SFEMaNS  version 5.3
Reference documentation for SFEMaNS
condlim_test_26.f90
Go to the documentation of this file.
2  USE my_util
3  USE def_type_mesh
4  USE input_data
5  USE test_26
6 !!$ATTENTION
7 !!$Some subroutines have been commented to avoid warning messages when compiling executable.
8 !!$It can not be done in the module boundary_generic that expects all subroutines to be present.
9 !!$END ATTENTION
10 !!$ PUBLIC :: init_velocity_pressure
11 !!$ PUBLIC :: init_temperature
12 !!$ PUBLIC :: init_level_set
13 !!$ PUBLIC :: source_in_NS_momentum
14 !!$ PUBLIC :: source_in_temperature
15 !!$ PUBLIC :: source_in_level_set
16 !!$ PUBLIC :: vv_exact
17 !!$ PUBLIC :: imposed_velocity_by_penalty
18 !!$ PUBLIC :: pp_exact
19 !!$ PUBLIC :: temperature_exact
20 !!$ PUBLIC :: level_set_exact
21 !!$ PUBLIC :: penal_in_real_space
22 !!$ PUBLIC :: extension_velocity
23  PUBLIC :: vexact
24 !!$ PUBLIC :: H_B_quasi_static
25  PUBLIC :: hexact
26  PUBLIC :: phiexact
27  PUBLIC :: jexact_gauss
28  PUBLIC :: eexact_gauss
29  PUBLIC :: init_maxwell
30  PUBLIC :: mu_bar_in_fourier_space
32 !!$ PUBLIC :: mu_in_real_space
33  PRIVATE
34 
35 CONTAINS
36  !===============================================================================
37  ! Boundary conditions for Navier-Stokes
38  !===============================================================================
39 
40 !!$ !===Initialize velocity, pressure
41 !!$ SUBROUTINE init_velocity_pressure(mesh_f, mesh_c, time, dt, list_mode, &
42 !!$ un_m1, un, pn_m1, pn, phin_m1, phin)
43 !!$ IMPLICIT NONE
44 !!$ TYPE(mesh_type) :: mesh_f, mesh_c
45 !!$ REAL(KIND=8), INTENT(OUT):: time
46 !!$ REAL(KIND=8), INTENT(IN) :: dt
47 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
48 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: un_m1, un
49 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: pn_m1, pn, phin_m1, phin
50 !!$ INTEGER :: mode, i, j
51 !!$ REAL(KIND=8), DIMENSION(mesh_c%np) :: pn_m2
52 !!$
53 !!$ time = 0.d0
54 !!$ DO i= 1, SIZE(list_mode)
55 !!$ mode = list_mode(i)
56 !!$ DO j = 1, 6
57 !!$ !===velocity
58 !!$ un_m1(:,j,i) = vv_exact(j,mesh_f%rr,mode,time-dt)
59 !!$ un (:,j,i) = vv_exact(j,mesh_f%rr,mode,time)
60 !!$ END DO
61 !!$ DO j = 1, 2
62 !!$ !===pressure
63 !!$ pn_m2(:) = pp_exact(j,mesh_c%rr,mode,time-2*dt)
64 !!$ pn_m1 (:,j,i) = pp_exact(j,mesh_c%rr,mode,time-dt)
65 !!$ pn (:,j,i) = pp_exact(j,mesh_c%rr,mode,time)
66 !!$ phin_m1(:,j,i) = pn_m1(:,j,i) - pn_m2(:)
67 !!$ phin (:,j,i) = Pn (:,j,i) - pn_m1(:,j,i)
68 !!$ ENDDO
69 !!$ ENDDO
70 !!$ END SUBROUTINE init_velocity_pressure
71 
72 !!$ !===Initialize temperature
73 !!$ SUBROUTINE init_temperature(mesh, time, dt, list_mode, tempn_m1, tempn)
74 !!$ IMPLICIT NONE
75 !!$ TYPE(mesh_type) :: mesh
76 !!$ REAL(KIND=8), INTENT(OUT):: time
77 !!$ REAL(KIND=8), INTENT(IN) :: dt
78 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
79 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: tempn_m1, tempn
80 !!$ INTEGER :: mode, i, j
81 !!$
82 !!$ time = 0.d0
83 !!$ DO i= 1, SIZE(list_mode)
84 !!$ mode = list_mode(i)
