Final Exam Study Guide

The Final Exam (worth 20% of your grade) will be on Thursday, December 9th, from 5:30 - 7:30PM. These problems should be a guide to prepare for the test.

Sections you should focus on:

- Chapter 2: Sections 2.1 through 2.6
- Chapter 3: Sections 3.1 through 3.7, and 3.10
- Chapter 4: Sections 4.2, 4.3, 4.4, 4.7, 4.9
- Chapter 5: Sections 5.2, 5.3, 5.4, 5.6, 5.7
- Chapter 6: Sections 6.1, 6.2 (just average value), 6.3, 6.4
- Chapter 8: Section 8.1.

Chapter 2 Problems

1. For what value of c is the function below continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx + 4, & \text{if } x < 2\\ cx^2 - 1, & \text{if } x \ge 2 \end{cases}$$

2. Find the limits:

(a)
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$
 (e)
$$\lim_{x \to 0^-} \frac{\sin(3x)}{|x|}$$

(b)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{3(x - 4)} \qquad \qquad \lim_{x \to 3} \frac{x - 3}{x^3 - 9x}$$

(c)
$$\lim_{x \to 0} \frac{\sin(8x)}{x} \qquad \qquad \lim_{x \to 0} \frac{\sqrt{5+x} - \sqrt{5-x}}{x}$$

(d)
$$\lim_{x \to 0+} \frac{\sin(5x)}{|x|} \qquad \qquad \lim_{x \to 0} \frac{\tan(4x)}{\tan(8x)};$$

3. Below is the graph of a function f:

Find:

(a)
$$\lim_{x \to 1^{-}} f(x)$$

$$\lim_{x \to 2^{+}} f(x)$$
 (b)
$$\lim_{x \to 1^{+}} f(x)$$
 (e)
$$\lim_{x \to 4^{-}} f(x)$$
 (f)
$$\lim_{x \to 2^{-}} f(x)$$

$$\lim_{x \to 4^{+}} f(x)$$

State the type of dicontinuity that f has at the points x = 1, x = 2, and x = 4.

Chapter 3 Problems

- 1. Find all the values of x where the tangent lines to $y = \frac{x^3}{3} + 3x$ and $y = 2x^2$ are parallel.
- 2. Determine the coefficients a and b such that $p(x) = x^2 + ax + b$ satisfies p(1) = 4 and p'(0) = 1.
- 3. Suppose that:

$$f(x+h) - f(x) = -5hx^{2} + 6hx + 3h^{2}x - 7h^{2} + 12h^{3}$$

Find f'(x).

- 4. Consider the functions f and g for which f(0) = 3, g(0) = 1, f'(0) = -2 and g'(0) = 5. Find h'(0) for the function $h(x) = \frac{f(x)}{g(x)}$.
- 5. Suppose that:

$$f(x) = \frac{e^x}{x^2 + 1}$$

Find f'(1).

- 6. If $f(x) = \sqrt{x}$, find f''(1).
- 7. Find f'(x) for $f(x) = 5e^x \cos(x)$.
- 8. Find the equation for the line tangent to the graph of

$$f(x) = -4xe^x$$

at the point (a, f(a)) for a = 1

9. Find the equation for the line tangent to the graph of

$$f(x) = \frac{5x}{x+4}$$

at the point (1,1). Give the equation in the form y=mx+b.

10. Find the equation for the line tangent to the graph of

$$f(x) = \sqrt{x}$$

4

at the point $(3, \sqrt{3})$.

11. Find $\frac{dy}{dx}$ for:

$$y = x^{5x}$$

$$(b) y = x^{3^x}$$

12. Find the derivative $\frac{dy}{dx}$ for the following functions:

(a)
$$y = (x^2 - 1 + 2x^4)\cos(x)$$
 (k) $y = \cos(\sin(x))$

(b)
$$y = 5e^x \sin(x)$$
 (l)
$$y = 7e^{x \sin(x)}$$

(c)
$$y = x^5 \cos(x)$$
 (m)
$$y = -2\cos(\cos(x^3))$$

(d)
$$y = \frac{5x}{\sin(x) + \cos(x)}$$
 (n)
$$y = 3\ln(\sin(x) + \cos(x))$$

(e)
$$y = \tan^{-1}(\cos(4x))$$
 (o)
$$y = 5^{x^2 - x^4 + 3}$$

(f)
$$y = 2x \arcsin(x)$$
 (p)

(g)
$$y = 4^{\sin(x^2)}$$
$$y = 6\arcsin(x^2)$$

(h)
$$y = 6 \arcsin(x^2)$$

$$y = \frac{\ln(3x)}{\sin(x)}$$

$$y = \sqrt{3x + \sqrt{5x}}$$

(i)
$$y = (x + \sin(x))^3 \qquad \qquad y = x \ln(x) - x$$

(j)
$$y = e^{8-x^2} y = \ln(\cos(\sin(x)))$$

Chapter 4 Problems

- 1. Find the critical points of $f(x) = x \ln(4x)$.
- 2. Given below is the graph of the **derivative** f' of a function f.

Use this graph to find:

- (a) The interval(s) where f is increasing:
- (b) The interval(s) where f is decreasing:
- (c) The interval(s) where f is concave up:
- (d) The interval(s) where f is concave down:
- 3. Find the minimum and the maximum of the function

$$f(x) = 2x^2 - 4x$$

on the closed interval [-1, 2].

