Final Exam Review: Worksheet 1

1. For each of the functions below, determine whether it is even, odd, or neither:
(a). $f(x)=-3 x^{2}+4$
(b). $f(x)=2 x^{3}-4 x$
(c). $f(x)=x^{3}-\sin (3 x)$
(d). $f(x)=x^{3}+\cos (3 x)$
(e). $f(x)=2 x^{3}-3 x^{3}-4 x+4$
2. Use the Intermediate Value Theorem to show that $f(x)=x^{3}+x$ takes on the value 9 for some $x \in(1,2)$.
3. If $f(x)=\frac{x}{x+1}$, the expression $\frac{f(1+h)-f(1)}{h}$ can be simplified to:
(a). $\frac{h}{h+1}$
(c). $\frac{-1}{2 h+1}$
(b). $\frac{-1}{4+2 h}$
(d). $\frac{1}{4}$
4. If

$$
A=\lim _{x \rightarrow 1} \frac{x+2}{x(x-3)} \quad \text { and } \quad B=\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}+x-2}
$$

then:
(a). $A=\frac{3}{2}$ and B dne;
(c). $A=-\frac{3}{2}$ and $B=-\frac{1}{3}$;
(b). $A=-\frac{3}{2}$ and $B=3$;
(d). Both A and B dne.
5. If

$$
A=\lim _{x \rightarrow 3^{+}} \frac{x(x+1)}{3-x} \quad \text { and } \quad B=\lim _{x \rightarrow \infty} \frac{\left(x^{2}+2\right)\left(3 x^{2}-5\right)}{x^{4}+6}
$$

then:
(a). $A=-\infty$ and $B=-10 / 6$;
(c). $A=\infty$ and $B=\infty$;
(b). $A=0$ and $B=0$;
(d). $A=-\infty$ and $B=3$.
6. If $f(2)=3$ and $f^{\prime}(2)=-1$, what is the equation of the tangent line to the graph of $y=f(x)$ at the point where $x=2$?
(a). $y=5-x$;
(c). $y=3 x-1$;
(b). $y=7-x$;
(d). $y=x+1$.
7. An armadillo is walking along a straight road and is

$$
s(t)=12 t^{2}-t^{3}
$$

inches along the road after t minutes $(0 \leq t \leq 8)$. What is its acceleration when $t=2$?
(a). $6 \mathrm{in} / \mathrm{min}^{2}$;
(c). $12 \mathrm{in} / \mathrm{min}^{2}$;
(b). $12 \mathrm{in} / \mathrm{min}$;
(d). $-12 \mathrm{in} / \mathrm{min}^{2}$.
8. Suppose f is continuous on $[-3,6]$ with $f(-3)=-1$ and $f(6)=3$. The Intermediate Value Theorem, applied to f, guarantees that:
(a). $f(0)=0$;
(b). $f^{\prime}(c)=\frac{4}{9}$ for at least one value $c \in(-3,6)$;
(c). $-1 \leq f(x) \leq 3$ for all $x \in[-3,6]$;
(d). $f(c)=1$ for at least one $c \in(-3,6)$;
(e). $f(c)=0$ for at least one $c \in(-1,3)$.

