

MicroAerial Vehicle (MAV)

Jse	S:
a	assess extent of a hazardous release using chemical and
	radiological sensors
e	explore / map terrain in real time using a variety of sensors
n	navigate in cluttered environments without maps
b	pattle assessment
S	earch
t	rack

Capabilities and Features:	
environmental and situational awareness	
flight control by video	
additional sensors for flight control:	
accelerometers, gyros, and GPS	
maneuverability in urban and rural environments	
low cost to construct, operate, and maintain	

IMI Researchers

Faculty: P. Binev, R. DeVore, R. Sharpley, V. Temlyakov Staff: M. Hielsberg, L. S. Johnson

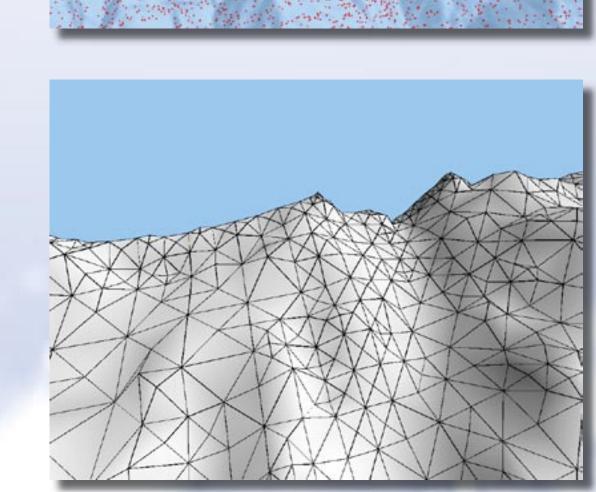
Collaboratoring Institutions

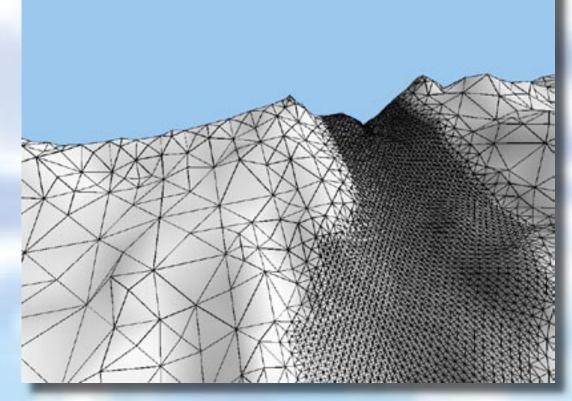
University of Florida – Mechanical & Aeronautical **Engineering Departments** Carnegie Mellon University – Robotics Institute Eglin AFB

The triangulation and associated local statistics are used to construct an assimilated surface in a multiple-resolution framework. On-line computations of redundant data enable sub-pixel accuracy.

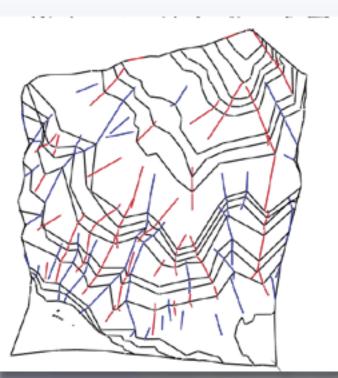
MATHEMATICAL LEARNING THEORY

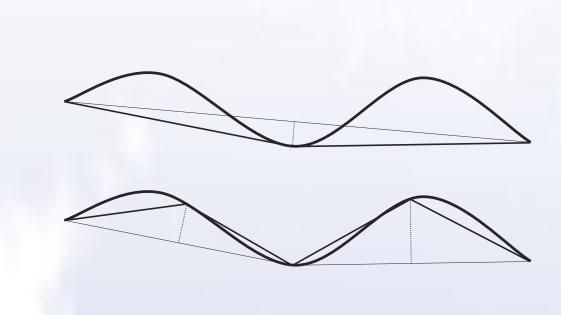
Autonomous Navigation of a MicroAerial Vehicles USC IMI


Learning (mapping)


Contour Encoding

classes.


Cloud of points sensed from video during flight.



Learning theory application adaptively constructs a triangulation for assimilated surface.

Build Morse Structure with priortization of geometric feature

Multiresolution Analysis of Curves

Automated Flight Control

Mathematical Learning to be employed to

• automatically calibrate trim for newly fabricated or damaged microaerial vehicles

• real-time learning of response to actuation of control surfaces

Contact

Janice Long Office Manager **Industrial Mathematics Institute** University of South Carolina 803-777-7183 http://www.math.sc.edu/~IMI/