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My current research interests lie in infinite-dimensional analysis and geometry, probability
and statistics, and machine learning. The main focus of my graduate studies has been the
development of the Gaussian Radon transform for Banach spaces, an infinite-dimensional
generalization of the classical Radon transform. This transform and some of its properties
are discussed in Sections 2 and 3.1 below. Most recently, I have been studying applications
of the Gaussian Radon transform to machine learning, an aspect discussed in Section 4.

1 Background

The Radon transform was first developed by Johann Radon in 1917. For a function f :
Rn → R the Radon transform is the function Rf defined on the set of all hyperplanes P in
Rn given by:

Rf(P )
def
=

∫
P

f dx,

where, for every P , integration is with respect to Lebesgue measure on P .

P 

f(x, y) 

Figure 1: The Radon Transform

If we think of the hyperplane P as a “ray”
shooting through the support of f , the in-
tegral of f over P can be viewed as a way
to measure the changes in the “density” of
f as the ray passes through it. In other
words, Rf may be used to reconstruct the
density of an n-dimensional object from its
(n− 1)-dimensional cross-sections in differ-
ent directions. Through this line of think-
ing, the Radon transform became the math-
ematical background for medical CT scans,
tomography and other image reconstruction
applications.

Besides the intrinsic mathematical and
theoretical value, a practical motivation for
our work is the ability to obtain information
about a function defined on an infinite-dimensional space from its conditional expectations.
Infinite-dimensional Radon transforms were developed in [4], [3] - within the framework of
nuclear spaces - and in [17] - in the context of Hilbert spaces. However, the current stan-
dard framework in infinite-dimensional analysis and probability is that of abstract Wiener
spaces, developed by L. Gross in [8]. A Radon transform theory in the setting of abstract
Wiener spaces has potential to flourish in conjunction with the multitude of results already
established in this field. This was the project proposed for my thesis research.

2 The Gaussian Radon Transform

The first obstacle was the usual one in infinite-dimensional analysis, namely the absence of
a useful version of Lebesgue measure in infinite dimensions. However, Gaussian measures
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behave well in infinite dimensions. An abstract Wiener space is a triple (H,B, µ) where:

• H is a real separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.

• B is the Banach space obtained by completing H with respect to a measurable norm
| · |. Specifically, a norm | · | on H is said to be measurable if for all ε > 0 there is a
finite-dimensional subspace Fε of H such that:

γF [h ∈ F : |h| > ε] < ε (1)

for all finite-dimensional subspaces F of H with F ⊥ Fε, where γF denotes standard
Gaussian measure on F .

• µ is Wiener, or standard Gaussian, measure on B (see (4) below).

Any measurable norm | · | on H is weaker than the original Hilbert norm ‖ · ‖ (which is not
measurable if H is infinite-dimensional), therefore the restriction to H of any x∗ ∈ B∗ is
continuous with respect to ‖ · ‖. We then have the map:

B∗ → H∗; x∗ 7→ hx∗ , (2)

where for every x∗ ∈ B∗, hx∗ is the unique element of H such that:

〈h, hx∗〉 = (h, x∗) , for all h ∈ H. (3)

Thus B∗ is continuously embedded as a dense subspace HB∗ = {hx∗ ∈ H : x∗ ∈ B∗} of H.
With this notation, we may specify that Wiener measure µ is the unique Borel measure on
B with: ∫

B

eix
∗
dµ = e−

1
2‖hx∗‖2 (4)

for all x∗ ∈ B∗. Moreover, for any real separable infinite-dimensional Banach space B with
a centered Gaussian measure µ, there is a Hilbert space H (called the Cameron-Martin
space) such that (H,B, µ) is an abstract Wiener space.

The linear map HB∗ → L2(B,µ) sending hx∗ 7→ (·, x∗) is continuous with respect to the
Hilbert norm ‖ · ‖, and therefore has a unique extension to H which we denote by I:

I : H → L2(B,µ); h 7→ Ih. (5)

This map is an isometry and Ih is centered Gaussian with mean ‖h‖2 for every h ∈ H.
These results were proved by L. Gross in the celebrated work [8]. For a comprehensive

view on abstract Wiener spaces, see Kuo [16], and for an insightful summary see Stroock
[25].

