SFEMaNS  version 5.3
Reference documentation for SFEMaNS
condlim_test_12.f90
Go to the documentation of this file.
2  USE my_util
3  USE def_type_mesh
4  USE input_data
5 !!$ATTENTION
6 !!$Some subroutines have been commented to avoid warning messages when compiling executable.
7 !!$It can not be done in the module boundary_generic that expects all subroutines to be present.
8 !!$END ATTENTION
9 !!$ PUBLIC :: init_velocity_pressure
10 !!$ PUBLIC :: init_temperature
11 !!$ PUBLIC :: init_level_set
12 !!$ PUBLIC :: source_in_NS_momentum
13 !!$ PUBLIC :: source_in_temperature
14 !!$ PUBLIC :: source_in_level_set
15 !!$ PUBLIC :: vv_exact
16 !!$ PUBLIC :: imposed_velocity_by_penalty
17 !!$ PUBLIC :: pp_exact
18 !!$ PUBLIC :: temperature_exact
19 !!$ PUBLIC :: level_set_exact
20 !!$ PUBLIC :: penal_in_real_space
21 !!$ PUBLIC :: extension_velocity
22  PUBLIC :: vexact
23 !!$ PUBLIC :: H_B_quasi_static
24  PUBLIC :: hexact
25  PUBLIC :: phiexact
26  PUBLIC :: jexact_gauss
27  PUBLIC :: eexact_gauss
28  PUBLIC :: init_maxwell
29 !!$ PUBLIC :: mu_bar_in_fourier_space
30 !!$ PUBLIC :: grad_mu_bar_in_fourier_space
31 !!$ PUBLIC :: mu_in_real_space
32  PRIVATE
33 
34 CONTAINS
35  !===============================================================================
36  ! Boundary conditions for Navier-Stokes
37  !===============================================================================
38 
39 !!$ !===Initialize velocity, pressure
40 !!$ SUBROUTINE init_velocity_pressure(mesh_f, mesh_c, time, dt, list_mode, &
41 !!$ un_m1, un, pn_m1, pn, phin_m1, phin)
42 !!$ IMPLICIT NONE
43 !!$ TYPE(mesh_type) :: mesh_f, mesh_c
44 !!$ REAL(KIND=8), INTENT(OUT):: time
45 !!$ REAL(KIND=8), INTENT(IN) :: dt
46 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
47 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: un_m1, un
48 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: pn_m1, pn, phin_m1, phin
49 !!$ INTEGER :: mode, i, j
50 !!$ REAL(KIND=8), DIMENSION(mesh_c%np) :: pn_m2
51 !!$
52 !!$ time = 0.d0
53 !!$ DO i= 1, SIZE(list_mode)
54 !!$ mode = list_mode(i)
55 !!$ DO j = 1, 6
56 !!$ !===velocity
57 !!$ un_m1(:,j,i) = vv_exact(j,mesh_f%rr,mode,time-dt)
58 !!$ un (:,j,i) = vv_exact(j,mesh_f%rr,mode,time)
59 !!$ END DO
60 !!$ DO j = 1, 2
61 !!$ !===pressure
62 !!$ pn_m2(:) = pp_exact(j,mesh_c%rr,mode,time-2*dt)
63 !!$ pn_m1 (:,j,i) = pp_exact(j,mesh_c%rr,mode,time-dt)
64 !!$ pn (:,j,i) = pp_exact(j,mesh_c%rr,mode,time)
65 !!$ phin_m1(:,j,i) = pn_m1(:,j,i) - pn_m2(:)
66 !!$ phin (:,j,i) = Pn (:,j,i) - pn_m1(:,j,i)
67 !!$ ENDDO
68 !!$ ENDDO
69 !!$ END SUBROUTINE init_velocity_pressure
70 
71 !!$ !===Initialize temperature
72 !!$ SUBROUTINE init_temperature(mesh, time, dt, list_mode, tempn_m1, tempn)
73 !!$ IMPLICIT NONE
74 !!$ TYPE(mesh_type) :: mesh
75 !!$ REAL(KIND=8), INTENT(OUT):: time
76 !!$ REAL(KIND=8), INTENT(IN) :: dt
77 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
78 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: tempn_m1, tempn
79 !!$ INTEGER :: mode, i, j
80 !!$
81 !!$ time = 0.d0
82 !!$ DO i= 1, SIZE(list_mode)
