1). $\lim _{n \rightarrow \infty} \frac{6 n^{4}+20 n^{2}-1}{-2 n^{5}+3}=0$
3). $\lim _{n \rightarrow \infty} \frac{10 n^{3}-6 n^{2}+n}{-3 n^{2}+1}=-\infty$
2). $\lim _{n \rightarrow \infty} \frac{-4 n^{2}+6 n}{3 n^{2}+3 n+1}=\frac{-4}{3}$
4). $\lim _{n \rightarrow \infty} \frac{6 n^{2}+3}{n-100}=\infty$
5). $\lim _{n \rightarrow \infty} \frac{-\sqrt{3 n^{5}+20 n+4}}{8 \sqrt{n^{5}+3 n^{2}-n}}=\frac{-\sqrt{3}}{8}$
6). $\lim _{n \rightarrow \infty} \frac{n^{2}}{2 \sqrt{n^{5}+3 n^{2}-n}}=0$
7). $\lim _{n \rightarrow \infty} \frac{\left(2 n^{2}-n+4\right)^{4}}{6\left(-n^{4}+2\right)^{2}}=\frac{2^{4}}{6}=\frac{8}{3}$
8). $\lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{5}+2 n^{2}-1}}{-n^{2}}=-\infty$
9). $\lim _{n \rightarrow \infty} \frac{-2 \sqrt{n^{21}-7 n^{3}+1}}{6 n^{10}+2}=-\infty$
10). $\lim _{n \rightarrow \infty} \frac{\left(-2 n^{2}+6 n-1\right)^{3}}{-12 n^{6}-20}=\frac{(-2)^{3}}{-12}=\frac{-8}{-12}=\frac{2}{3}$
11). $\lim _{n \rightarrow \infty}\left(1+\frac{10}{n}\right)^{n}=\lim _{n \rightarrow \infty}[\underbrace{\left(1+\frac{1}{\frac{n}{10}}\right)^{\frac{n}{10}}}_{\downarrow^{\downarrow^{n \rightarrow \infty}}}]^{10}=e^{10}$
12). $\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{5 n}=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{n+1}{n}}\right)^{5 n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{5 n}}=\lim _{n \rightarrow \infty} \frac{1}{[(\underbrace{\left(1+\frac{1}{n}\right)^{n}}_{n \rightarrow \infty}]^{5}}=\left[\frac{1}{e^{5}}\right.$
13). $\lim _{n \rightarrow \infty} \frac{6 n^{2}(4 n-1)!}{(4 n+1)!}=\lim _{n \rightarrow \infty} \frac{6 n^{2}}{4 n(4 n+1)}=\frac{6}{16}=\frac{3}{8}$
14). $\lim _{n \rightarrow \infty} \frac{3^{n+3}}{8^{n}}=\lim _{n \rightarrow \infty} 27 \cdot\left(\frac{3}{8}\right)^{n}=0$
15). $\begin{gathered}\lim _{n \rightarrow \infty}\left(\frac{3 n+6}{3 n+2}\right)^{10 n+2}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{3 n+2}{4}}\right)^{10 n+2}=\lim _{n \rightarrow \infty}[\underbrace{\left.\left.1+\frac{1}{\frac{3 n+2}{4}}\right)^{\frac{3 n+2}{4}}\right] \frac{4}{3 n+2}(10 n+2)}_{e^{\frac{40}{3}}}] \frac{10 \cdot 4}{3}=\frac{41}{3}\end{gathered}$

