1). $\frac{7}{4}-\frac{7}{6}+\frac{7}{8}-\frac{7}{10}+\frac{7}{12}-\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{7}{2(n+1)}$ converges by AST

$$
\begin{aligned}
& b_{n}=\frac{7}{2(n+1)} \geqslant \frac{7}{2(n+2)}=b_{n+1} \Rightarrow\left\{b_{n}\right\} \text { is decreasing } \\
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{7}{2(n+1)}=0
\end{aligned}
$$

2). $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot e^{3 / n}$ divergent by the Test for Divergence

$$
\lim _{n \rightarrow \infty} e^{3 / n}=e^{0}=1 \Rightarrow \lim _{n \rightarrow \infty}(-1)^{n-1} \cdot 1 \text { does not exist }
$$

3). $\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{1}{4 n-1}=\sum_{n=1}^{\infty} a_{n}$ conditionally convergent

- $b_{n}=\frac{1}{4 n-1} \geqslant \frac{1}{4(n+1)-1}=b_{n+1} \Rightarrow\left\{b_{n}\right\}$ is decreasing

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

$\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges by the Alternating Series Test

- $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{4 n-1}$ diverges by the Comparison Test

$$
\frac{1}{4 n-1} \geqslant \frac{1}{4 n} \text { and } \sum_{n=1}^{\infty} \frac{1}{4 n} \text { diverges (harmonic series) }
$$

4). $\sum_{n=1}^{\infty} \frac{n}{6^{n}}$ convergent by the Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)}{6^{n+1}} \cdot \frac{6^{n}}{n}=\lim _{n \rightarrow \infty} \frac{n+1}{6 n}=\frac{1}{6}<1
$$

5). $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$ divergent by Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)!}{10^{n+1}} \cdot \frac{10^{n}}{n!}=\lim _{n \rightarrow \infty} \frac{n+1}{10}=\infty
$$

6). $\sum_{n=1}^{\infty} \frac{\sin (7 n)}{5^{n}}$ convergent (because it is absolutely convergent)
$\left|a_{n}\right|=\frac{|\sin (7 n)|}{5^{n}} \leqslant \frac{1}{5^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{5^{n}}$ is a convergent geometric series ($r=\frac{1}{5}<1$)
$\Rightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ is absolutely convergent
(Comparison Test)
We cannot apply the Comparison Test to the original series because the Comparison Test only applies to sequences with positive terms.
7). $\sum_{n=2}^{\infty}\left(\frac{-4 n}{n+1}\right)^{3 n}$ diverges by the Root Test.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{+4 n}{n+1}\right)^{3}=4^{3}>1
$$

8). $\sum_{n=1}^{\infty}\left(\frac{n^{3}+3}{9 n^{3}+1}\right)^{n}$ converges by the Root Test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{3}+3}{9 n^{3}+1}=\frac{1}{9}<1
$$

9). $\sum_{n=1}^{\infty} 3\left(1+\frac{1}{n}\right)^{n^{2}}=3 \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$ divergent by the Root Test.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e>1
$$

10). $\sum_{n=1}^{\infty}\left(\frac{3 n+10}{3 n+3}\right)^{4 n+2}$ diverges by the Test for Divergence

The Root Test is inconclusive : $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{3 n+10}{3 n+3}\right)^{\frac{4 n+2}{n}}=1^{4}=1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{3 n+10}{3 n+3}\right)^{4 n+2} & =\lim _{n \rightarrow \infty}\left(\frac{3 n+3+7}{3 n+3}\right)^{4 n+2}=\lim _{n \rightarrow \infty}\left(1+\frac{7}{3 n+3}\right)^{4 n+2} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{3 n+3}{7}}\right)^{4 n+2} \\
& =\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{\frac{3 n+3}{7}}\right)^{\frac{3 n+3}{7}}\right]^{\frac{7}{3 n+3}(4 n+2)}=e^{\frac{28}{3}} \neq 0
\end{aligned}
$$

ii).

