Final Exam Review: Worksheet 3

1. Find k such that the function f is continuous everywhere:

$$
f(x)= \begin{cases}x^{2}+2 x, & \text { if } x \leq k \\ 2 x^{2}+2 x-1, & \text { if } x>k\end{cases}
$$

2. Find k such that the function f is continuous everywhere:

$$
f(x)= \begin{cases}x^{2}+x-2 k, & \text { if } x \leq 2 \\ 6 x+k, & \text { if } x>2\end{cases}
$$

3. Find k such that $y=-4 x+k$ is a tangent line to the graph of $f(x)=x^{3}+3 x^{2}-x+1$.
4. Find k such that $y=2 x+6$ is a tangent line to the graph of $f(x)=x^{2}-2 x+k$ at the point where $x=2$.
5. Find k such that

$$
\int_{k}^{k+1}(2 x+1) d x=2
$$

6. Find k such that the average value of

$$
f(x)=\frac{1}{\sqrt{x}}+2 x-k
$$

on the interval $[0, k]$ is equal to 8 .
7. Find k such that

$$
\int_{1}^{2} \frac{(x+k)(x-k)}{2 x^{2}} d x=0
$$

8. Find k such that

$$
\int_{-k}^{k} \frac{(x-1)(x+3)}{x^{4}} d x=0
$$

9. Find all values c which satisfy the conclusion of the Mean Value Theorem for

$$
f(x)=x^{3}+2 x^{2}-x
$$

on the interval $[-1,2]$.
10. Let f be a function with first derivative given by

$$
f^{\prime}(x)=\frac{2 x^{2}-5}{x^{2}}
$$

for all $x>0$. Given that $f(1)=7$ and $f(5)=11$, what value $c \in(1,5)$ satisfies the conclusions of the Mean Value Theorem for f on the interval $[1,5]$?
11. Suppose f is continuous on $[0,2]$ and has values:

$$
\begin{array}{c|c|c|c}
x & 0 & 1 & 2 \\
\hline f(x) & 1 & k & 2
\end{array}
$$

The equation $f(x)=\frac{1}{2}$ must have at least two solutions in the interval [0,2] if k is:

$$
\text { a). } 0 ; \text { b). } 1 / 2 ; \text { c). } 1 ; \text { d). } 2 ; \text { e). } 3
$$

12. Selected values of a continuous function g are below:

$$
\begin{array}{c|c|c|c|c|c}
x & 0 & 2 & 5 & 9 & 11 \\
\hline g(x) & 1 & 2.8 & 1.7 & 1 & 3.4
\end{array}
$$

For $0 \leq x \leq 11$, what is the minimum number of times $g(x)=2$?

> a). One; b). Two; c). Three; d). Four; e). Five.

