\qquad
March $23^{\text {rd }}, 2015$.
Math 2401; Sections K1, K2, K3. Georgia Institute of Technology

Exam 3

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	20	
3	20	
4	18	
5	16	
6	6	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

2. [20 points] Find:

$$
\int_{1}^{2} \int_{1}^{\sqrt{z}} \int_{\ln (x)}^{\ln (3 x)} e^{x^{2}+y+z} d y d x d z
$$

5. [16 points] Using cylindrical coordinates, set up the triple integral to compute the volume of the solid enclosed by the two paraboloids:

$$
\begin{gathered}
z=4-x^{2}-y^{2} \\
z=x^{2}+y^{2}
\end{gathered}
$$

pictured below. You do not have to compute the value of the integral.

\qquad
April 15 th 2015.
Math 2401; Sections K1, K2, K3. Georgia Institute of Technology

Exam 4

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
0	10	10
1	18	
2	18	
3	18	
4	18	
5	18	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [18 points] Find the line integral:

$$
\int_{C} 3 x d s
$$

where C is the portion of the parabola $y=x^{2}$ from $(0,0)$ to $(3,9)$.
2. [18 points] Find:

$$
\oint_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y
$$

where C is the positively oriented boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
3. [18 points] Consider the conservative field:

$$
\mathbf{F}(x, y, z)=(y z) \mathbf{i}+(x z-2 y \ln (z)) \mathbf{j}+\left(x y-\frac{y^{2}}{z}\right) \mathbf{k}
$$

a). [12 points $]$ Find a potential function for this field.
b). [6 points] Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve:

$$
\mathbf{r}(t)=\left\langle t, t^{2}, e^{t}\right\rangle, \quad 0 \leq t \leq 1
$$

5. [18 points] Compute the area enclosed by the deltoid curve, pictured below, and parametrized by:

$$
\mathbf{r}(\theta)=\langle 2 \cos \theta+\cos (2 \theta), \quad 2 \sin \theta-\sin (2 \theta)\rangle, \quad 0 \leq \theta \leq 2 \pi .
$$

Reminders: $\sin (2 \theta)=2 \sin \theta \cos \theta$ and $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$.

