymmetric matrices for the
velocity equations can become too expensive depending

6.2. Algorithmic Aspects
of the size of mesh. In these cases, the preconditioned
GMRES can be used, possibly in conjunction with an ex-The unconditionally stable fractional-step method based

on the Poisson equation for pressure described in the previ- trapolation for obtaining the initial solution to start the
iteration. Such an iterative scheme has been already imple-ous sections has been implemented using either P2/P1 or

P1-iso-P2/P1 finite element triangular meshes. Unstruc- mented with success by the authors and appears very prom-
ising for simulating three-dimensional flows.tured Delaunay grids for the two-dimensional test prob-

lems have been generated by means of the procedure due
6.3. Convergence Tests

to Rebay [26]. This method is simple, efficient, and very
convenient for the implementation of adaptive strategies To assess the accuracy of the proposed finite element

projection method quantitatively we have conducted con-of local refinement.
The integration over the triangles is performed by means vergence tests. For a fixed mesh size h, we have refined the

time step and measured the distance between the solutionof Gaussian quadrature using a three-point formula for
the P1 interpolation and seven-point formula for the P2 calculated by the projection method and that of the cou-

pled system which is obtained by the iterative solution ofinterpolation. This assures the exact evaluation of all scalar
products including those which involve the nonlinear con- the Uzawa operator. The test case concerns the driven

cavity, which has been regularized in time by prescribingvection term. The values of the Jacobian determinant and
of the weighting function derivatives at Gauss points of a top wall velocity depending on time as U(t) 5 (t/t)4/

[1 1 (t/t)4], where t 5 0.2, to fall within the theory ofall elements are evaluated once and for all at the beginning
of the calculation and stored in arrays for subsequent use. optimal error analysis. We used a uniform triangulation

consisting of P400 P2-nodes.The algorithm requires us to solve large sparse linear
systems of algebraic equations for both the velocity and In Fig. 0.1 we plotted the time history (0 # t # 1) of

the velocity error for time steps 0.1, 0.05, 0.02, 0.01, 0.005,the pressure. The linear systems for the velocity compo-
nents are nonsymmetric and change at each time level, and 0.002, the norm being the energy norm in L2(V).

In Fig. 0.2 we plotted the errors of velocity and pressurewhile that for the pressure Poisson problem is symmetric
and does not depend on time. The solution of these systems measured, respectively, by the maximum in time of the

energy norm (i.e., ,y (0, 1; L2(V))) for the velocity (solidis calculated by direct methods using the SPARSPAK li-
brary. More precisely, we have used the solution method line) and by the energy norm in space and time (i.e.,

,2(0, 1; L2(V))) for the pressure (dotted line). The dashedmost suitable for unstructured finite element problems,
which minimizes storage requirements by an internal reor- line corresponds to second-order convergence in time. The

striking conclusion of these tests is that the present incre-dering the unknowns obtained by means of the one-way
dissection algorithm of George [8]; see also [9, p. 226]. mental scheme yields second-order time accuracy, when

the error is measured by the distance of the solution fromWe note that, when Dirichlet conditions are prescribed
for velocity on the entire boundary, the matrix of the non- that of the coupled scheme. In a whole, the present scheme

is necessarily first-order accurate in time since the solutionsymmetric linear system in the first step is the same for
both velocity components. In this case, it is possible to of the coupled scheme is only first-order accurate. Investi-

gations on the possibility of building (truly) second-orderperform only one (nonsymmetric) factorization per time
step, instead of two (resp. three) for problems in two (resp. accurate scheme (but only in the L2 norm) have been

carried out by the authors. They will be reported in duethree) dimensions needed with more general boundary
conditions. In any case, at each time step two (three) substi- time, being far out of the scope of the present work.
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FIG. 0.1. Convergence tests. Time history of the splitting error for
dt 5 0.1 (solid line) to dt 5 0.002 (double dashed line).

All these convergence tests confirm also that the projec-
tion method (as a splitting technique) retains the optimal
space approximation property of the finite elements, while
it introduces an error only dependent on the time step,
when compared with the unsplitted (Uzawa) method.

FIG. 0.2. Convergence tests. Splitting error versus time step for the
7. NUMERICAL EXAMPLES AND DISCUSSION velocity (solid line) and pressure (dotted line); second-order slope

(dashed line).
7.1. The Driven Cavity Problem

The first test problem is the driven cavity introduced by
Burggraf [3]. The fluid domain is a unit square and the
velocity boundary conditions are of zero velocity on the corresponding vorticity gk11

h and stream function c k11
h are

obtained from the intermediate velocity field uk11
h by solv-entire boundary except for the upper side of the square

where the tangential velocity is equal to 1; the velocity at ing consistent mass matrix problem and a Dirichlet prob-
lem, respectively. The solutions are given in Fig. 1.1 andthe corner nodes is fixed to zero to avoid inflow and outflow

of the fluid through the first two vertical sides near the are in a fully satisfactory agreement with the reference
solution [10]. We emphasize that in the proposed methodcorners. The Neumann problem for the pressure is singular

and, to have a unique solution the pressure value at the the value of the time step has no stability restriction; we
verified the numerical stability of the fractional-step algo-midpoint of the bottom side has been fixed to zero.