83 !!$ mode = list_mode(i)
84 !!$ DO j = 1, 2
85 !!$ tempn_m1(:,j,i) = temperature_exact(j, mesh%rr, mode, time-dt)
86 !!$ tempn (:,j,i) = temperature_exact(j, mesh%rr, mode, time)
87 !!$ ENDDO
88 !!$ ENDDO
89 !!$ END SUBROUTINE init_temperature
90 
91 !!$ !===Initialize level_set
92 !!$ SUBROUTINE init_level_set(vv_mesh, time, &
93 !!$ dt, list_mode, level_set_m1, level_set)
94 !!$ IMPLICIT NONE
95 !!$ TYPE(mesh_type) :: vv_mesh
96 !!$ REAL(KIND=8), INTENT(OUT):: time
97 !!$ REAL(KIND=8), INTENT(IN) :: dt
98 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
99 !!$ REAL(KIND=8), DIMENSION(:,:,:,:), INTENT(OUT):: level_set, level_set_m1
100 !!$ INTEGER :: mode, i, j, n
101 !!$
102 !!$ time = 0.d0
103 !!$ DO i= 1, SIZE(list_mode)
104 !!$ mode = list_mode(i)
105 !!$ DO j = 1, 2
106 !!$ !===level_set
107 !!$ DO n = 1, inputs%nb_fluid -1
108 !!$ level_set_m1(n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time-dt)
109 !!$ level_set (n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time)
110 !!$ END DO
111 !!$ END DO
112 !!$ END DO
113 !!$
114 !!$ END SUBROUTINE init_level_set
115 
116 !!$ !===Source in momemtum equation. Always called.
117 !!$ FUNCTION source_in_NS_momentum(TYPE, rr, mode, i, time, Re, ty, opt_density, opt_tempn) RESULT(vv)
118 !!$ IMPLICIT NONE
119 !!$ INTEGER , INTENT(IN) :: TYPE
120 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
121 !!$ INTEGER , INTENT(IN) :: mode, i
122 !!$ REAL(KIND=8), INTENT(IN) :: time
123 !!$ REAL(KIND=8), INTENT(IN) :: Re
124 !!$ CHARACTER(LEN=2), INTENT(IN) :: ty
125 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_density
126 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_tempn
127 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
128 !!$
129 !!$ vv = 0.d0
130 !!$ CALL error_petsc('source_in_NS_momentum: should not be called for this test')
131 !!$ RETURN
132 !!$ END FUNCTION source_in_NS_momentum
133 
134 !!$ !===Extra source in temperature equation. Always called.
135 !!$ FUNCTION source_in_temperature(TYPE, rr, m, t)RESULT(vv)
136 !!$ IMPLICIT NONE
137 !!$ INTEGER , INTENT(IN) :: TYPE
138 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
139 !!$ INTEGER , INTENT(IN) :: m
140 !!$ REAL(KIND=8), INTENT(IN) :: t
141 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
142 !!$
143 !!$ vv = 0.d0
144 !!$ CALL error_petsc('source_in_temperature: should not be called for this test')
145 !!$ RETURN
146 !!$ END FUNCTION source_in_temperature
147 
148 !!$ !===Extra source in level set equation. Always called.
149 !!$ FUNCTION source_in_level_set(interface_nb,TYPE, rr, m, t)RESULT(vv)
150 !!$ IMPLICIT NONE
151 !!$ INTEGER , INTENT(IN) :: TYPE
152 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
153 !!$ INTEGER , INTENT(IN) :: m, interface_nb
154 !!$ REAL(KIND=8), INTENT(IN) :: t
155 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
156 !!$
157 !!$ vv=0.d0
158 !!$ CALL error_petsc('sourece_in_temperature: should not be called for this test')
159 !!$ END FUNCTION source_in_level_set
160 
161 !!$ !===Velocity for boundary conditions in Navier-Stokes.
