Name: \qquad
January $28^{\text {th }}, 2015$.
Math 2401; Sections K1, K2, K3.
Georgia Institute of Technology Exam 1

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	18	
3	14	
4	17	
5	10	
6	21	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [20 pts.] Consider the points in space:

$$
P(1,2,0) ; \quad Q(3,1,2) ; \quad R(-2,0,1)
$$

a). [6 pts.] Express the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ in standard component form.
b). [7 pts.] Find:

$$
\overrightarrow{P Q} \times \overrightarrow{P R}
$$

c). [7 pts.] Find an equation for the plane determined by the points P, Q and R. You do not need to simplify.
2. [18 pts.] Find parametric equations for the line that is tangent to the curve:

$$
\vec{r}(t)=(2 \sin (t)) \vec{i}+\left(t^{4}-5 \cos (t)\right) \vec{j}+\left(4 e^{2 t}\right) \vec{k}
$$

at the point on the curve where $t=0$.
3. [14 pts.] Consider the vectors:

$$
\begin{aligned}
\vec{u} & =\langle 1,1,1\rangle, \\
\vec{v} & =\langle 2,1,0\rangle .
\end{aligned}
$$

a). [7 pts.] Find the dot product $\vec{u} \cdot \vec{v}$.
b). [7 pts.] Find the angle θ between \vec{u} and \vec{v}. Give an exact answer.
4. [17 pts.] Given that:

$$
\begin{gathered}
\frac{d \vec{r}}{d t}=(6 \sqrt{t+1}) \vec{i}+\left(e^{-t}\right) \vec{j}+\left(\frac{1}{t+1}\right) \vec{k}, \\
\vec{r}(0)=\vec{k}
\end{gathered}
$$

find $\vec{r}(t)$.
5. [10 pts.] Find the length of the curve:

$$
\vec{r}(t)=(t \cos (t)) \vec{i}+(t \sin (t)) \vec{j}+\left(\frac{2 \sqrt{2}}{3} t^{3 / 2}\right) \vec{k},
$$

from the point $(0,0,0)$ to the point $\left(-\pi, 0, \frac{2 \sqrt{2}}{3} \pi^{3 / 2}\right)$.
6. [21 pts.] Given the curve:

$$
\vec{r}(t)=\langle t, 2 \sin (t), 2 \cos (t)\rangle,
$$

find:
a). $[7 \mathrm{pts}$.$] The unit tangent vector \vec{T}(t)$.
b). [7 pts.] The unit normal vector $\vec{N}(t)$.
c). [7 pts.] The unit binormal vector $\vec{B}(t)$. (You can use the back of this page for \vec{B}).

Name: \qquad
February $18^{\text {th }}, 2015$.
Math 2401; Sections K1, K2, K3.
Georgia Institute of Technology Exam 2

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	18	
2	16	
3	17	
4	16	
5	18	
6	15	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. (a). [9 points] Find the limit, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}}{x^{2}+2 y^{2}}
$$

(b). [9 points] Find the limit, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(4,1)} \frac{\sqrt{x}-2 \sqrt{y}}{x-4 y} .
$$