𝑩, ∙  

𝑯, ∙  

𝑯𝑩∗ ≅  𝑩∗ 

Figure 2: Abstract Wiener space: B∗ is continuously embedded as a dense subspace of H.
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My first work in this field was the paper [10], joint with my adviser, which appeared in
the Journal of Functional Analysis in 2012. In Theorem 2.1 of this work we constructed
Gaussian measures on B that are concentrated on B-closures of closed affine subspaces in
H, that is sets of the form Mp = p+M0 where M0 is a closed subspace of H and p ∈M⊥.

Theorem 2.1 Let (H,B, µ) be an abstract Wiener space and M0 be a closed subspace of
H. For every translate Mp = p+M0, where p ∈M⊥0 , there is a unique Borel measure µMp

on B such that: ∫
B

eix
∗
dµMp

= ei〈p,hx∗ 〉− 1
2‖PM0

hx∗‖2 for all x∗ ∈ B∗, (6)

where PM0 denotes orthogonal projection in H onto M0. Moreover, µMp is concentrated on

the closure Mp of Mp in B.

While this result is more general, it has its origins in our observation that every hyper-
plane in B is the closure of a hyperplane in H, where by a hyperplane in a topological vector
space we mean a translate of a closed subspace of codimension 1. However, this is not a
one-to-one relationship, as Proposition 5.2 of [10] shows:

Proposition 2.2 Let (H,B, µ) be an abstract Wiener space. Then:

(i) If P is a hyperplane in B, then there is a unique hyperplane ξ in H such that P = ξ,
where we are taking the closure in B.

(ii) Let ξ = pu+u⊥ be a hyperplane in H, where p > 0 and u ∈ H is a unit vector. Then:

(a) If u ∈ HB∗ , then ξ is a hyperplane in B.

(b) If u /∈ HB∗ , then ξ = B.

𝑩 

𝑯𝑩∗  u 

𝑯  

𝝃 = 𝒑𝒖 + 𝒖⊥ 

𝝃  

𝑩 = 𝝃  

𝑯𝑩∗  
u 

𝑯  

𝝃 = 𝒑𝒖 + 𝒖⊥ 

Figure 3: If u ∈ HB∗ then ξ is a hyperplane in B; otherwise, ξ = B.

This led me to perform a more detailed analysis of the relationship between the closed
subspaces of finite codimension in B and those in H, which will appear in my thesis and a
future paper.

Definition 2.1 Let f be a bounded Borel function on B. We define the Gaussian Radon
transform Gf by:

Gf(Mp)
def
=

∫
B

f dµMp
(7)

for all closed affine subspaces Mp = p + M0 in H, where µMp
is the Gaussian measure on

B concentrated on Mp constructed in Theorem 2.1.
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3 Properties of the Gaussian Radon Transform

3.1 The Support Theorem

One of the most important results about the classical Radon transform is the Helgason
support theorem. In [10] we proved an analogue of this result for the Gaussian Radon
transform:

Theorem 3.1 Let (H,B, µ) be an abstract Wiener space and f be a bounded, continuous
function on B. Let K be a closed, bounded and convex subset of H such that the Gaussian
Radon transform Gf of f is 0 on all hyperplanes in H that do not intersect K. Then f is
0 on the complement of K in B.

B 

H 

K 

Figure 4: The Support Theorem

As in the classical case, this result provides information about the support of f , given
knowledge about the support of Gf .

3.2 Disintegration Theorem and Conditional Expectation

Continuing the ideas I had been developing, in my next work [11] (which has been accepted
for publication in the journal “Infinite Dimensional Analysis, Quantum Probability and
Related Topics”), I proved a disintegration of Wiener measure by the measures constructed
in Theorem 2.1.

