Worksheet 6 - Stokes' Theorem

1. Find the circulation of the field:

$$
\vec{F}=\left\langle y, x z, x^{2}\right\rangle
$$

around the curve C, where C is the boundary of the triangle cut from $4 x+y+z=4$ by the first octant, counterclockwise when viewed from above.
2. Evaluate:

$$
\iint_{S} \nabla \times(3 y \vec{i}) \cdot \vec{n} d \sigma
$$

where S is the hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$.
3. Compute the flux of the curl of the field:

$$
\vec{F}=\left\langle 4 y, 5-5 x, z^{2}-2\right\rangle
$$

across the surface S :

$$
S: \vec{r}(\phi, \theta)=\langle\sqrt{5} \sin \phi \cos \theta, \sqrt{5} \sin \phi \sin \theta, \sqrt{5} \cos \phi\rangle, 0 \leq \phi \leq \frac{\pi}{2}, 0 \leq \theta \leq 2 \pi
$$

in the direction of the outward unit normal.

