Worksheet 5 - Line Integrals

- 1. Find $\int_C xy^4 ds$, where C is the right half of the circle $x^2 + y^2 = 16$.
- 2. Find $\int_C (2 + x^2 y) \, ds$, where C is the upper half of the unit circle $x^2 + y^2 = 1$..
- 3. Find $\int_C \frac{x^2}{y^{4/3}} ds$, where C is the curve: $\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j}$, $-3 \le t \le 1$.
- 4. Find the line integral of f(x, y, z) = xyz along the curve C given by the helix:

 $\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + 3t\vec{k}, \ 0 \le t \le 4\pi.$

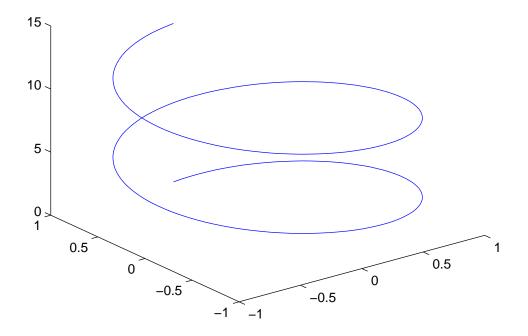


Figure 1: Helix