Theorem 3.2 Let (H,B, µ) be an abstract Wiener space and Q0 be a closed subspace of
finite codimension in H. Then the map:

Q⊥0 3 p 7→ Gf(Qp) (8)

is Borel measurable on Q⊥0 for all non-negative Borel functions f on B. Moreover:∫
B

f dµ =

∫
Q⊥0

(Gf(Qp)) dγQ⊥0 (p) (9)

for all Borel functions f : B → C for which the left side exists, where γQ⊥0 is standard

Gaussian measure on Q⊥0 .

4



Irina Holmes Research Statement October 2013

This result led to a few interesting consequences, one of which (Corollary 3.2 of [11]) ex-
presses the Gaussian Radon transform as a conditional expectation. Let me include here an
immediate consequence of this result:

Proposition 3.3 Let (H,B, µ) be an abstract Wiener space and linearly independent ele-
ments h1, h2, . . . , hn of H. Then:

E [f |Ih1 = y1, . . . , Ihn = yn] = Gf

 n⋂
j=1

[〈hj , ·〉 = yj ]

 . (10)

for all f ∈ L2(B,µ), where I : H → L2(B,µ) is the map discussed in (5).

3.3 An Inversion Procedure

In the work [11] I also obtained an inversion procedure for the Gaussian Radon transform
using the Segal-Bargmann transform for abstract Wiener spaces. For background on the
Segal-Bargmann transform, see [2], [6], [7], [9] and [20], [21].

Theorem 3.4 Let (H,B, µ) be an abstract Wiener space, f ∈ L2(B,µ) and Q0 be a closed
subspace of finite codimension in H. Then:

SQ⊥0 ◦Gf(Qp) = (SBf)|(Q⊥0 )C (11)

where SQ⊥0 and SB are the Segal-Bargmann transforms on L2(Q0, γQ⊥0 ) and L2(B,µ), re-

spectively, and (Q⊥0 )C denotes the complexification of Q⊥0 .

In particular, (11) implies that for all non-zero h ∈ H:

S [Gf (P (·, h))] (‖h‖) = SBf(h) (12)

where S is the Segal-Bargmann transform on R and P (t, h) is the hyperplane in H given
by:

P (t, h) =
t

‖h‖
h+ h⊥

for all t > 0. In other words, if we know Gf(P ) for all hyperplanes in H, then we know
SBf |H ; taking the holomorphic extension to the complexification HC of H, we know SBf
and we can then obtain f from the inverse Segal-Bargmann transform.

4 Machine Learning and the Gaussian Radon Trans-
form

The Gaussian Radon transform has recently led us in the direction of machine learning.
Roughly, one may think of machine learning as the study of predicting the future from
known snapshots from the past.

Support vector machine (SVM) methods have been extremely popular in machine learn-
ing for quite some time, but recent literature has seen an increasing interest in probabilistic
interpretations of kernel-based methods ( see [1,13,18,19,22,28] for a few examples). SVM’s
involve projecting the data into an (often infinite-dimensional) reproducing kernel Hilbert

5
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space (RKHS) H. When H is finite-dimensional, there is a clear Bayesian interpretation of
kernel methods, but when H is infinite-dimensional, the absence of Lebesgue measure on
H presents an obstacle. Since the concept of abstract Wiener space was motivated exactly
by this lack of a “standard Gaussian measure” on infinite-dimensional Hilbert spaces, we
decided to explore some kernel-based methods from this perspective. Moreover, the fact
that the Gaussian Radon transform is really a conditional expectation gives it potential to
be applied in this setting. Our results so far, the most important of which I will briefly
discuss below, appear in [12], submitted in October 2013.