85 !!$ DO j = 1, 2
86 !!$ tempn_m1(:,j,i) = temperature_exact(j, mesh%rr, mode, time-dt)
87 !!$ tempn (:,j,i) = temperature_exact(j, mesh%rr, mode, time)
88 !!$ ENDDO
89 !!$ ENDDO
90 !!$ END SUBROUTINE init_temperature
91 
92 !!$ !===Initialize level_set
93 !!$ SUBROUTINE init_level_set(vv_mesh, time, &
94 !!$ dt, list_mode, level_set_m1, level_set)
95 !!$ IMPLICIT NONE
96 !!$ TYPE(mesh_type) :: vv_mesh
97 !!$ REAL(KIND=8), INTENT(OUT):: time
98 !!$ REAL(KIND=8), INTENT(IN) :: dt
99 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
100 !!$ REAL(KIND=8), DIMENSION(:,:,:,:), INTENT(OUT):: level_set, level_set_m1
101 !!$ INTEGER :: mode, i, j, n
102 !!$
103 !!$ time = 0.d0
104 !!$ DO i= 1, SIZE(list_mode)
105 !!$ mode = list_mode(i)
106 !!$ DO j = 1, 2
107 !!$ !===level_set
108 !!$ DO n = 1, inputs%nb_fluid -1
109 !!$ level_set_m1(n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time-dt)
110 !!$ level_set (n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time)
111 !!$ END DO
112 !!$ END DO
113 !!$ END DO
114 !!$
115 !!$ END SUBROUTINE init_level_set
116 
117 !!$ !===Source in momemtum equation. Always called.
118 !!$ FUNCTION source_in_NS_momentum(TYPE, rr, mode, i, time, Re, ty, opt_density, opt_tempn) RESULT(vv)
119 !!$ IMPLICIT NONE
120 !!$ INTEGER , INTENT(IN) :: TYPE
121 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
122 !!$ INTEGER , INTENT(IN) :: mode, i
123 !!$ REAL(KIND=8), INTENT(IN) :: time
124 !!$ REAL(KIND=8), INTENT(IN) :: Re
125 !!$ CHARACTER(LEN=2), INTENT(IN) :: ty
126 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_density
127 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_tempn
128 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
129 !!$
130 !!$ vv = 0.d0
131 !!$ CALL error_petsc('source_in_NS_momentum: should not be called for this test')
132 !!$ RETURN
133 !!$ END FUNCTION source_in_NS_momentum
134 
135 !!$ !===Extra source in temperature equation. Always called.
136 !!$ FUNCTION source_in_temperature(TYPE, rr, m, t)RESULT(vv)
137 !!$ IMPLICIT NONE
138 !!$ INTEGER , INTENT(IN) :: TYPE
139 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
140 !!$ INTEGER , INTENT(IN) :: m
141 !!$ REAL(KIND=8), INTENT(IN) :: t
142 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
143 !!$
144 !!$ vv = 0.d0
145 !!$ CALL error_petsc('source_in_temperature: should not be called for this test')
146 !!$ RETURN
147 !!$ END FUNCTION source_in_temperature
148 
149 !!$ !===Extra source in level set equation. Always called.
150 !!$ FUNCTION source_in_level_set(interface_nb,TYPE, rr, m, t)RESULT(vv)
151 !!$ IMPLICIT NONE
152 !!$ INTEGER , INTENT(IN) :: TYPE
153 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
154 !!$ INTEGER , INTENT(IN) :: m, interface_nb
155 !!$ REAL(KIND=8), INTENT(IN) :: t
156 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
157 !!$
158 !!$ vv=0.d0
159 !!$ CALL error_petsc('sourece_in_temperature: should not be called for this test')
160 !!$ END FUNCTION source_in_level_set
161 
162 !!$ !===Velocity for boundary conditions in Navier-Stokes.