The solution for a Reynolds number R 5 100 has been rithm up to dt 5 103. Of course, for values of dt not suffi-
ciently small the solution accuracy is completely lost, socalculated first on a uniform mesh of 1600 P2-nodes. The
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FIG. 1.1. Driven cavity problem with uniform grid of 2 3 402 triangles. Vorticity and streamlines of the steady flow at R 5 100.

FIG. 1.2. Driven cavity problem with nonuniform grid of P8800 triangles. Vorticity and streamlines of the steady flow at R 5 100.
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The steady solutions for R 5 3200 has been then ob-
tained starting from the R 5 1000 solution and performing
P100 time steps with dt 5 0.1, and similarly the solution
for R 5 5000. The streamlines of these solutions are given
in Fig. 1.5; they compare very well with the reference
solutions [10] on uniform 129 3 129 and 257 3 257 grids,
respectively. All features of the secondary vortices are
correctly predicted by the proposed primitive variable
method.

We have calculated also the transient solution of the
square cavity problem with a sudden start of the sliding
top wall at R 5 1000, using dt 5 0.1. The plots of vorticity
and stream function at t 5 5 calculated by a second-order
accurate scheme are shown in Fig. 1.6. The comparison
with unsteady solution calculated by a vorticity-stream
function formulation given in Fig. 1.7 illustrate the accuracy
of the proposed primitive variable method in simulating
time-dependent flows.

7.2. Triangular Cavity

The second example is the steady flow in a triangular
FIG. 1.3. Driven cavity problem. Pressure field of the steady flow at

cavity, investigated numerically very recently [27]. The do-R 5 100.
main is an equilateral triangle with vertices in (0, 22a)
and (6Ï3a, a). The top horizontal wall is sliding with
velocity U. We have used a nearly uniform mesh of P5100
P2-nodes; P300 P2-nodes are on the three sides of the
triangular domain. The steady solutions for R 5 aU/n 5
100 and 500 are reported in Figs. 2.1 and 2.2, respectively.the unconditional stability can be helpful to compute

steady-state solution or when the advection dynamics is The comparison with the solutions calculated by a bihar-
monic stream function formulation [27] is excellent. Allnot critical to the answer.

The vorticity field near the corner being sensitive to the fine details of the latter are faithfully reproduced by the
present projection method.size of the considered mesh, we have calculated the solu-

tion for R 5 100 on an unstructured finer mesh with a To show the application of boundary conditions different
from purely Dirichlet conditions on velocity along the en-nonuniform distribution of the triangles near the four cor-

ners of the cavity. This mesh consists in a total of P4500 tire boundary, we have also considered a variant of this
triangular driven cavity, which is obtained by relaxing theP2-nodes and remains unchanged for higher values of R.

The level curves of g shown in Fig. 1.2 are now very no-slip condition on one of the two fixed sides and imposing
on it a slip condition (= 3 u 5 0), together with the no-smooth, even in the two corner regions where the vorticity

is characterized by a well-known singular behavior. penetration condition (u ? n 5 0). In the present uncoupled
implementation of the projection method (cf. Section 5.5),In Fig. 1.3 the level curves of the pressure field for

R 5 100 calculated are given. The comparison with those such a pair of boundary conditions can be imposed only
on a straight side parallel to a Cartesian axis. Therefore,provided by the penalty method of the FIDAP program

(cf. [20]) is very satisfactory. to solve this boundary value problem the cavity is rotated
to put the side with the slip condition in a horizontal posi-The steady solution for R 5 1000 has been calculated,

starting from rest with dt 5 0.5 and reaching a relative tion. The sliding wall with the no-slip condition is now
inclined with respect to the axes. The corresponding solu-difference uuk11

h 2 uk
hu0/uuk11

h u0 , 1023 in 138 time steps. The
plots of the level curves for both gk11

h and c k11
h are given tion for R 5 100 is given in Fig. 2.3. The flow changes in

the region near the slip side can be easily seen (modulo ain Fig. 1.4. The streamlines are in perfect agreement with
those of the reference solution [10]; the same applies for rotation of 2f/3) by confronting this solution with that

shown in Fig. 2.1. Note that in this problem the two systemsthe vorticity contours, except for some wiggles in the cen-
tral zone of the cavity where the employed mesh is coarsest, of equations for the Cartesian components of velocity are

different, as a consequence of the kind of boundary condi-while the benchmark solution was calculated on a uniform
129 3 129 grid. tions.
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FIG. 1.4. Driven cavity problem with nonuniform grid of P8800 triangles. Vorticity and streamlines of the steady flow at R 5 1000.