162 !!$ !===Can be used also to initialize velocity in: init_velocity_pressure_temperature
163 !!$ FUNCTION vv_exact(TYPE,rr,m,t) RESULT(vv)
164 !!$
165 !!$ IMPLICIT NONE
166 !!$ INTEGER , INTENT(IN) :: TYPE
167 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
168 !!$ INTEGER, INTENT(IN) :: m
169 !!$ REAL(KIND=8), INTENT(IN) :: t
170 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
171 !!$
172 !!$ vv(:) = 0.d0
173 !!$ CALL error_petsc('vv_exact: should not be called for this test')
174 !!$ RETURN
175 !!$ END FUNCTION vv_exact
176 
177 !!$ !===Solid velocity imposed when using penalty technique
178 !!$ !===Defined in Fourier space on mode 0 only.
179 !!$ FUNCTION imposed_velocity_by_penalty(rr,t) RESULT(vv)
180 !!$ IMPLICIT NONE
181 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
182 !!$ REAL(KIND=8), INTENT(IN) :: t
183 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
184 !!$
185 !!$ vv=0.d0
186 !!$ RETURN
187 !!$ END FUNCTION imposed_velocity_by_penalty
188 
189 !!$ !===Pressure for boundary conditions in Navier-Stokes.
190 !!$ !===Can be used also to initialize pressure in the subroutine init_velocity_pressure.
191 !!$ !===Use this routine for outflow BCs only.
192 !!$ !===CAUTION: Do not enfore BCs on pressure where normal component
193 !!$ ! of velocity is prescribed.
194 !!$ FUNCTION pp_exact(TYPE,rr,m,t) RESULT (vv)
195 !!$ IMPLICIT NONE
196 !!$ INTEGER , INTENT(IN) :: TYPE
197 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
198 !!$ INTEGER , INTENT(IN) :: m
199 !!$ REAL(KIND=8), INTENT(IN) :: t
200 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
201 !!$
202 !!$ vv=0.d0
203 !!$ CALL error_petsc('pp_exact: should not be called for this test')
204 !!$ RETURN
205 !!$ END FUNCTION pp_exact
206 
207 !!$ !===Temperature for boundary conditions in temperature equation.
208 !!$ FUNCTION temperature_exact(TYPE,rr,m,t) RESULT (vv)
209 !!$ IMPLICIT NONE
210 !!$ INTEGER , INTENT(IN) :: TYPE
211 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
212 !!$ INTEGER , INTENT(IN) :: m
213 !!$ REAL(KIND=8), INTENT(IN) :: t
214 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
215 !!$
216 !!$ vv = 0.d0
217 !!$ CALL error_petsc('temperature_exact: should not be called for this test')
218 !!$ RETURN
219 !!$ END FUNCTION temperature_exact
220 
221 !!$ !===Can be used to initialize level set in the subroutine init_level_set.
222 !!$ FUNCTION level_set_exact(interface_nb,TYPE,rr,m,t) RESULT (vv)
223 !!$ IMPLICIT NONE
224 !!$ INTEGER , INTENT(IN) :: TYPE
225 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
226 !!$ INTEGER , INTENT(IN) :: m, interface_nb
227 !!$ REAL(KIND=8), INTENT(IN) :: t
228 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
229 !!$
230 !!$ vv = 0.d0
231 !!$ CALL error_petsc('level_set_exact: should not be called for this test')
232 !!$ RETURN
233 !!$
234 !!$ END FUNCTION level_set_exact
235 
236 !!$ !===Penalty coefficient (if needed)
237 !!$ !===This coefficient is equal to zero in subdomain
238 !!$ !===where penalty is applied (penalty is zero in solid)
239 !!$ FUNCTION penal_in_real_space(mesh,rr_gauss,angles,nb_angles,nb,ne,time) RESULT(vv)
240 !!$ IMPLICIT NONE
241 !!$ TYPE(mesh_type) :: mesh
242 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr_gauss
243 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
244 !!$ INTEGER, INTENT(IN) :: nb_angles
245 !!$ INTEGER, INTENT(IN) :: nb, ne
246 !!$ REAL(KIND=8), INTENT(IN) :: time
247 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
248 !!$
249 !!$ vv = 1.d0
250 !!$ CALL error_petsc('penal_in_real_space: should not be called for this test')
251 !!$ RETURN
252 !!$ END FUNCTION penal_in_real_space
253 
254 !!$ !===Extension of the velocity field in the solid.