163 !!$ !===Can be used also to initialize velocity in: init_velocity_pressure_temperature
164 !!$ FUNCTION vv_exact(TYPE,rr,m,t) RESULT(vv)
165 !!$ IMPLICIT NONE
166 !!$ INTEGER , INTENT(IN) :: TYPE
167 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
168 !!$ INTEGER, INTENT(IN) :: m
169 !!$ REAL(KIND=8), INTENT(IN) :: t
170 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
171 !!$
172 !!$ vv(:) = 0.d0
173 !!$ CALL error_petsc('vv_exact: should not be called for this test')
174 !!$ RETURN
175 !!$ END FUNCTION vv_exact
176 
177 !!$ !===Solid velocity imposed when using penalty technique
178 !!$ !===Defined in Fourier space on mode 0 only.
179 !!$ FUNCTION imposed_velocity_by_penalty(rr,t) RESULT(vv)
180 !!$ IMPLICIT NONE
181 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
182 !!$ REAL(KIND=8), INTENT(IN) :: t
183 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
184 !!$
185 !!$ vv=0.d0
186 !!$ RETURN
187 !!$ END FUNCTION imposed_velocity_by_penalty
188 
189 !!$ !===Pressure for boundary conditions in Navier-Stokes.
190 !!$ !===Can be used also to initialize pressure in the subroutine init_velocity_pressure.
191 !!$ !===Use this routine for outflow BCs only.
192 !!$ !===CAUTION: Do not enfore BCs on pressure where normal component
193 !!$ ! of velocity is prescribed.
194 !!$ FUNCTION pp_exact(TYPE,rr,m,t) RESULT (vv)
195 !!$ IMPLICIT NONE
196 !!$ INTEGER , INTENT(IN) :: TYPE
197 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
198 !!$ INTEGER , INTENT(IN) :: m
199 !!$ REAL(KIND=8), INTENT(IN) :: t
200 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
201 !!$
202 !!$ vv=0.d0
203 !!$ CALL error_petsc('pp_exact: should not be called for this test')
204 !!$ RETURN
205 !!$ END FUNCTION pp_exact
206 
207 !!$ !===Temperature for boundary conditions in temperature equation.
208 !!$ FUNCTION temperature_exact(TYPE,rr,m,t) RESULT (vv)
209 !!$ IMPLICIT NONE
210 !!$ INTEGER , INTENT(IN) :: TYPE
211 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
212 !!$ INTEGER , INTENT(IN) :: m
213 !!$ REAL(KIND=8), INTENT(IN) :: t
214 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
215 !!$
216 !!$ vv = 0.d0
217 !!$ CALL error_petsc('temperature_exact: should not be called for this test')
218 !!$ RETURN
219 !!$ END FUNCTION temperature_exact
220 
221 !!$ !===Can be used to initialize level set in the subroutine init_level_set.
222 !!$ FUNCTION level_set_exact(interface_nb,TYPE,rr,m,t) RESULT (vv)
223 !!$ IMPLICIT NONE
224 !!$ INTEGER , INTENT(IN) :: TYPE
225 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
226 !!$ INTEGER , INTENT(IN) :: m, interface_nb
227 !!$ REAL(KIND=8), INTENT(IN) :: t
228 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
229 !!$
230 !!$ vv = 0.d0
231 !!$ CALL error_petsc('level_set_exact: should not be called for this test')
232 !!$ RETURN
233 !!$ END FUNCTION level_set_exact
234 
235 !!$ !===Penalty coefficient (if needed)
236 !!$ !===This coefficient is equal to zero in subdomain
237 !!$ !===where penalty is applied (penalty is zero in solid)
238 !!$ FUNCTION penal_in_real_space(mesh,rr_gauss,angles,nb_angles,nb,ne,time) RESULT(vv)
239 !!$ IMPLICIT NONE
240 !!$ TYPE(mesh_type) :: mesh
241 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr_gauss
242 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
243 !!$ INTEGER, INTENT(IN) :: nb_angles
244 !!$ INTEGER, INTENT(IN) :: nb, ne
245 !!$ REAL(KIND=8), INTENT(IN) :: time
246 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
247 !!$
248 !!$ vv = 1.d0
249 !!$ CALL error_petsc('penal_in_real_space: should not be called for this test')
250 !!$ RETURN
251 !!$ END FUNCTION penal_in_real_space
252 
253 !!$ !===Extension of the velocity field in the solid.
