Name: _____

September 10th, 2014. Math 2401; Sections D1, D2, D3. Georgia Institute of Technology Exam 1

I commit to uphold the ideals of honor and integrity by refusing to be tray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: _____

Problem	Possible Score	Earned Score
1	20	
2	20	
3	10	
4	20	
5	20	
6	10	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [20 pts.] Given the vectors $\vec{v_1} = \langle 1, 0, 2 \rangle$ and $\vec{v_2} = \langle -1, 2, 3 \rangle$: a). Find $\vec{v_1} \cdot \vec{v_2}$.

b). Find $\vec{v_1} \times \vec{v_2}$.

c). Find the angle between $\vec{v_1}$ and $\vec{v_2}.$ Give an exact answer.

d). Find a (simplified) component equation for the plane determined by the points (0, 0, 0), (1, 0, 2) and (-1, 2, 3).

 $2.\ [20\ {\rm pts.}]$ Find parametric equations for the line that is tangent to the curve:

$$\vec{r}(t) = \left(\ln\frac{t}{3}\right)\vec{i} + \left(\frac{t-3}{t+6}\right)\vec{j} + \left(t\ln\frac{t}{3}\right)\vec{k},$$

at the point on the curve where t = 3.

3. [10 pts.] Express the vector $\overrightarrow{P_1P_2}$ in the form $a\vec{i} + b\vec{j} + c\vec{k}$, where P_1 is the point (4, -3, 8) and P_2 is the point (-9, -9, 6).

4. [20 pts.] Evaluate the integral:

$$\int_0^1 \left[\left(6te^{3t^2} \right) \vec{i} + \left(6e^{-6t} \right) \vec{j} + 5\pi \vec{k} \right] dt.$$

Give exact answers.

5. [20 pts.] Given the curve:

$$\vec{r}(t) = \left\langle -\sqrt{2}e^t \cos(t), -\sqrt{2}e^t \sin(t), 2 \right\rangle,$$

find:

a). The unit tangent vector $\vec{T}(t)$.

b). The unit normal vector $\vec{N}(t).$

c). The curvature κ .

6. [10 pts.] Consider the curve:

$$\vec{r}(t) = \langle 0, \cos^3(t), \sin^3(t) \rangle, -\frac{\pi}{2} \le t \le 0.$$

Find the length of the curve on the given parameter domain.