Name: \qquad
September $10^{\text {th }}, 2014$. Math 2401; Sections D1, D2, D3.
Georgia Institute of Technology Exam 1

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	20	
3	10	
4	20	
5	20	
6	10	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [20 pts.] Given the vectors $\overrightarrow{v_{1}}=\langle 1,0,2\rangle$ and $\overrightarrow{v_{2}}=\langle-1,2,3\rangle$:
a). Find $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}$.
b). Find $\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}$.
c). Find the angle between $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. Give an exact answer.
d). Find a (simplified) component equation for the plane determined by the points $(0,0,0),(1,0,2)$ and $(-1,2,3)$.
2. [20 pts.] Find parametric equations for the line that is tangent to the curve:

$$
\vec{r}(t)=\left(\ln \frac{t}{3}\right) \vec{i}+\left(\frac{t-3}{t+6}\right) \vec{j}+\left(t \ln \frac{t}{3}\right) \vec{k},
$$

at the point on the curve where $t=3$.
3. [10 pts.] Express the vector $\overrightarrow{P_{1} P_{2}}$ in the form $a \vec{i}+b \vec{j}+c \vec{k}$, where P_{1} is the point $(4,-3,8)$ and P_{2} is the point $(-9,-9,6)$.
4. [20 pts.] Evaluate the integral:

$$
\int_{0}^{1}\left[\left(6 t e^{3 t^{2}}\right) \vec{i}+\left(6 e^{-6 t}\right) \vec{j}+5 \pi \vec{k}\right] d t
$$

Give exact answers.
5. [20 pts.] Given the curve:

$$
\vec{r}(t)=\left\langle-\sqrt{2} e^{t} \cos (t),-\sqrt{2} e^{t} \sin (t), 2\right\rangle,
$$

find:
a). The unit tangent vector $\vec{T}(t)$.
b). The unit normal vector $\vec{N}(t)$.
c). The curvature κ.
6. [10 pts.] Consider the curve:

$$
\vec{r}(t)=\left\langle 0, \cos ^{3}(t), \sin ^{3}(t)\right\rangle,-\frac{\pi}{2} \leq t \leq 0 .
$$

Find the length of the curve on the given parameter domain.

Name: \qquad
October $1^{\text {st }}, 2014$.
Math 2401; Sections D1, D2, D3.
Georgia Institute of Technology Exam 2

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. By signing my name below I pledge that I have neither given nor received help on this exam.

Pledged: \qquad

Problem	Possible Score	Earned Score
1	20	
2	15	
3	15	
4	15	
5	20	
6	15	
Total	100	

Remember that you must SHOW YOUR WORK to receive credit!

Good luck!

1. [20 points] Consider the function:

$$
h(x, y)=\frac{x^{2}+y}{y}
$$

a. Find the limit of $h(x, y)$ as $(x, y) \rightarrow(0,0)$ along linear paths $y=k x$.
b. Can you conclude from part a. that:

$$
\lim _{(x, y) \rightarrow(0,0)} h(x, y)=1 ?
$$

Justify your answer briefly.
c. Find the limit of $h(x, y)$ as $(x, y) \rightarrow(0,0)$ along parabolic paths $y=k x^{2}$.
d. What conclusions can you draw from the results you obtained in part c. about $\lim _{(x, y) \rightarrow(0,0)} h(x, y)$?