- 4. Find the critical values of $f(x) = xe^{2x}$.
- 5. Find the positive critical point of:

$$f(x) = \frac{x}{x^{10} + 6}$$

6

- 6. Find the critical point of $f(x) = 3x 15\ln(3x)$ (where x > 0), and determine if f has a local minimum or maximum at this point.
- 7. Find the inflection points of $f(x) = (x^2 + 3)e^x$.
- 8. Find the limits:

(a)
$$\lim_{x \to 0} \frac{11^x - 3^x}{x}$$
 (b)
$$\lim_{x \to 0} \frac{x^2}{1 - \cos(x)}$$
 (e)
$$\lim_{x \to 0} \frac{\sin(5x)}{\tan(3x)}$$

$$\lim_{x \to 1} \frac{e^x - 1}{\sin(4x)}$$

9. Find

$$\lim_{x \to \infty} \left(\frac{14x}{14x + 6} \right)^{4x}$$

- 10. Given that f''(x) = 4x + 3, that f'(0) = 1, and f(0) = 3, find f'(x) and f(x).
- 11. Given that $f'(x) = 2e^x 5$, and that f(0) = 5, find f(x).
- 12. Find constants c_1 and c_2 such that

$$F(x) = c_1 x \sin(x) + c_2 \cos(x)$$

is an antiderivative of

$$f(x) = 2x\cos(x) + 4\sin(x)$$

Chapter 5 Problems

1. Use elementary geometry to find:

(a)

$$\int_0^6 \sqrt{36 - x^2} dx$$

(b)

$$\int_{-7}^{7} \sqrt{49 - x^2} dx$$

(c)

$$\int_{-3}^{3} \sqrt{9 - x^2} dx$$

2. Assuming that $\int_0^1 f(x)dx = 8$, $\int_0^2 f(x)dx = 10$, and $\int_1^4 f(x)dx = 10$, find:

(a)

$$\int_{1}^{2} f(x)dx$$

(b)

$$\int_{4}^{2} f(x)dx$$

3. Find

$$\int_0^1 \left(\frac{d}{dt}\sqrt{3+t^4}\right) dt$$

4. Find

$$\int_0^1 \left(\frac{d}{dx} \ln \left(\frac{4x+1}{2x+4} \right) \right) dx$$

5. If

$$f(x) = \int_{x}^{x^2} t dt$$

find f'(x).

6. If

$$f(x) = \int_{\sqrt{x}}^{x} t^2 dt$$

find f'(x).

7. If

$$f(x) = \int_{4}^{x^4} \sqrt{t^2 + 9} dt$$

find f'(x).

8. If

$$f(x) = \int_{1}^{\sqrt{x}} \ln(t^2) dt$$

find f'(x).

9. If

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ x & \text{if } x \ge 1 \end{cases}$$

then find:

$$\int_0^3 f(x)dx$$

10. If

$$f(x) = \begin{cases} x & \text{if } x < 2\\ \frac{1}{x} & \text{if } x \ge 2 \end{cases}$$

then find:

$$\int_0^5 f(x)dx$$

11. Find the integrals:

(a)

$$\int_{5}^{4} e^{x} dx$$

(g)

$$\int x(8+3x^6)dx$$

(b)

$$\int_{-1}^{1} (10x^9 + 5x^5) dx$$

(h)

(i)

$$\int \left(x^3 + 8 + \frac{5}{x^2 + 1}\right) dx$$

(c)

$$\int_{1}^{2} \frac{1}{5x} dx$$

$$\int \frac{3}{5\sqrt{x}} dx$$

(d)

$$\int \frac{9}{1+x^2} dx$$

(j)

$$\int \sec^2(4x)dx$$

(e)

$$\int 4\sqrt{x}dx$$

(k)

(l)

$$\int_{0}^{0.3} \frac{1}{\sqrt{1-x^2}} dx$$

(f)

$$\int \left(\frac{4}{\sqrt[3]{x}} - 3\sqrt[3]{x^2}\right) dx$$

$$\int_{1}^{2} \frac{5x^{2} + 3}{x^{2}} dx$$

12. Use the Substitution Method to find:

(a)
$$\int (3x-2)^4 dx$$
 (b)
$$\int \frac{1}{\sqrt{3x-4}} dx$$
 (i)
$$\int \frac{e^x}{2e^x-5} dx$$
 (c)
$$\int x\sqrt{x^2-4} dx$$
 (j)
$$\int \frac{-\sin(x)}{1+\cos^2(x)} dx$$
 (e)
$$\int x(x+1)^5 dx$$
 (l)
$$\int \frac{3\arcsin(x)}{\sqrt{1-x^2}} dx$$
 (f)
$$\int \sin^5(x)\cos(x) dx$$
 (l)
$$\int \frac{\arctan^3(x)}{1+x^2} dx$$

(m)

 $\int_{1}^{e^3} \frac{1}{x\sqrt{\ln(x)}} dx$

 $\int \frac{\ln^6(x)}{x} dx$

(g)

Chapter 6 Problems

- 1. Find the area of the region between $y = e^x$ and $y = e^{5x}$ over [0, 1].
- 2. Find the volume of a cylinder inclined at an anle of 60° , of height h=12, and whose base is a circle of radius 3.
- 3. Find the average value of $f(x) = 2xe^{x^2}$ on the interval [0,2].
- 4. Find the volume of the solid obtained by rotating the region under the graph of $f(x) = x^2 3x$ about the x-axis over [0, 3].
- 5. Find the volume of the solid obtained by rotating the region under the graph of $f(x) = e^x$ about the x-axis over [0, 3].
- 6. Find the volume of the solid obtained by rotating the region enclosed by the graphs $y = \sqrt{x}$ and $y = x^2$ about the x-axis.

Chapter 8 Problems

- 1. Calculate the arc length of y = 3x + 1 over [0, 9].
- 2. Compute the surface area of revolution of y = 4x + 3 about the x-axis over the interval [0, 1].