254 !!$ !===Used when temperature or Maxwell equations are solved.
255 !!$ !===It extends the velocity field on the Navier-Stokes domain to a
256 !!$ !===velocity field on the temperature and the Maxwell domain.
257 !!$ !===It is also used if problem type=mxw and restart velocity
258 !!$ !===is set to true in data (type problem denoted mxx in the code).
259 !!$ FUNCTION extension_velocity(TYPE, H_mesh, mode, t, n_start) RESULT(vv)
260 !!$ IMPLICIT NONE
261 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
262 !!$ INTEGER , INTENT(IN) :: TYPE, n_start
263 !!$ INTEGER, INTENT(IN) :: mode
264 !!$ REAL(KIND=8), INTENT(IN) :: t
265 !!$ REAL(KIND=8), DIMENSION(H_Mesh%np) :: vv
266 !!$
267 !!$ vv = 0.d0
268 !!$ RETURN
269 !!$ END FUNCTION extension_velocity
270 
271  !===============================================================================
272  ! Boundary conditions for Maxwell
273  !===============================================================================
274  !===Velocity used in the induction equation.
275  !===Used only if problem type is mxw and restart velocity is false
276  FUNCTION vexact(m, H_mesh) RESULT(vv) !Set uniquement a l'induction
277  IMPLICIT NONE
278  TYPE(mesh_type), INTENT(IN) :: H_mesh
279  INTEGER, INTENT(IN) :: m
280  REAL(KIND=8), DIMENSION(H_mesh%np,6) :: vv
281  INTEGER :: n
282 
283  vv = 0.d0
284  RETURN
285 
286  !===Dummies variables to avoid warning
287  n=h_mesh%np; n=m
288  !===Dummies variables to avoid warning
289  END FUNCTION vexact
290 
291 !!$ !===Magnetic field and magnetic induction for quasi-static approximation
292 !!$ !===if needed
293 !!$ FUNCTION H_B_quasi_static(char_h_b, rr, m) RESULT(vv)
294 !!$ IMPLICIT NONE
295 !!$ CHARACTER(LEN=1), INTENT(IN) :: char_h_b
296 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
297 !!$ INTEGER, INTENT(IN) :: m
298 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
299 !!$
300 !!$ vv = 0.d0
301 !!$ RETURN
302 !!$ END FUNCTION H_B_quasi_static
303 
304  !===Magnetic field for boundary conditions in the Maxwell equations.
305  FUNCTION hexact(H_mesh,TYPE, rr, m, mu_H_field, t) RESULT(vv)
306  IMPLICIT NONE
307  TYPE(mesh_type), INTENT(IN) :: H_mesh
308  INTEGER , INTENT(IN) :: TYPE
309  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
310  INTEGER , INTENT(IN) :: m
311  REAL(KIND=8), INTENT(IN) :: t
312  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
313  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
314  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: r,z
315  INTEGER :: n
316  REAL(KIND=8) :: tmp
317 
318  vv = 0.d0
319  IF (m .NE. test_mode_t26 ) THEN
320  RETURN
321  ENDIF
322 
323  r = rr(1,:)
324  z = rr(2,:)
325  DO n = 1, SIZE(rr,2)
326  tmp= alpha_t26*test_mode_t26*r(n)**(test_mode_t26-1)/mu_func_t26(r(n),z(n))
327  IF (type==1) THEN
328  vv(n) = tmp
329  ELSE IF (type==4) THEN
330  vv(n) = -tmp
331  ENDIF
332  END DO
333  RETURN
334 
335  !===Dummies variables to avoid warning
336  n=h_mesh%np; r=mu_h_field(1); r=t
337  !===Dummies variables to avoid warning
338  END FUNCTION hexact
339 
340  !===Scalar potential for boundary conditions in the Maxwell equations.
