SERIES - Extra Problems
4. Sections 11.8 — 11.10

1). Find the radius of convergence and the interval of convergence of the power series:
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2). Suppose > 7, ¢,5™ converges. What can you conclude about:
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3). Suppose >, ¢, (—4)" converges, and Y- | ¢,6™ diverges. What can you conclude about:
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4). Use the geometric series to express the following functions as power series. For each one, determine
the radius and interval of convergence:
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5). Use the fact that:

1n(3—a:)=—/3imdx

to find a power series representation for the function:

f(@) =In(3 —x)

Find the radius of convergence.

6). Evaluate the integral as a power series:
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7). a). Starting with the geometric series, find the sum of the series:
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b). Use the result above to find:
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¢). Use the result above to find:
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8). If f(M(0) = (n+1)! for n = 0,1,2,... find the Maclaurin series of f and find its radius of convergence.

9). If f("(2) = é;(lrzig; for n =0,1,2,... find the Taylor series of f centered at 2 and find its radius of

convergence.
10). Use one of the Taylor series:
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to find the Maclaurin series for the functions:
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12).

f(z) = 4e” + €5

Evaluate:
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as a power series.

Evaluate:
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as a power series.



