Angle $\theta(0 \leq \theta \leq \pi)$ between vectors \mathbf{u} and \mathbf{v} :

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} ; \quad \sin \theta=\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}||\mathbf{v}|}
$$

Vector Projection of \mathbf{u} onto $\mathbf{v} \neq 0$:

$$
\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=|\mathbf{u} \cos \theta| \frac{\mathbf{v}}{|\mathbf{v}|}
$$

Distance from a point S to a line L going through P and parallel to \mathbf{v} :

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Length of a smooth curve C : $\mathbf{r}(t)$, traced exactly once as $a \leq t \leq b$:

$$
L=\int_{a}^{b}|\mathbf{v}(t)| d t
$$

Arclength parameter:

$$
s(t)=\int_{t_{0}}^{t}|\mathbf{v}(\tau)| d \tau
$$

TNB Frame:

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|} ; \quad \mathbf{N}=\frac{d \mathbf{T} / d s}{\kappa}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|} ; \quad \mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

Curvature:

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}} .
$$

Tangential and Normal Components of Acceleration:

$$
\begin{gathered}
\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N} \\
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}|\mathbf{v}(t)|
\end{gathered}
$$

$$
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}(t)|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{T}^{2}}
$$

Torsion:

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}=-\frac{1}{|\mathbf{v}|} \frac{d \mathbf{B}}{d t} \cdot \mathbf{N}
$$