341  FUNCTION phiexact(TYPE, rr, m, mu_phi,t) RESULT(vv)
342  IMPLICIT NONE
343  INTEGER , INTENT(IN) :: TYPE
344  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
345  INTEGER , INTENT(IN) :: m
346  REAL(KIND=8), INTENT(IN) :: mu_phi, t
347  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
348  REAL(KIND=8) :: r
349  INTEGER :: n
350 
351  vv=0.d0
352  CALL error_petsc('Phiexact: should not be called for this test')
353  RETURN
354 
355  !===Dummies variables to avoid warning
356  n=type; n=SIZE(rr,1); n=m; r=mu_phi; r=t
357  !===Dummies variables to avoid warning
358  END FUNCTION phiexact
359 
360  !===Current in Ohm's law. Curl(H) = sigma(E + uxB) + current
361  FUNCTION jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext) RESULT(vv)
362  IMPLICIT NONE
363  INTEGER , INTENT(IN) :: TYPE
364  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
365  INTEGER , INTENT(IN) :: m
366  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
367  INTEGER , INTENT(IN) :: mesh_id
368  REAL(KIND=8), DIMENSION(6), OPTIONAL,INTENT(IN) :: opt_B_ext
369  REAL(KIND=8) :: vv
370  REAL(KIND=8) :: r, z
371  REAL(KIND=8), DIMENSION(2) :: Dmu
372  REAL(KIND=8) :: tmp
373  INTEGER :: n
374 
375  vv = 0.d0
376  IF (m .NE. test_mode_t26) THEN
377  RETURN
378  ENDIF
379 
380  r = rr(1)
381  z = rr(2)
382  dmu=dmu_func_t26(r,z)
383  tmp=alpha_t26*test_mode_t26*r**(test_mode_t26-1)*(-1.d0/mu_func_t26(r,z)**2)
384  IF (type==2) THEN
385  vv = tmp*dmu(2)
386  ELSE IF (type==3) THEN
387  vv = tmp*dmu(2)
388  ELSE IF (type==6) THEN
389  vv = - tmp*dmu(1)
390  ENDIF
391  RETURN
392 
393  !===Dummies variables to avoid warning
394  r=mu_phi; r=sigma; r=mu_h; r=t; n=mesh_id
395  IF (PRESENT(opt_b_ext)) r=opt_b_ext(1)
396  !===Dummies variables to avoid warning
397  END FUNCTION jexact_gauss
398 
399  !===Electric field for Neumann BC (cf. doc)
400  FUNCTION eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t) RESULT(vv)
401  IMPLICIT NONE
402  INTEGER, INTENT(IN) :: TYPE
403  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
404  INTEGER, INTENT(IN) :: m
405  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
406  REAL(KIND=8) :: vv
407  REAL(KIND=8) :: r
408  INTEGER :: n
409 
410  vv = 0.d0
411  CALL error_petsc('Eexact: should not be called for this test')
412 
413  !===Dummies variables to avoid warning
414  r=rr(1); r=mu_phi; r=sigma; r=mu_h; r=t; n=type; n=m
415  !===Dummies variables to avoid warning
416  END FUNCTION eexact_gauss
417 
418  !===Initialization of magnetic field and scalar potential (if present)
419  SUBROUTINE init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, &
420  list_mode, hn1, hn, phin1, phin)
421  IMPLICIT NONE
422  TYPE(mesh_type) :: H_mesh, phi_mesh
423  REAL(KIND=8), INTENT(OUT):: time
424  REAL(KIND=8), INTENT(IN) :: dt
425  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
426  REAL(KIND=8), INTENT(IN) :: mu_phi
427  INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
428  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: Hn, Hn1
429  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: phin, phin1
430  REAL(KIND=8) :: r
431  INTEGER :: n
432 
433  hn1 = 0.d0
434  hn = 0.d0
435  phin1 = 0.d0
436  phin = 0.d0
437  time =0.d0
438  RETURN
439 
440  !===Dummies variables to avoid warning
441  r=h_mesh%rr(1,1); r=phi_mesh%rr(1,1); r=dt; r=mu_h_field(1); r=mu_phi; n=SIZE(list_mode)