FIG. 1.5. Driven cavity problem with nonuniform grid of P8800 triangles. Streamlines of the steady flow at R 5 3200 (left) and at R 5 5000 (right).
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FIG. 1.6. Unsteady driven cavity problem. Vorticity and streamlines at t 5 5 for a sudden start with R 5 1000.

FIG. 1.7. Unsteady driven cavity problem. Vorticity and streamlines at t 5 5 for a sudden start with R 5 1000, obtained by solution of the
vorticity/stream function equations.
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FIG. 2.1. Triangular cavity problem. Pressure (top), vorticity (left), and streamlines (right) of the steady flow at R 5 100.

7.3 The Backward-Facing Step condition at the inlet uuin 5 (U(y), 0), where U(y) is the
Poiseuille profile,

The third test problem is the determination of the sepa-
rated flow in a sudden expansion inside a doubly infinite
channel, the so-called backward-facing step. The boundary U(y) 5

26(y 2 C)(y 2 S)
(C 2 S)2 ,

conditions for such a problem include the Dirichlet velocity
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FIG. 2.2. Triangular cavity problem. Pressure (top), vorticity (left), and streamlines (right) of the steady flow at R 5 500.

C and S being the channel and step height, respectively, defined by x 5 const; the weak enforcement of = ? u 5 0
on it is accounted for only by the equation for the velocityand homogeneous velocity conditions on the upper and

lower solid walls and on the vertical side of the step. At component ux (in a strong setting the Neumann condition
(u/x)uout 5 0 would be imposed), whereas Dirichletthe outlet the tangential velocity and the pressure are pre-

scribed to be zero. The presence of a boundary condition boundary conditions are imposed on the entire boundary
on the component uy . Therefore, the operators in the equa-for pressure means that in the weak form of the momentum

equation one has v ? nuout ? 0. The outlet boundary being tions for the two velocity components are different and
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FIG. 2.3. Triangular cavity problem: the top side is fixed and has slip boundary conditions. The moving side with no-slip conditions is the left
oblique side. Pressure (top), vorticity (left), and streamlines (right) of the steady flow at R 5 100.

the two equations are uncoupled. As a consequence, the compatible with the boundary values prescribed on veloc-
ity. The compatibility is guaranteed by ‘‘prolonging’’ thesemi-implicit unconditionally stable scheme requires us to
inlet Poiseuille velocity profile along the entire length ofbuild and factorize two different nonsymmetric sparse lin-
the channel, by takingear systems at each time step, but the two vector compo-

nents of the intermediate velocity can be determined inde-
pendently from each other. u0(x, y) 5H0

U(y) x̂

x . 0, 0 # y # S,

x . 0, S # y # C.The initial velocity u0(x, y) must be chosen so that it is
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1000. The computational domain is the rectangle [22, 5] 3
[23, 3], and the airfoil centre is placed at the origin. The
boundary conditions for this external problem are:

• zero velocity on the airfoil;

• for x 5 22: u 5 Ux̂;

• for y 5 63: u ? n 5 0, uT/n 5 0, which means uy 5
0, ux/y 5 0;FIG. 3.1. Backward-facing step problem. Streamlines of the steady

• for x 5 5: ux/x 5 0, uy 5 0 and p 5 0.flow at R 5 800.

The mesh for solving the problem with R 5 1000 consists
of P3600 P2-nodes. No attempt has been made to refine
the mesh according to the computed solution and we haveThe steady flow in a channel with C 5 1 and S 5 !s

used a fixed time step dt 5 0.02.has been calculated for R 5 800 using P4700 P2-nodes
The streamlines at t 5 1.6 provided by the present projec-distributed nonuniformly over a length L 5 20. The stream-

tion method are compared in Fig. 4.1 with those calculatedlines of the solution displayed in Fig. 3.1 show two recircu-
by a vorticity stream function method [18]. Figure 4.2 showslatory regions, one on the lower wall with the reattachment
the pressure fields at the same time t 5 1.6 by these twopoint located at x 5 5.8/C downstream from the step, and
methods. Figures 4.3 and 4.4 contain the streamlines atthe other on the upper wall with separation and reattach-
times t 5 2.8 and 3.6, respectively, always compared withment points located at x 5 6.1/C and x 5 9.0/C downstream
those of the g-c solution. Finally, Fig. 4.5 gives the stream-from the step. These values can be compared with the
lines at the two later times, t 5 4.8 and 6.0. The comparisonvalues 5.93, 4.78, and 10.21, obtained by a pressure correc-
with other solutions at the same times, calculated by ation finite difference method [22]. This discrepancy can be
different primitive variable method [6], as well as by aexplained, at least partly, by the shorter section of the
nonprimitive variable method using domain decomposi-channel in the present calculation where outflow boundary
tion [28], is fully satisfactory.conditions are imposed and by the lack of refinement of

the mesh employed (a systematic comparison of refined
solutions is out of the scope of the present paper). 7.5. Unsteady Flow Past a Multibody Airfoil

