\qquad
April $13^{\text {th }}, 2016$.
Math 2551; Sections L1, L2, L3.
Georgia Institute of Technology
Exam 3

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	16	
2	16	
3	18	
4	18	
5	14	
6	18	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

Angle $\theta(0 \leq \theta \leq \pi)$ between vectors \mathbf{u} and \mathbf{v} :

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u} \| \mathbf{v}|}
$$

Vector Projection of \mathbf{u} onto $\mathbf{v} \neq 0$:

$$
\operatorname{Proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=|\mathbf{u} \cos \theta| \frac{\mathbf{v}}{|\mathbf{v}|} .
$$

Distance from a point S to a line L going through P and parallel to \mathbf{v} :

$$
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

Length of a smooth curve $C: \mathbf{r}(t)$, traced exactly once as $a \leq t \leq b$:

$$
L=\int_{a}^{b}|\mathbf{v}(t)| d t
$$

TNB Frame:

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|} ; \quad \mathbf{N}=\frac{d \mathbf{T} / d s}{\kappa}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|} ; \quad \mathbf{B}=\mathbf{T} \times \mathbf{N} .
$$

Curvature:

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right| .
$$

Tangential and Normal Components of Acceleration:

$$
\begin{gathered}
\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N} \\
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}|\mathbf{v}(t)| ; \\
a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}(t)|^{2}=\sqrt{|\mathbf{a}|^{2}-a_{T}^{2}}
\end{gathered}
$$

Torsion:

$$
\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}
$$

Directional Derivative of f at P_{0} in the direction of the unit vector \mathbf{u} :

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}}=(\nabla f)_{P_{0}} \cdot \mathbf{u} .
$$

Spherical Coordinates: (ρ, ϕ, θ) :

$$
0 \leq \phi \leq \pi ; \quad 0 \leq \theta \leq 2 \pi ;
$$

$x=\rho \sin \phi \cos \theta ; \quad y=\rho \sin \phi \sin \theta ; \quad z=\rho \cos \phi ;$ Jacobian: $d V \mapsto \rho^{2} \sin \phi d \rho d \phi d \theta$.

Green's Theorem in the Plane:
$\oint_{C} \vec{F} \cdot \vec{n} d s=\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A ;$
$\oint_{C} \vec{F} \cdot \vec{T} d s=\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$
Area with Green's Theorem:

$$
\operatorname{Area}(R)=\frac{1}{2} \oint_{C} x d y-y d x
$$

Surface Differential on Parametric Surface S : $\mathbf{r}(u, v) ;(u, v) \in R:$

$$
d \sigma=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d(u, v)
$$

Unit Normal Field on Parametric Surface S : $\mathbf{r}(u, v) ;(u, v) \in R$:

$$
\mathbf{n}= \pm \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

Surface Differential on Implicitly Defined (Level Surface) $f(x, y, z)=c$, over shadow region R in a coordinate plane:

$$
d \sigma=\frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A
$$

where \mathbf{p} is one of $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
Unit Normal Field on Implicitly Defined (Level Surface) $f(x, y, z)=c$, over shadow region R in a coordinate plane:

$$
\mathbf{n}= \pm \frac{\nabla f}{|\nabla f|} .
$$

Parametrized Sphere of radius R, centered at the origin: $0 \leq \phi \leq \pi ; 0 \leq \theta \leq 2 \pi$;

$$
\mathbf{r}(\phi, \theta)=R\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle ;
$$

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=R^{2}\left\langle\sin ^{2} \phi \cos \theta, \sin ^{2} \phi \sin \theta, \sin \phi \cos \phi\right\rangle
$$

$$
\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=R^{2} \sin \phi
$$

Stokes' Theorem:

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

(with the appropriate assumptions on C, S and \mathbf{F}.)
Divergence Theorem:

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

(with the appropriate assumptions on S, D and \mathbf{F}.)

1. The following field:

$$
\vec{F}(x, y, z)=\left\langle y^{3} \cos \left(x y^{3}\right), \quad 3 x y^{2} \cos \left(x y^{3}\right)+e^{z^{2}}, \quad 2 y z e^{z^{2}}\right\rangle
$$

is conservative.
a). Find a potential function f for this field.
b). Compute $\int_{C} \vec{F} \cdot d \vec{r}$, where C is a smooth path from $(\pi, 1,0)$ to $(0,2,1)$.
2. Compute the integral:

$$
\int_{0}^{1} \int_{0}^{2} \int_{4 y}^{8} \frac{\cos \left(x^{2}\right)}{\sqrt{z}} d x d y d z
$$

3. (a). Compute

$$
\oint_{C}\left(2 y+\sqrt{1+x^{5}}\right) d x+\left(5 x-e^{y^{2}}\right) d y
$$

where C is the positively oriented circle $x^{2}+y^{2}=4$.
(b). Compute the outward flux of the field

$$
\mathbf{F}(x, y)=\left\langle x^{2}, y^{2}\right\rangle
$$

across the positively oriented closed curve C, consisting of the upper half of the circle $x^{2}+y^{2}=4$, followed by the line segment joining $(-2,0)$ and $(2,0)$ along the x-axis.
4. (a). Use cylindrical coordinates to set up the triple integral which gives the volume of the solid vertical cylinder whose:

- base is the region in the $x y$-plane that lies inside the cardioid $r=5+5 \cos \theta$ and outside the circle $r=5$,
- top lies in the plane $z=20$.

You do not need to compute the volume.

(b). Use cylindrical coordinates to set up the triple integral which gives the volume of the solid bounded by the surfaces $z=7-7\left(x^{2}+y^{2}\right)$ and $z=\left(x^{2}+y^{2}\right)^{2}-1$. You do not need to compute the volume.

5. Compute the line integral

$$
\int_{C}\left(x^{2}-y\right) d s
$$

where C is the portion of the circle $x^{2}+y^{2}=4$ from $(\sqrt{2}, \sqrt{2})$ to $(0,2)$.
6. (a). Use spherical coordinates to set up the integral which gives the volume of the solid bounded below by the $x y$-plane, bounded laterally by the sphere $\rho=8$, and bounded above by the cone $\phi=\frac{\pi}{6}$. You do not need to compute the volume.

(b). Use spherical coordinates to set up the integral which gives the volume of the smaller cap cut by $z=5$ from the sphere $x^{2}+y^{2}+z^{2}=100$. You do not need to compute the volume.

Bonus - 5 points: Set up the volume integral in part (b) above in cylindrical coordinates.

