May $5^{\text {th }}, 2016$.
Math 2551; Sections L1, L2, L3.
Georgia Institute of Technology
Final Exam

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged:

Problem	Possible Score	Earned Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
Total	140	

Remember that you must SHOW YOUR WORK to receive credit!
Good luck!

1. (a). Write parametric equations for the line joining the points $(0,8,0)$ and $(8,0,0)$.
(b). Let C be the line segment from $(0,8,0)$ to $(8,0,0)$. Compute the line integral:

$$
\int_{C}(x+y) d s
$$

2. Given that for a curve $\mathbf{r}(t)$:

$$
\frac{d \mathbf{r}}{d t}=\frac{1}{\sqrt{t}} \mathbf{i}+\sin (t) e^{\cos (t)} \mathbf{j}+t \mathbf{k}
$$

and that:

$$
\mathbf{r}(0)=\langle 1,0,3\rangle,
$$

find $\mathbf{r}(t)$.
3. Compute

$$
\int_{\pi / 4}^{\pi / 2} \int_{0}^{\frac{2}{\cos \theta+\sin \theta}} r^{2} \cos \theta d r d \theta
$$

4. (a). Find

$$
\oint_{C} y^{2} d x+3 x y d y
$$

where C is the closed, positively oriented curve consisting of the upper half of the unit circle $x^{2}+y^{2}=1$ $(y>0)$, and the line segment joining $(-1,0)$ and $(1,0)$.
(b). Find the outward flux of the field

$$
\mathbf{F}(x, y)=\left\langle 2 x y+y^{2}, 2 x-y\right\rangle
$$

across the curve C pictured below.

5. Find the following limits:
a). $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-2 y} \sin (3 x)}{5 x}$
b). $\lim _{(x, y) \rightarrow(2,8)} \frac{x y-2 y-7 x+14}{x-2}$.
c). Show that the limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{\sqrt{x^{2}+y^{2}}} .
$$

6. Find the minimum and maximum value of $f(x, y)=x^{2}+y^{2}$ subject to the constraint

$$
x^{2}-4 x+y^{2}-2 y=0
$$

Indicate the points where these extreme values occur.

7 . (a). Let x be a real number. What is $\sqrt{x^{2}}$?

$$
\sqrt{x^{2}}=
$$

(b). Let D be the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cone $z^{2}=3\left(x^{2}+y^{2}\right)$. Use spherical coordinates to set up the triple integral that gives the volume of D. You do not need to compute the volume.

8. Find the outward flux of the field:

$$
\mathbf{F}(x, y, z)=\left\langle 3 x^{3}+3 x y^{2}, 2 y^{3}+e^{y} \sin z, 3 z^{3}+e^{y} \cos z\right\rangle,
$$

across the boundary of the region D given by $1 \leq x^{2}+y^{2}+z^{2} \leq 2$.
9. Consider the curve:

$$
\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, \sqrt{5} t\rangle
$$

(a). Find the arc length parameter along this curve, taking $(2,0,0)$ for the initial point.
(b). Find the length of the portion of this curve with $0 \leq t \leq \pi / 6$.
(c). Find the point on this curve that is at distance π units along the curve from $(2,0,0)$ in the direction of increasing arc length.
10. Consider the surface S given by the parametrization:

$$
\mathbf{r}(r, \theta)=\langle r \cos \theta, r \sin \theta, r\rangle ; r \geq 0 ; 0 \leq \theta \leq 2 \pi .
$$

(a). Find a Cartesian equation for the surface S and sketch it.
(b). Find the equation of the plane tangent to the surface S at the point $P_{0}(-1, \sqrt{3}, 2)$ corresponding to $(r, \theta)=(2,2 \pi / 3)$.
11. Find all the critical points of the function:

$$
f(x, y)=x^{3}+y^{3}+3 x^{2}-6 y^{2}-1,
$$

and classify each one as a local minimum, a local maximum, or a saddle point.
12. Consider the curve:

$$
\mathbf{r}(t)=\langle 6 \sin t, 6 \cos t, 8 t\rangle
$$

and its unit tangent and unit normal vectors:

$$
\begin{gathered}
\mathbf{T}=\left\langle\frac{3}{5} \cos t,-\frac{3}{5} \sin t, \frac{4}{5}\right\rangle, \\
\mathbf{N}=\langle-\sin t,-\cos t, 0\rangle
\end{gathered}
$$

a). Find the unit binormal vector \mathbf{B}.
b). Find the torsion τ along this curve.
13. Consider the lines:

$$
\begin{array}{ll}
\mathrm{L} 1: & x=-1+2 t, \quad y=2+3 t, \quad z=1-2 t \\
\mathrm{~L} 2: \quad x=1-4 s, \quad y=1+2 s, \quad z=2-2 s
\end{array}
$$

(a). Find the point of intersection of these lines.
(b). Find an equation of the plane determined by the two lines.
14. Prove that:

$$
\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}
$$

where a is any positive real number.