The last example is the determination of the unsteady
7.4. Unsteady Flow Past NACA 0012 at Incidence

flow past a multiple-body profile with high-lift devices,
consisting of a slat, the main airfoil, and a flap [21]. TheThe fourth example is the unsteady flow past a NACA

0012 airfoil with an angle of incidence of 348 and at R 5 angle of incidence is assumed to be 258.

FIG. 4.1. NACA 0012 airfoil at a 5 348 and R 5 1000. Comparison of u-p (left) and g-c (right) solutions at t 5 1.6.
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FIG. 4.2. NACA 0012 airfoil at a 5 348 and R 5 1000. Pressure fields of the u-p (left) and g-c (right) solutions at t 5 1.6.

FIG. 4.3. NACA 0012 airfoil at a 5 348 and R 5 1000. Comparison of u-p (left) and g-c (right) solutions at t 5 2.6.
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FIG. 4.4. NACA 0012 airfoil at a 5 348 and R 5 1000. Comparison of u-p (left) and g-c (right) solutions at t 5 3.6.

FIG. 4.5. NACA 0012 airfoil at a 5 348 and R 5 1000. Solutions by projection method at t 5 4.8 (left) and t 5 6.0 (right).

The computational domain and the boundary condi- matrix problems. The streamlines of this potential flow
are given in Fig. 5.1.tions are assumed as in the previous external problem.

The initial velocity field u0 is calculated by solving a pure We have used a nonuniform mesh of P5750 P2-nodes
and a time step dt 5 0.02. In Fig. 5.2 we report the stream-Neumann problem for the potential F0 of an irrotational

velocity field which matches the free stream on the lines of the u-p solutions at times t 5 2.8 and 3.6 for R 5
500. For comparison, in Fig. 5.3 the streamlines calculatedexternal boundary. Then the velocity components (u0,x ,

u0,y ) are determined by solving two consistent mass from the solutions of a vorticity/stream function method
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for unstructured triangular grids using an unconditionally
stable integration scheme and a Poisson equation for
the pressure increment. A basic aspect of the method is
the introduction of two different spaces for representing
the velocity to be computed in the two (half-) steps of the
fractional-step method. In fact, the discrete velocity field
provided by the projection step is realized to belong to
a space of vector functions which are discontinuous at
interelement boundaries. On the other hand, the end-of-
step discrete velocity is never explicitly referenced in the
numerical algorithm, which is thus formulated only in
terms of the intermediate velocity. As a consequence, a
computational scheme of utmost simplicity is obtained
without sacrificing anything of its functional analytic basis;
the final scheme is expressed entirely by Eqs. (5.10)–(5.12).

The comparison of the numerical results provided by
the new method with reference solutions is quite satisfac-
tory and the method is found to be capable of predicting

FIG. 5.1. Multibody airfoil at a 5 258. Streamlines of the initial internal and external incompressible laminar flows with
potential flow. recirculations and massive separation accurately, without

requiring any tuning of the algorithm. In particular, the
unconditionally stable semi-implicit treatment of the non-
linear term combined with adaptive mesh generation tech-
niques is expected to be capable of dealing with boundary[18] at the same times are given. The capability of the
layers without requiring prohibitively small time steps.present fractional-step projection method to predict un-

Fractional-step projection techniques are simple to im-steady flows in domains of arbitrary shape is therefore
plement, if implemented correctly; in practice we have todemonstrated.
solve a succession of convection–diffusion problems and8. CONCLUSIONS
Poisson problems. They are fast; the amount of computa-
tion is much lower than that required by coupled tech-In this paper we have presented a new finite element
niques such those which are based on the Uzawa operator.projection method and its finite element implementation

FIG. 5.2. Multibody airfoil at a 5 258 and R 5 500. Solutions of the projection method at t 5 2.8 (left) and t 5 3.6 (right).
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FIG. 5.3. Multibody airfoil at a 5 258 and R 5 500. Solutions of vorticity/stream function equations at t 5 2.8 (left) and t 5 3.6 (right).
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