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot 9 \cdot 12 \cdot \ldots(3 n)}{n!}=\sum_{n=1}^{\infty} \frac{(3 \cdot 1) \cdot(3 \cdot 2) \cdot(3 \cdot 3) \cdot(3 \cdot 4) \cdot \ldots(3 \cdot n)}{n!} \\
=\sum_{n=1}^{\infty} \frac{3^{n} \cdot n!}{n!}=\sum_{n=1}^{\infty} 3^{n} \text { diverges by the Test for Divergence } \\
\lim _{n \rightarrow \infty} 3^{n}=\infty
\end{gathered}
$$

12). $a_{1}=3 ; a_{n+1}=\frac{6 n^{2}+3}{5 n^{2}+n} a_{n}$ diverges by the Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{6 n^{2}+3}{5 n^{2}+n}=\frac{6}{5}>1
$$

13.) For what values of x does $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converge?

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0<1 \text { for all } x
$$

The series converges for all real numbers x. There fore:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \text { for all } x
$$

(because if $\sum_{n=0}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$).
14). $\sum_{n=1}^{\infty} \frac{9^{n}}{4^{n}+3^{n}}$ diverges by the Test for Divergence

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\left(\frac{9}{4}\right)^{n}}{1+\left(\frac{3}{4}\right)^{n}}=\infty
$$

15). $\sum_{n=1}^{\infty} \frac{n^{10}+1}{8 n^{11}+7 n^{6}+4}$ diverges by the Limit Comparison Test

$$
\begin{aligned}
& a_{n}=\frac{n^{10}+1}{8 n^{11}+7 n^{6}+4} ; b_{n}=\frac{1}{n} \text { (divergent-harmonic series) } \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n\left(n^{10}+1\right)}{8 n^{11}+7 n^{6}+4}=\frac{1}{8}
\end{aligned}
$$

16). $\sum_{n=1}^{\infty} \frac{4 n!}{e^{n^{2}}}$ converges by the Ratio Test

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{4(n+1)!}{e^{(n+1)^{2}}} \cdot \frac{e^{n^{2}}}{4 n!}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{e^{n^{2}+2 n+1-n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{n+1}{e^{2 n+1}}=0<1
\end{aligned}
$$

17). $\sum_{n=1}^{\infty} \frac{3^{n} \cdot n^{6}}{n!}$ converges by the Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a n}\right|=\lim _{n \rightarrow \infty} \frac{3^{n+1} \cdot(n+1)^{6}}{(n+1)!} \cdot \frac{n!}{3^{n} \cdot n^{6}}=\lim _{n \rightarrow \infty} \frac{3(n+1)^{6}}{(n+1) \cdot n^{6}}=0<1
$$

18). $\sum_{n=1}^{\infty} \sin (8 n)$ diverges by the Test fin Divergence $\left(\lim _{n \rightarrow \infty} \sin (8 n)\right.$ DNE $)$
19). $\sum_{n=1}^{\infty} \frac{(7 n+1)^{n}}{n^{6 n}}$ converges by the Root Test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{7 n+1}{n^{6}}=0<1
$$

20). $\sum_{n=1}^{\infty}(\sqrt[n]{6}-1)^{n}$ converges by the Root Test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}(\sqrt[n]{6}-1)=\lim _{n \rightarrow \infty}\left(6^{1 / n}-1\right)=6^{0}-1=1-1=0<1
$$

21). $\sum_{n=1}^{\infty} \frac{\sin (8 n)}{1+6^{n}}$ convergent because it is absolutely convergent
$\left|a_{n}\right|=\frac{|\sin (8 n)|}{1+6^{n}} \leqslant \frac{1}{1+b^{n}} \leqslant \frac{1}{6^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{6^{n}}$ is a convergent geometric
$\Rightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
series $\left(r=\frac{1}{6}<1\right)$
22). $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ converges by the Root Test.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{n+1}{n}\right)^{n}}=\frac{1}{e}<1
$$

