\qquad
October $29^{\text {th }}, 2014$.
Math 2401; Sections D1, D2, D3.
Georgia Institute of Technology
Exam 3

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [20 points] Find the volume of the region in space bounded above by the surface $z=4 \cos (x) \sin (y)$ and below by the rectangle: $0 \leq x \leq \pi / 6,0 \leq y \leq \pi / 4$.
2. [20 points] a). Set up the integral for evaluating

$$
\iiint_{D} r d z d r d \theta
$$

over the solid D shown in the figure below: D is the prism whose base is the triangle in the $x y$-plane bounded by the y-axis and the lines $y=x, y=6$, and whose top lies in the plane $z=8-y$.

b). Set up a double integral of the form:

$$
\iint_{R} f(x, y) d x d y
$$

which would give the volume of the solid D in part a).
5. [20 points] Compute the integral:

$$
\int_{0}^{1} \int_{0}^{\pi} \int_{y / 2}^{\pi / 2} \frac{z \cos (x)}{x} d x d y d z
$$

\qquad
November $19^{\text {th }}, 2014$.
Math 2401; Sections D1, D2, D3.
Georgia Institute of Technology
Exam 4

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	25	
2	25	
3	20	
4	15	
5	15	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [25 points] Find:

$$
\int_{C} f d s
$$

where $f(x, y)=x+y$, and C, positively oriented, is the quarter of the circle $x^{2}+y^{2}=16$ lying in the third quadrant.
2. [25 points] Recall Green's formulas:

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot \vec{n} d s=\oint_{C} M d y-N d x=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A, \\
& \oint_{C} \vec{F} \cdot \vec{T} d s=\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A .
\end{aligned}
$$

Let the field:

$$
\vec{F}=\left(5 x y+y^{2}\right) \vec{i}+(5 x-y) \vec{j},
$$

and let C be the boundary of the region in the first quadrant enclosed by the curves $x=y^{2}$ and $y=x^{2}$. Use Green's Theorem to fill in the blanks below, expressing the flux and circulation of \vec{F} over C as double integrals over the region enclosed by C in the plane.

Be careful at the order of integration!
Do not compute the values of the integrals.
3. [20 points] The following field:

$$
\vec{F}(x, y, z)=\left\langle 2 x y e^{x^{2} y}, \quad x^{2} e^{x^{2} y}+\ln (z), \quad \frac{y}{z}\right\rangle
$$

is conservative.
a). Find a potential function f for this field.
b). Compute $\int_{C} \vec{F} \cdot d \vec{r}$, where C is a smooth path from $(1,0,3)$ to $\left(0,1, e^{3}\right)$.
c). Compute $\oint_{C} \vec{F} \cdot d \vec{r}$, where C is a simple closed curve (loop).
4. [15 points] Find the area of the region enclosed by the sinusoidal curve:

$$
\vec{r}(t)=\sin (2 t) \vec{i}+\sin (t) \vec{j}, 0 \leq t \leq \pi
$$

in the $x y$-plane, pictured below. You may use Green's area formula:

$$
A=\frac{1}{2} \oint_{C} x d y-y d x
$$

or any other method you like. You may need to recall that:

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta) \text { and } \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1=1-2 \sin ^{2}(\theta)
$$