255 !!$ !===Used when temperature or Maxwell equations are solved.
256 !!$ !===It extends the velocity field on the Navier-Stokes domain to a
257 !!$ !===velocity field on the temperature and the Maxwell domain.
258 !!$ !===It is also used if problem type=mxw and restart velocity
259 !!$ !===is set to true in data (type problem denoted mxx in the code).
260 !!$ FUNCTION extension_velocity(TYPE, H_mesh, mode, t, n_start) RESULT(vv)
261 !!$ IMPLICIT NONE
262 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
263 !!$ INTEGER , INTENT(IN) :: TYPE, n_start
264 !!$ INTEGER, INTENT(IN) :: mode
265 !!$ REAL(KIND=8), INTENT(IN) :: t
266 !!$ REAL(KIND=8), DIMENSION(H_Mesh%np) :: vv
267 !!$
268 !!$ vv = 0.d0
269 !!$ RETURN
270 !!$
271 !!$ END FUNCTION extension_velocity
272 
273  !===============================================================================
274  ! Boundary conditions for Maxwell
275  !===============================================================================
276  !===Velocity used in the induction equation.
277  !===Used only if problem type is mxw and restart velocity is false
278  FUNCTION vexact(m, H_mesh) RESULT(vv) !Set uniquement a l'induction
279  IMPLICIT NONE
280  TYPE(mesh_type), INTENT(IN) :: H_mesh
281  INTEGER, INTENT(IN) :: m
282  REAL(KIND=8), DIMENSION(H_mesh%np,6) :: vv
283  INTEGER :: n
284 
285  vv = 0.d0
286  RETURN
287 
288  !===Dummies variables to avoid warning
289  n=m
290  !===Dummies variables to avoid warning
291  END FUNCTION vexact
292 
293 !!$ !===Magnetic field and magnetic induction for quasi-static approximation
294 !!$ !===if needed
295 !!$ FUNCTION H_B_quasi_static(char_h_b, rr, m) RESULT(vv)
296 !!$ IMPLICIT NONE
297 !!$ CHARACTER(LEN=1), INTENT(IN) :: char_h_b
298 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
299 !!$ INTEGER, INTENT(IN) :: m
300 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
301 !!$
302 !!$ vv = 0.d0
303 !!$ RETURN
304 !!$ END FUNCTION H_B_quasi_static
305 
306  !===Magnetic field for boundary conditions in the Maxwell equations.
307  FUNCTION hexact(H_mesh,TYPE, rr, m, mu_H_field, t) RESULT(vv)
308  IMPLICIT NONE
309  TYPE(mesh_type), INTENT(IN) :: H_mesh
310  INTEGER , INTENT(IN) :: TYPE
311  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
312  INTEGER , INTENT(IN) :: m
313  REAL(KIND=8), INTENT(IN) :: t
314  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
315  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
316  REAL(KIND=8) :: r
317  INTEGER :: n
318 
319  IF (m==1) THEN
320  IF (type==4) THEN
321  vv = -rr(1,:)**2
322  ELSE IF (type==5) THEN
323  vv = rr(1,:)*rr(2,:)
324  ELSE
325  vv = 0.d0
326  END IF
327  ELSE IF (m==0) THEN
328  IF (type==3) THEN
329  vv = rr(1,:)
330  ELSE IF (type==5) THEN
331  vv = 1.d0 !0.d0
332  ELSE
333  vv = 0.d0
334  END IF
335  ELSE
336  vv = 0.d0
337  END IF
338  RETURN
339 
340  !===Dummies variables to avoid warning
341  n=h_mesh%np; r=mu_h_field(1); r=t
342  !===Dummies variables to avoid warning
343  END FUNCTION hexact
344 
345  !===Scalar potential for boundary conditions in the Maxwell equations.