442  !===Dummies variables to avoid warning
443  END SUBROUTINE init_maxwell
444 
445  !===Analytical permeability (if needed)
446  !===This function is not needed unless the flag
447  !=== ===Use FEM Interpolation for magnetic permeability (true/false)
448  !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
449  FUNCTION mu_bar_in_fourier_space(H_mesh,nb,ne,pts,pts_ids) RESULT(vv)
450  IMPLICIT NONE
451  TYPE(mesh_type), INTENT(IN) :: H_mesh
452  REAL(KIND=8), DIMENSION(ne-nb+1) :: vv
453  INTEGER, INTENT(IN) :: nb, ne
454  REAL(KIND=8),DIMENSION(2,ne-nb+1),OPTIONAL :: pts
455  INTEGER, DIMENSION(ne-nb+1), OPTIONAL :: pts_ids
456 
457  IF( PRESENT(pts) .AND. PRESENT(pts_ids) ) THEN
458  vv=mu_bar_in_fourier_space_anal_t26(h_mesh,nb,ne,pts,pts_ids)
459  ELSE
460  vv=mu_bar_in_fourier_space_anal_t26(h_mesh,nb,ne,pts)
461  END IF
462  RETURN
463  END FUNCTION mu_bar_in_fourier_space
464 
465  !===Analytical mu_in_fourier_space (if needed)
466  !===This function is not needed unless the flag
467  !=== ===Use FEM Interpolation for magnetic permeability (true/false)
468  !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
469  FUNCTION grad_mu_bar_in_fourier_space(pt,pt_id) RESULT(vv)
470  IMPLICIT NONE
471  REAL(KIND=8),DIMENSION(2), INTENT(in):: pt
472  INTEGER,DIMENSION(1), INTENT(in) :: pt_id
473  REAL(KIND=8),DIMENSION(2) :: vv
474 
476  RETURN
477  END FUNCTION grad_mu_bar_in_fourier_space
478 
479 !!$ !===Analytical permeability, mu in real space (if needed)
480 !!$ FUNCTION mu_in_real_space(H_mesh,angles,nb_angles,nb,ne,time) RESULT(vv)
481 !!$ IMPLICIT NONE
482 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
483 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
484 !!$ INTEGER, INTENT(IN) :: nb_angles
485 !!$ INTEGER, INTENT(IN) :: nb, ne
486 !!$ REAL(KIND=8), INTENT(IN) :: time
487 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
488 !!$
489 !!$ vv = 1.d0
490 !!$ CALL error_petsc('mu_in_real_space: should not be called for this test')
491 !!$ RETURN
492 !!$ END FUNCTION mu_in_real_space
493 
494 END MODULE boundary_test_26
real(kind=8) function, dimension(ne-nb+1), public mu_bar_in_fourier_space(H_mesh, nb, ne, pts, pts_ids)
real(kind=8) function, dimension(ne-nb+1) mu_bar_in_fourier_space_anal_t26(H_mesh, nb, ne, pts, pts_ids)
Definition: test_26.f90:123
subroutine, public init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, list_mode, Hn1, Hn, phin1, phin)
integer, parameter test_mode_t26
Definition: test_26.f90:6
subroutine error_petsc(string)
Definition: my_util.f90:16
real(kind=8) function, dimension(2), public grad_mu_bar_in_fourier_space(pt, pt_id)
real(kind=8) function, dimension(size(rr, 2)), public phiexact(TYPE, rr, m, mu_phi, t)
real(kind=8) function, public jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext)
real(kind=8) function, dimension(size(rr, 2)), public hexact(H_mesh, TYPE, rr, m, mu_H_field, t)
real(kind=8), parameter alpha_t26
Definition: test_26.f90:5
real(kind=8) function mu_func_t26(r, z)
Definition: test_26.f90:75
real(kind=8) function, dimension(2) grad_mu_bar_in_fourier_space_anal_t26(pt, pt_id)
Definition: test_26.f90:151
real(kind=8) function, dimension(h_mesh%np, 6), public vexact(m, H_mesh)
real(kind=8) function, dimension(2) dmu_func_t26(r, z)
Definition: test_26.f90:98
real(kind=8) function, public eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t)