Final Exam Review: Worksheet 1

1. For each of the functions below, determine whether it is even, odd, or neither:

(a). $f(x) = -3x^2 + 4$ (b). $f(x) = 2x^3 - 4x$ (c). $f(x) = x^3 - \sin(3x)$ (d). $f(x) = x^3 + \cos(3x)$ (e). $f(x) = 2x^3 - 3x^3 - 4x + 4$

2. Use the Intermediate Value Theorem to show that $f(x) = x^3 + x$ takes on the value 9 for some $x \in (1, 2)$. **3.** If $f(x) = \frac{x}{x+1}$, the expression $\frac{f(1+h)-f(1)}{h}$ can be simplified to:

(a).
$$\frac{h}{h+1}$$
 (c). $\frac{-1}{2h+1}$
(b). $\frac{-1}{4+2h}$ (d). $\frac{1}{4}$

4. If

$$A = \lim_{x \to 1} \frac{x+2}{x(x-3)} \quad \text{and} \quad B = \lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 + x - 2}$$

then:

(a).
$$A = \frac{3}{2}$$
 and B due;
(b). $A = -\frac{3}{2}$ and $B = 3$;
(c). $A = -\frac{3}{2}$ and $B = -\frac{1}{3}$;
(d). Both A and B due.

$$A = \lim_{x \to 3^+} \frac{x(x+1)}{3-x} \quad \text{and} \quad B = \lim_{x \to \infty} \frac{(x^2+2)(3x^2-5)}{x^4+6}$$

then:

5. If

 (a). $A = -\infty$ and B = -10/6;
 (c). $A = \infty$ and $B = \infty$;

 (b). A = 0 and B = 0;
 (d). $A = -\infty$ and B = 3.

6. If f(2) = 3 and f'(2) = -1, what is the equation of the tangent line to the graph of y = f(x) at the point where x = 2?

(a). y = 5 - x; (b). y = 7 - x; (c). y = 3x - 1; (d). y = x + 1.

7. An armadillo is walking along a straight road and is

$$s(t) = 12t^2 - t^3$$

inches along the road after t minutes $(0 \le t \le 8)$. What is its acceleration when t = 2?

- (a). $6 in/min^2$; (c). $12 in/min^2$;
- (b). 12 in/min; (d). $-12 in/min^2$.

8. Suppose f is continuous on [-3, 6] with f(-3) = -1 and f(6) = 3. The Intermediate Value Theorem, applied to f, guarantees that:

(a). f(0) = 0;

- (b). $f'(c) = \frac{4}{9}$ for at least one value $c \in (-3, 6)$;
- (c). $-1 \le f(x) \le 3$ for all $x \in [-3, 6]$;
- (d). f(c) = 1 for at least one $c \in (-3, 6)$;
- (e). f(c) = 0 for at least one $c \in (-1, 3)$.