346  FUNCTION phiexact(TYPE, rr, m, mu_phi,t) RESULT(vv)
347  IMPLICIT NONE
348  INTEGER , INTENT(IN) :: TYPE
349  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
350  INTEGER , INTENT(IN) :: m
351  REAL(KIND=8), INTENT(IN) :: mu_phi, t
352  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
353  REAL(KIND=8) :: r
354  INTEGER :: n
355 
356  vv=0.d0
357  CALL error_petsc('Phiexact: should not be called for this test')
358  RETURN
359 
360  !===Dummies variables to avoid warning
361  n=type; n=m; r=rr(1,1); r=mu_phi; r=t
362  !===Dummies variables to avoid warning
363  END FUNCTION phiexact
364 
365  !===Current in Ohm's law. Curl(H) = sigma(E + uxB) + current
366  FUNCTION jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext) RESULT(vv)
367  IMPLICIT NONE
368  INTEGER , INTENT(IN) :: TYPE
369  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
370  INTEGER , INTENT(IN) :: m
371  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
372  INTEGER , INTENT(IN) :: mesh_id
373  REAL(KIND=8), DIMENSION(6), OPTIONAL,INTENT(IN) :: opt_B_ext
374  REAL(KIND=8) :: vv
375  REAL(KIND=8) :: r
376  INTEGER :: n
377 
378  IF (m==1) THEN
379  IF (type==2) THEN
380  vv = -rr(2)
381  ELSE IF (type==3) THEN
382  vv = -rr(2)
383  ELSE IF (type==6) THEN
384  vv = -3*rr(1)
385  ELSE
386  vv = 0.d0
387  END IF
388  ELSE
389  vv = 0.d0
390  END IF
391  RETURN
392 
393  !===Dummies variables to avoid warning
394  r=mu_phi; r=sigma; r=mu_h; r=t; n=mesh_id
395  IF (PRESENT(opt_b_ext)) r=opt_b_ext(1)
396  !===Dummies variables to avoid warning
397  END FUNCTION jexact_gauss
398 
399  !===Electric field for Neumann BC (cf. doc)
400  FUNCTION eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t) RESULT(vv)
401  IMPLICIT NONE
402  INTEGER, INTENT(IN) :: TYPE
403  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
404  INTEGER, INTENT(IN) :: m
405  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
406  REAL(KIND=8) :: vv
407  REAL(KIND=8) :: r
408 
409  IF (m/=0) THEN
410  vv = 0
411  ELSE
412  IF (type==5) THEN
413  vv = 2.d0
414  ELSE
415  vv = 0.d0
416  END IF
417  END IF
418  RETURN
419 
420  !===Dummies variables to avoid warning
421  r=rr(1); r=mu_phi; r=sigma; r=mu_h; r=t
422  !===Dummies variables to avoid warning
423  END FUNCTION eexact_gauss
424 
425  !===Initialization of magnetic field and scalar potential (if present)
426  SUBROUTINE init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, &
427  list_mode, hn1, hn, phin1, phin)
428  IMPLICIT NONE
429  TYPE(mesh_type) :: H_mesh, phi_mesh
430  REAL(KIND=8), INTENT(OUT):: time
431  REAL(KIND=8), INTENT(IN) :: dt
432  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
433  REAL(KIND=8), INTENT(IN) :: mu_phi
434  INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
435  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: Hn, Hn1
436  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: phin, phin1
437  INTEGER :: i, k
438 
439  time = -dt
440  DO k=1,6
441  DO i=1, SIZE(list_mode)
442  hn1(:,k,i) = hexact(h_mesh,k, h_mesh%rr, list_mode(i), mu_h_field, time)
443  IF (inputs%nb_dom_phi>0) THEN
444  IF (k<3) THEN
445  phin1(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i) , mu_phi, time)