Let X be a non-empty set, the input space, and:

D = {(p1, y1), . . . , (pn, yn)}

be a finite collection of input values pj together with their corresponding real outputs yj .
Our goal is to predict the output y corresponding to a (yet unobserved) input value p ∈ X
by finding a suitable decision function f : X → R. The central assumption of kernel-based
methods is that the decision function belongs to a reproducing kernel Hilbert space H over X
with a certain reproducing kernel K. This means that H is a Hilbert space whose elements
are functions f : X → R and there is a positive definite map K : X × X → R such that

f(p) = 〈f,Kp〉, for all f ∈ H, p ∈ X ,

where Kp ∈ H denotes the function Kp(q) = K(p, q) for all p, q ∈ X . For more details about
reproducing kernel Hilbert spaces, see Chapter 4 of [24].

In ridge regression, the decision function fλ is given by:

f̂λ = arg min
f∈H

 n∑
j=1

(yj − f(pj))
2 + λ‖f‖2

 , (13)

where ‖f‖ denotes the norm of f in H and λ > 0 is a regularization parameter, whose role
is to penalize functions that ‘overfit’ the training data. The solution exists and is unique,
given by:

f̂λ =

n∑
j=1

cjKpj , (14)

where c ∈ Rn is c = (KD + λIn)−1y, with KD the n × n matrix with entries [KD]ij =
K(pi, pj), In the identity matrix of size n and y = (y1, . . . , yn) ∈ Rn the vector of inputs.
This is a classic result, but we include a geometrical proof of this fact in Theorem 5.1 of
[12], for completeness.

From a Bayesian perspective, assume that the data arises as yj = f(pj) + εj where f
is random, ε1, . . . , εn are independent standard Gaussian with mean 0 and variance λ > 0,
and are independent of f . This yields a prior distribution which, combined with standard
Gaussian measure on H if H is finite-dimensional, gives a posterior distribution proportional
to exp(− 1

2λ

∑n
j=1(yj − f(pj))

2− 1
2‖f‖

2). The maximum a posteriori (MAP) estimator then
yields the same function as in (14).

This approach does not work if H is infinite-dimensional, even though the solution in
(14) still exists in this case. However, another way to think about the finite-dimensional
case is that the data arises as a sample path of a centered Gaussian process {f(p) : p ∈ X},

6
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indexed by X , perturbed by Gaussian measurement error, i.e. a centered Gaussian process
{ε(p) : p ∈ X}, independent of f and with covariance Cov(ε(p), ε(q)) =

√
λδp,q:

y(p) = f(p) + ε(p).

Let K denote the covariance of the process f : K(p, q) = Cov(f(p), f(q)). If we choose
to predict ŷ, the output of some unknown input p ∈ X , by the conditional expectation
E[f(p)|y(p1) = y1, . . . , y(pn) = yn], then

ŷ = f̂λ(p)

where f̂λ is the SVM solution in (14). Although in the infinite-dimensional case we cannot
have the Gaussian process {f(p) : p ∈ X} on H itself, we have shown that this stochastic
approach does go through in infinite dimensions by working within the the abstract Wiener
space framework and constructing the Gaussian process on B instead of H, and, moreover,
that the prediction function is again f̂λ.

Let K : X × X → R be a positive definite map and H be the RKHS over X with
reproducing kernelK (such anH exists by the Moore-Aronszajn theorem - see [24]). Suppose
further that X is a separable topological space, in which case H is a real separable Hilbert
space. We complete H with respect to a measurable norm | · | and obtain an abstract
Wiener space (H,B, µ). Then for every p ∈ X let K̃p denote IKp ∈ L2(B,µ), where
I : H → L2(B,µ) is the map in (5) and Kp(q) = K(p, q) for all q ∈ X :

K̃p = IKp.

Given the training data D = {(pj , yj) 1 ≤ j ≤ n} ⊂ X × R let p ∈ X and {e1, . . . , en}
be an orthonormal set in H, contained in span{Kp1 , . . . ,Kpn ,Kp}⊥, and ẽj = Iej for all
1 ≤ j ≤ n. In Theorem 4.1 of [12] we showed that:

Theorem 4.1 With the notation above:

E
[
K̃p|K̃p1 +

√
λẽ1 = y1, . . . , K̃pn +

√
λẽn = yn

]
= f̂λ(p) (15)

where for every λ > 0, f̂λ is the ridge regression solution in (14). This may be expressed as:

f̂λ(p) = GK̃p

 n⋂
j=1

[〈
Kpj +

√
λej , ·

〉
= yj

] , (16)

where GK̃p is the Gaussian Radon transform of K̃p.

We also showed that, by essentially taking λ = 0 above, we obtain the solution in the
traditional spline setting (see [14, 15]), where the goal is to find f ∈ H of minimal norm
such that f(pj) = yj for all 1 ≤ j ≤ n. The solution is then given by:

f̂0(p) = E[K̃p|K̃p1 = y1, . . . , K̃pn = yn] = GK̃p

 n⋂
j=1

[〈Kpj , ·〉 = yn]

 . (17)

Finally, learning in Banach spaces is another area that has recently been of interest in
the literature (see [5, 23, 27]). Such an approach would be useful in situations where the

7
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norm is not given by an inner product, and Banach spaces also offer a richer geometrical
diversity. The concept of reproducing kernel Banach space, introduced in [27], is a natural
extension of reproducing kernel Hilbert spaces. However, these are Banach spaces whose
elements are functions, and the Banach space B we used so far in Theorem 4.1 does not
necessarily consist of functions. We explore this idea in Section 6 of [12], where we show
that if K is continuous and X is a separable topological space, there exists a measurable
norm | · |1 on H such that the Banach space B obtained by completing H with respect to
| · |1 is a space of functions on a dense countable subspace D of X .

5 Future Directions

As noted in Becnel and Sengupta [4], the theory of infinite-dimensional Radon transforms is
still in its infancy. However, the foundations for this theory within the framework of abstract
Wiener spaces have been set. We hope that this will lead to many more developments in
the future.

One avenue I am pursuing is to build upon the results we have already found. For
instance, I am exploring stronger forms of the disintegration theorem and the inversion pro-
cedure in (11) for closed subspaces of infinite codimension. Moreover, Helgason used the
support theorem for the Radon transform to prove many other interesting results, so I am
also examining possible applications of our support theorem for the Gaussian Radon trans-
form - such as the exterior problem, or reconstructing f from values of Gf on hyperplanes
outside a closed, bounded convex subset of H.

On the machine learning side, in [12] we propose some future work where the Gaussian
Radon transform could be used for a much broader class of prediction problems, such as
predicting the maximum value of an unknown function over some future interval based on
the training data. Specifically, we showed so far that the problem of simply predicting a
future value at an unknown input p ∈ X can be solved by

GK̃p(L),

where L is the closed subspace of H reflecting the training data, as in Theorem 4.1, (16). But
suppose now that the goal was to predict the maximum value attained over some particular
set S ⊂ X of “future” input values. Then

GF (L) (18)

could be used instead, where
F = sup

p∈S
K̃p.

Of course, there are any number of functions that could be used for F , the supremum is just
an illustrative example. What is important to note about the prediction proposed in (18) is
that it is not the same thing as finding a decision function and then taking the supremum
of that decision function. In other words, this is not the same as

sup
p∈S

GK̃p(L).

I am currently exploring this line of thought and analyzing the “accuracy” of the prediction
proposed in (18).

8
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In light of its possible applications to the highly computational field of machine learning,
I am also working on finite-dimensional approximations to the Gaussian Radon transform.

I plan to continue exploring the idea of realizing B as a space of functions initiated in
[12]. For instance, a “ready-made” example where B is a space of functions already exists -
namely the classical Wiener space, where the Banach space is C[0, 1], the space of continuous
functions starting at 0 on [0, 1]. One major obstacle in mirroring the RKHS theory through
reproducing kernel Banach spaces is the absence of an inner-product, which some authors
circumvent by using semi-inner-products. But when a Banach space is viewed through the
lens of abstract Wiener spaces, it is really the underlying Hilbert space that dictates the
geometry of the Gaussian measure on B, a potentially useful idea for RKBS theory.

I have a rich list of problems and ideas to explore in this exciting new field, and I am
looking forward to developing new methods and applications.
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