446  ENDIF
447  END IF
448  ENDDO
449  ENDDO
450 
451  time = time + dt
452  DO k=1,6
453  DO i=1, SIZE(list_mode)
454  hn(:,k,i) = hexact(h_mesh, k, h_mesh%rr, list_mode(i), mu_h_field, time)
455  IF (inputs%nb_dom_phi>0) THEN
456  IF (k<3) THEN
457  phin(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i), mu_phi, time)
458  ENDIF
459  END IF
460  ENDDO
461  ENDDO
462  END SUBROUTINE init_maxwell
463 
464 !!$ !===Analytical permeability (if needed)
465 !!$ !===This function is not needed unless the flag
466 !!$ !=== ===Use FEM Interpolation for magnetic permeability (true/false)
467 !!$ !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
468 !!$ FUNCTION mu_bar_in_fourier_space(H_mesh,nb,ne,pts,pts_ids) RESULT(vv)
469 !!$ IMPLICIT NONE
470 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
471 !!$ REAL(KIND=8), DIMENSION(ne-nb+1) :: vv
472 !!$ INTEGER, INTENT(IN) :: nb, ne
473 !!$ REAL(KIND=8),DIMENSION(2,ne-nb+1),OPTIONAL :: pts
474 !!$ INTEGER, DIMENSION(ne-nb+1), OPTIONAL :: pts_ids
475 !!$
476 !!$ vv = 1.d0
477 !!$ CALL error_petsc('mu_bar_in_fourier_space: should not be called for this test')
478 !!$ RETURN
479 !!$ END FUNCTION mu_bar_in_fourier_space
480 
481 !!$ !===Analytical mu_in_fourier_space (if needed)
482 !!$ !===This function is not needed unless the flag
483 !!$ !=== ===Use FEM Interpolation for magnetic permeability (true/false)
484 !!$ !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
485 !!$ FUNCTION grad_mu_bar_in_fourier_space(pt,pt_id) RESULT(vv)
486 !!$ IMPLICIT NONE
487 !!$ REAL(KIND=8),DIMENSION(2), INTENT(in):: pt
488 !!$ INTEGER,DIMENSION(1), INTENT(in) :: pt_id
489 !!$ REAL(KIND=8),DIMENSION(2) :: vv
490 !!$
491 !!$ vv=0.d0
492 !!$ CALL error_petsc('grad_mu_bar_in_fourier_space: should not be called for this test')
493 !!$ RETURN
494 !!$ END FUNCTION grad_mu_bar_in_fourier_space
495 
496 !!$ !===Analytical permeability, mu in real space (if needed)
497 !!$ FUNCTION mu_in_real_space(H_mesh,angles,nb_angles,nb,ne,time) RESULT(vv)
498 !!$ IMPLICIT NONE
499 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
500 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
501 !!$ INTEGER, INTENT(IN) :: nb_angles
502 !!$ INTEGER, INTENT(IN) :: nb, ne
503 !!$ REAL(KIND=8), INTENT(IN) :: time
504 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
505 !!$
506 !!$ vv = 1.d0
507 !!$ CALL error_petsc('mu_in_real_space: should not be called for this test')
508 !!$ RETURN
509 !!$ END FUNCTION mu_in_real_space
510 
511 END MODULE boundary_test_12
subroutine error_petsc(string)
Definition: my_util.f90:16
type(my_data), public inputs
real(kind=8) function, dimension(size(rr, 2)), public phiexact(TYPE, rr, m, mu_phi, t)
subroutine, public init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, list_mode, Hn1, Hn, phin1, phin)
real(kind=8) function, dimension(h_mesh%np, 6), public vexact(m, H_mesh)
real(kind=8) function, public eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t)
real(kind=8) function, dimension(size(rr, 2)), public hexact(H_mesh, TYPE, rr, m, mu_H_field, t)
real(kind=8) function, public jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext)